Role of genes in oro-dental diseases

Size: px
Start display at page:

Download "Role of genes in oro-dental diseases"

Transcription

1 REVIEW ARTICLE B Kavitha, Vijayashree Priyadharshini, B Sivapathasundharam, TR Saraswathi Department of Oral and Maxillofacial Pathology, Meenakshi Ammal Dental College and Hospital, Chennai, India Received : Review completed : Accepted : PubMed ID : *** DOI: / ABSTRACT In oral cavity, the spectrum of diseases due to genetic alterations ranges from developmental disturbances of teeth to the pre-cancerous and cancerous lesions. Of late, significant progress has been made in the molecular analysis of tumors. With molecular genetic testing emerging as diagnostic, prognostic, and therapeutic approach, a review of genetic alterations ranging from the development of oro-facial structures to the tumors in the head and neck region are addressed in this article. The functional regulatory aspect of genes in relation to oro-facial structures are discussed separately, i.e., in relation to tooth genesis, tooth agenesis (non-syndromic, syndromic), tooth structural alterations, syndromic oro-facial defects, bone diseases, skin diseases (genodermatoses), and malignant tumors. In this literature, various genes involved in the development of the oro-facial structures and tooth in particular are discussed. The genetic basis of disorders in the tooth development (agenesis, hypodontia), tooth structural defects like amelogenesis imperfecta (AI), dentinogenesis imperfecta (DI), and oro-facial structural alterations (various syndromes) are explained. Key words: Dental diseases, genetics, tooth development Genetic disorders are far more common than is widely appreciated and the genetic diseases encountered in medical practice represent only the tip of the iceberg. The lifetime frequency of genetic diseases is estimated to be 670 per Humans have a mere 30,000 genes and in recent years the explosion of knowledge in this field resulted in the evolution of genetics (study of single or few genes and their phenotypic effects) into genomics (study of all the genes in the genome and their interactions). Progress in genetics and molecular biology has resulted in the emergence of new concepts to explain the etiology and pathogenesis of many human disease processes including oro-dental diseases. Technologic advances in molecular biology have provided tools to study the alterations in gene structure that are associated with a particular disease. Blotting techniques, PCR, in-situ hybridization, and cdna micro arrays are some of the technical advances in molecular biology. Cytogenetics and molecular biology techniques have revolutionized the field of genetics in the recent years. GENES INVOLVED IN TOOTH DEVELOPMENT (TOOTH GENESIS) Initiation, morphogenesis, and differentiation are the three fundamental processes involved in organogenesis. A group Address for correspondence: Dr. B Kavitha, kavithabottu2@yahoo.com of cells interpret positional information provided by other cells to initiate organ formation both at the right place and time (initiation). This leads to the formation of an organ rudiment (morphogenesis), followed by the development of organ specific structures (differentiation) [Figure 1]. Tooth development is an excellent example for the reciprocal interaction between ectoderm and underlying mesenchyme. This results in sequential cell activities like proliferation, condensation, adhesion, migration, differentiation, and secretion and leads to the formation of a functional tooth organ. Recent advances in molecular aspects of odontogenesis indicate that the development of teeth is under strict genetic control. More than 300 genes are involved in determination of the position, number, and shape of different types of teeth. [1] Mutations in those genes encoding transcription factors and signaling molecules involved in odontogenesis is responsible for numerous abnormalities of the teeth. Most commonly studied genes in tooth development are homeobox genes. HOMEOBOX GENES A homeobox (HOX) is a DNA sequence of about 180 base pairs long, found within genes that are involved in the regulation of development (morphogenesis) of animals, fungi, and plants. Genes that have a homeobox are called homeobox genes and form a homeobox gene family. Homeobox genes encode transcription factors, which typically switch on cascades of other genes. HOX genes 270

2 Figure 1: Representation of role of genes at various stages of tooth development are a particular cluster of homeobox genes which function in patterning the body axis thereby providing the identity of particular body region and they determine where body segments grow in a developing fetus. Mutations in any one of these genes can lead to the growth of extra, typically non-functional body parts. Thus, mutations to homeobox genes can produce easily visible phenotypic changes. Humans generally contain homeobox genes in four clusters, called HOXA (or HOXI), HOXB, HOXC, or HOXD, on chromosomes 2, 7, 12, and 17, respectively. HOX gene network appears to be active in human tooth germs between 18 and 24 weeks of development. [2] PAX, MSX, DLX, LHX, BARX, and RUNX-2 are the important members of the homeobox genes involved in tooth development. PAX-9 gene PAX-9 belongs to a transcription factor family with nine members characterized by a DNA-binding domain called paired domain. They are important regulators of organogenesis that can trigger cellular differentiation. PAX-9 is widely expressed in the neural crest derived mesenchyme involved in craniofacial and tooth development. PAX-9 gene is mapped onto 14q12-q13 and mutations in this gene can lead to non-syndromic tooth agenesis. PAX-9-/- mice show cleft of secondary palate besides other skeletal alterations, lack thymus and parathyroid glands, and show absence of teeth. PAX-9 is expressed in the dental mesenchyme prior to the first morphological manifestation of odontogenesis. [3] Tooth development in homozygous PAX-deficient mouse embryos is arrested at the bud stage, indicating that PAX-9 is required for tooth development to proceed beyond this stage. PAX-9 is required for the mesenchymal expression of Bmp-4, MSX-1, Lef-1, suggesting that its function is essential to establish the inductive capacity of this tissue. 271 MSX-1 gene The MSX gene is a member of MSX homeobox gene family, a small family of homeobox genes related to the drosophila gene muscle segment homeobox (msh). [4] At present, two human MSX genes-msx-1 and MSX-2, have been isolated. [5] MSX-1 gene is mapped onto 4p16.1. MSX-1 and MSX-2 are found to be expressed in several embryonic structures including premigratory and migratory neural crest cells, as well as in the neural crest derived mesenchyme of the pharyngeal arches and median nasal process. The expression of this gene is observed very early in the odontogenic mesenchyme. They are expressed in undifferentiated multipotential cells that are proliferating or dying and they provide positional information, and regulate epithelial-mesenchymal signaling in cranio-facial development. MSX-1 gene encode a group of homeodomain transcription factors required in different stages of development, like patterning, morphogenesis, and histogenesis and they function as transcriptional repressors. It has been shown that MSX-1 inhibits cell differentiation by maintaining high levels of cyclin DI expression and Cdk-4 activity, thus preventing the exit from the cell cycle and enabling the cells to respond to proliferative factors. The loss of function mutation would lead these cells to differentiate earlier and stop proliferating, producing impaired morphogenesis. MSX-/- mice have cleft secondary palate, lack all teeth whose development is arrested at bud stage, and have skull, jaw, and middle ear defects. DLX gene DLX (Distal less) family of homeobox genes consists of six members (DLX 1-6) and is expressed in the epithelium and mesenchyme of the branchial arches, tooth bud mesenchyme, dental lamina, cranial neural crest, dorsal neural tube, and frontonasal process. Mutation in these

3 genes results in abnormalities affecting first four branchial arch derivatives including mandible and calvaria. DLX genes have been involved in the patterning of ectomesenchyme of the first brachial arch with respect to tooth development. Loss of function mutation of these genes apparently results in failure of development of upper molars. [6] LHX gene Lim homeodomain transcription factors (LHX-1 and LMX1-b) are expressed in neural crest derived ectomesenchyme of first branchial arch. Improper expression of this gene leads to abnormal development of first arch derivatives including tooth agenesis and cleft palate. Recently a Lim homeobox gene, LHX-8, is found to be expressed in murine embryonic palatal mesenchyme, and targeted deletion of this gene resulted in a cleft secondary palate in LHX-8 homozygous mutant embryos. [7] BARX gene Telencephalon, diencephalon, mesencephalon, hindbrain, spinalcord, cranial and dorsal root ganglia, craniofacial structures, and palate are the expression sites for Barx gene. Improper expression of this gene results in failure of nervous system to develop and cleft palate formation. BARX-1 is expressed in the mesenchyme of the mandibular and maxillary process and in the tooth primordial, while BARX-2 is expressed in the oral epithelium prior to the tooth development. [8] RUNX gene RUNX 2 (Runt related protein) is a transcription factor and a key regulator of osteoblast differentiation and bone formation. Also, analysis of RUNX-2 showed that it is restricted to dental mesenchyme between the bud and early bell stages of tooth development. Epithelium-mesenchymal recombinants demonstrated that the dental epithelium regulates mesenchymal RUNX-2 expression during the bud and cap stages. [9] At molecular level, the signal molecules bind to their respective target receptors and trigger responses through the activation of transcription factors leading to an altered gene expression profile in target cells. Tgf superfamily, Bmps, Fgf superfamily, hedgehog (Hh) superfamily, and TNF are the few signaling molecules involved in tooth genesis. TOOTH AGENESIS (NON-SYNDROMIC AND SYNDROMIC) This is the most common craniofacial malformation. Its prevalence in permanent dentition reaches 20% and its expressivity ranges from only one tooth, usually a third molar, to the whole dentition. [10] Tooth agenesis could be isolated and manifested as the only phenotypic alteration in a person (non-syndromic) or associated with other alterations as part of a syndrome (syndromic). Non-syndromic tooth agenesis Isolated, non-syndromic tooth agenesis can be sporadic or familial and may be inherited as an autosomal dominant, recessive, or X-linked mode. Molar oligodontia, second premolar and third molar hypodontia, incisor-premolar hypodontia exemplify nonsyndromic agenesis. Mutations in PAX-9 gene mapped to 14q12-q13 were found in patients affected by molar oligodontia. Mutations responsible for second premolar and third molar hypodontia were found in MSX-1 gene mapped to 4p16.1.The genetic cause for Incisor-premolar hypodontia has not been found yet but mutations in MSX-1, MSX-2, EGF, and EGFR have been excluded. [11] Syndromic tooth agenesis Tooth agenesis is associated with many syndromes because many genes take part in molecular mechanisms common to tooth and other organs development. The following are the commonly associated syndromes. ECTODERMAL DYSPLASIA Ectodermal dysplasias are a group of 192 distinct disorders that involve anomalies in at least two of the following ectodermal-derived structures: Hair, skin, nails, and teeth. The most common EDs are X-linked recessive hypohidrotic ED (Christ-Siemens-Touraine syndrome) and hidrotic ED (Clouston syndrome). Hypohydrotic ectodermal dysplasia This disease is produced by point mutations, deletions, or translocations in the EDA gene, mapped to Xq12-q13.1. EDA gene encodes ectodysplasin-a, a 391 amino acid protein that belongs to the TNF-ligand family. Ectodysplasin plays a vital role during development by promoting interaction between ectodermal and mesodermal layers. [12] Ectodermal-mesodermal interactions are essential for many structures derived from ectoderm, including skin, hair, nails, teeth, and sweat glands. [12] Mutated EDA gene leads to the production of a non-functional version of the ectodysplasin, a protein which in turn cannot trigger the normal signals needed for the normal ectodermalmesodermal interaction resulting in the defective formation of the corresponding derivatives. Hidrotic ectodermal dysplasia Hidrotic ED (Clouston syndrome) is an autosomal dominant disorder caused by mutations in GJB-6, which encodes the gap junction beta protein connexin 30, a component of intercellular gap junctions. [13] Connexon mediates the direction of diffusion of ions and metabolites between the cytoplasm of adjacent cells. Mutations in this gene deregulate the trafficking of the protein and are thus associated with defects like palmar-plantar hyperkeratosis, generalized alopecia, and nail defects. 272

4 Witkop tooth and nail syndrome The tooth-and-nail syndrome (Witkop syndrome) is a rare autosomal dominant ectodermal dysplasia manifested by defects of the nail plates of the fingers and toes and hypodontia with normal hair and sweat gland function. A nonsense mutation within MSXI homeobox has been responsible for this disorder. The protein produced from the mutated allele would be truncated, and lack the entire C-terminal region that is important for protein stability and DNA binding. The mutant protein would have no biological function, and the haploinsufficiency is probably the pathogenic mechanism. [14] Reiger syndrome This is characterized by hypodontia, malformation of the anterior chamber of the eyes, and umbilical anomalies. The maxillary deciduous and permanent incisors and second maxillary premolars are most commonly missing, and cleft palate may be present. The mandibular anterior teeth have usually conical crowns. Mutations responsible for this malformation have been found in PITX-2 (paired like homeodomain transcription factor 1), a gene mapped to 4q25-q26. PITX-2 is a gene involved in tooth development and is more restricted to dental lamina. PITX-2-null mice revealed that PITX-2 was both a positive regulator of Fgf-8 and a repressor of Bmp-4 signaling suggesting that PITX- 2 may function as a coordinator of craniofacial signaling pathways. [15] STRUCTURAL TOOTH DEFECTS Amelogenesis imperfecta Enamel consists of 96% inorganic and 4% organic matrix. The organic matrix is made of several enamel proteins and enzymes. The enamel proteins include amelogenins (90%) and non-amelogenins (10%). Enamelin, tuftelin, and ameloblastin are the non-amelogenin proteins. The enzymes include metalloproteinases, proteinases, and phosphatases. Genes that code amelogenin and enamelin are AMELX and ENAM. Amelogenin gene is located on X and Y chromosome. Apart from tooth enamel, amelogenin is found in bone, bone marrow, and brain cells. AMELX gene located on X-chromosome has a major role in enamel formation, whereas AMELY gene located on Y-chromosome is not needed for enamel formation. Mutations in the AMELX and ENAM genes are mainly demonstrated to result in Amelogenesis imperfecta. Recently, mutations of two genes encoding enamel proteases, Kallikrein-4 (KLK-4) and MMP-20 (metalloproteinases), have been reported. [16] Amelogenesis imperfecta can be inherited as autosomal dominant, recessive, or as X-linked recessive (Xp-22) trait. Mutations in AMELX gene cause X-linked AI, whereas 273 mutations in ENAM gene cause autosomal inherited forms of AI. Dentinogenesis imperfecta Dentin consists of 65% inorganic and 35% organic substance. The major portion of the organic substance is made of Type I collagen, a product of COLIAI and COLIA-2 genes. This trimeric collagen molecule forms the foundation for several mineralized tissues including bone and dentin. There are numerous non-collagenous proteins present in dentin, some of which interact with collagen to initiate and/or regulate mineralization. The most abundant non-collagenous protein is dentin sialophosphoprotein, which is a product of DSPP gene located on 4q21.3. Dentin sialophosphoprotein is a highly phosphorylated protein that attaches to the type 1 collagen fibril and helps in regulation of mineralization at specific sites within the collagen. [17] Mutations in either COL or DSPP genes can alter this interaction resulting in abnormal mineralization and a Dentinogenesis imperfecta phenotype. SYNDROME ASSOCIATED ORO-FACIAL DEFECTS Van der Woude syndrome Van der Woude syndrome is an autosomal dominant syndrome typically consisting of a cleft lip or palate and distinct pits of the lower lip. Most cases of V-W syndrome are due to deletion in chromosome 1q32-q41 and recently locus 1p34 is reported. [18] IRF-6 gene (interferon regulatory factor) mutations are responsible for this disorder but the exact mechanism of this mutation on craniofacial development is uncertain. Crouzon syndrome Crouzon syndrome is characterized by premature closing of the cranial sutures leading to cranial malformations. Maxillary hypoplasia and midline maxillary pseudocleft are the common oral manifestations. Mutations in the FGFR-2 gene, located on 10q24, cause Crouzon syndrome. The FGFR-2 gene provides instructions for making a protein called fibroblast growth factor receptor 2. This protein plays an important role in bone growth, particularly during embryo development. Immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. [19] Mutations in FGFR-2 gene probably overstimulate signaling by the FGFR-2 protein, which causes the bones of the skull to fuse prematurely. Apert syndrome Apert syndrome is characterized by premature closing of the cranial sutures and characteristic limb defects. Mutations in the FGFR-2 gene (10q25-26) causes Apert syndrome. The FGFR-2 gene produces a protein called fibroblast growth factor receptor 2. Among its multiple functions, this protein signals immature cells to become bone cells in

5 a developing embryo and fetus. A mutation in a specific part of the FGFR-2 gene alters the protein and causes prolonged signaling, which can promote the premature fusion of bones in the skull, hands, and feet. Treacher collins syndrome Treacher Collins syndrome is characterized by defects of structures derived from the first and second branchial arches. Hypoplastic zygomas and mandible, coloboma, ear defects, lateral facial clefting, and cleft palate are seen in these patients. Mutations in the TCOF-1 (5q32 - q33.1) gene cause Treacher Collins syndrome. The TCOF-1 gene (Treacher Collins-Franceschetti syndrome) provides instructions for making a protein called treacle. Treacle plays a key role in pre-ribosomal processing and ribosomal biogenesis. In mice, haploinsufficiency of TCOF-I results in a depletion of neural crest cell precursors through high levels of cell death in the neuroepithelium, which results in a reduced number of neural crest cells migrating into the developing cranio-facial complex leading to the specific problems with facial development found in Treacher Collins syndrome. [20] Down syndrome Down syndrome is characterized by single transverse palmar crease, epicanthic folds, upslanting palpebral fissures, shorter limbs, hypotonic muscles, learning disabilities, and physical growth retardation. Trisomy 21, mosaicism, and tranlocation are the various genetic events that result in Down syndrome. And 95% of Down syndrome results from trisomy 21, 3-4% of cases from translocation, and 1-2% by mosaicism. Most cases of Down syndrome result from trisomy 21, which means each cell in the body has three copies of chromosome 21 instead of the usual two. When only few of the body s cells have an extra copy of chromosome 21, these cases are called mosaic Down syndrome. Although uncommon, Down syndrome can also occur when part of chromosome 21 becomes attached (translocated) to another chromosome before or at conception. Affected people have two copies of chromosome 21, plus extra material from chromosome 21 attached to another chromosome. These cases are called translocation Down syndrome. Most cases of Down syndrome are not inherited, but occur as random events during the formation of reproductive cells (eggs and sperm). An error in cell division called nondisjunction results in reproductive cells with an abnormal number of chromosomes (trisomy 21). Mosaic Down syndrome is also not inherited, whereas translocated Down syndrome can be inherited. REFERENCES 1. Thesleff I. The genetic basis of tooth development and dental defects. Am J Med Genet A 2006;140: McCollum MA, Sharpe PT. Developmental genetics and early hominid craniodental evolution. Bioessays 2001;23: Neubüser A, Peters H, Balling R, Martin GR. Antagonistic interaction between FGF and BMP signaling pathways: A mechanism for positioning the sites of tooth formation. Cell 1997;90: Davidson D. The function and evolution of MsX genes: Pointers and paradoxes. Trends Genet 1995;11: Ivens A, Flavin N, Williamson R, Dixon M, Bates G, Buckingham M, et al. The human homeobox gene HOX7 maps to chromosome 4p16.1 and may be implicated in Wolf-Hirschhorn syndrome. Hum Genet 1990;84: Thomas BL, Liu JK, Rubenstein JL, Sharpe PT. Independent regulation of DLx2 expression in the epithelium and mesenchyme of the first branchial arch. Development 2000;127: Zhao Y, Guo YJ, Tomac AC, Taylor NR, Grinberg A, Lee EJ, et al. Isolated cleft palate in mice with a targeted mutation of the LIM hemeobox gene Lhx8. Proc Natl Acad Sci U S A 1999;96: Jones FS, Kioussi C, Copertino DW, Kallunki P, Holst BD, Edelman GM. Barx2, new homeobox gene of the Bar class, is expressed in neural and craniofacial structures during development. Proc Natl Acad Sci U S A 1997;94: James MJ, Järvinen E, Wang XP, Thesleff I. Different roles of Runx2 during early neural crest-derived bone and tooth development. J Bone Miner Res 2006;21: Kolenc-Fusé FJ. Tooth agenesis: In search of mutations behind failed Dental Development. Med Oral Patol Oral Cir Bucal 2004;9: Nieminen P, Arte S, Pirinen S, Peltonen L, Thesleff I. Gene defect in hypodontia: Exclusion of MSX1 and MSX2 as candidate genes. Hum Genet 1995;96: Ezer S, Bayés M, Elomaa O, Schlessinger D, Kere J. Ectodysplasin is a collagenous trimeric type II membrane protein with a tumor necrosis factor -like domain and co-loalizes with cytoskeletal structures at lateral and apical surfaces of the cells. Hum Mol Genet 1999;8: Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet- Bardon C, Barbe MT, et al. Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 2004;13: Jumlongras D, Bei M, Stimson JM, Wang WF, DePalma SR, Seidman CE, et al. A nonsense mutation in Msx1 causes witkop syndrome. Am J Hum Genet 2001;9: Liu W, Selever J, Lu MF, Martin JF. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development 2003;130: Stephanopoulos G, Garefalaki ME, Lyroudia K. Lyroudia: Genes and related proteins involved in AI. J Dent Res 2005;84: Butler WT, Ritchie HH, Bronckers AL. Extracellular matrix proteins of Dentin. John Wiley and sons; p Koillinen H, Wong FK, Rautio J, Ollikainen V, Karsten A. Mapping of the second locus for the vander woude syndrome to chromosome 1p34. Eur J Hum Genet 2001;9: Mansukhani A, Bellosta P, Sahni M, Basilico C. Signaling by Fibroblast Growth factors (FGF) and Fibroblast Growth factor Receptor 2 (FGFR2) activating mutations Blocks Mineralization and Induces Apoptosis in osteoblasts. J Cell Biol 2000;149: Dixon J, Trainor P, Dixon MJ. Treacher Collins syndrome. Orthod Craniofac Res 2007;10: How to cite this article: Kavitha B, Priyadharshin V, Sivapathasundharam B, Saraswathi TR.. Indian J Dent Res 2010;21: Source of Support: Nil, Conflict of Interest: None declared. 274

ODONTOGENESIS- A HIGHLY COMPLEX CELL-CELL INTERACTION PROCESS

ODONTOGENESIS- A HIGHLY COMPLEX CELL-CELL INTERACTION PROCESS ODONTOGENESIS- A HIGHLY COMPLEX CELL-CELL INTERACTION PROCESS AMBRISH KAUSHAL, MALA KAMBOJ Department of Oral and Maxillofacial Pathology Career Post Graduate Institute of Dental Sciences and Hospital

More information

Development of the Pharyngeal Arches

Development of the Pharyngeal Arches Development of the Pharyngeal Arches Thomas A. Marino, Ph.D. Temple University School of Medicine Competencies: Upon completion of this section of the course, the student must be able to: 1. Recall the

More information

Fibers and extracellular matrix of hard tissues - Collagen and non-collagen proteins in hard tissues

Fibers and extracellular matrix of hard tissues - Collagen and non-collagen proteins in hard tissues Fibers and extracellular matrix of hard tissues - Collagen and non-collagen proteins in hard tissues Dr. Gábor Varga Department of Oral Biology February, 2016 Radiograph of teeth remarkable harmony of

More information

Polarity and Segmentation. Chapter Two

Polarity and Segmentation. Chapter Two Polarity and Segmentation Chapter Two Polarization Entire body plan is polarized One end is different than the other Head vs. Tail Anterior vs. Posterior Front vs. Back Ventral vs. Dorsal Majority of neural

More information

Disturbances in tooth development lead to various dental anomalies,

Disturbances in tooth development lead to various dental anomalies, RESEARCH REPORTS Clinical S.A. Frazier-Bowers 1, D.C. Guo 2, A. Cavender 1, L. Xue 2, B. Evans 3, T. King 2, D. Milewicz 2, and R.N. D'Souza 1* 1 Department of Orthodontics, Dental Branch, Suite 371, and

More information

06 Tooth Development and Eruption

06 Tooth Development and Eruption + 06 Tooth Development and Eruption Tooth development Root development PDL and alveolar bone development Primary tooth eruption and shedding Permanent tooth eruption Q. Where and how tooth starts to form?

More information

Mutational Spectrum of FAM83H: The C-Terminal Portion is Required for Tooth Enamel Calcification

Mutational Spectrum of FAM83H: The C-Terminal Portion is Required for Tooth Enamel Calcification HUMAN MUTATION Mutation in Brief #1014, 29:E95-E99, (2008) Online MUTATION IN BRIEF Mutational Spectrum of FAM83H: The C-Terminal Portion is Required for Tooth Enamel Calcification Sook-Kyung Lee 1, Jan

More information

Role of Paired Box9 (PAX9) (rs ) and Muscle Segment Homeobox1 (MSX1) (581C>T) Gene Polymorphisms in Tooth Agenesis

Role of Paired Box9 (PAX9) (rs ) and Muscle Segment Homeobox1 (MSX1) (581C>T) Gene Polymorphisms in Tooth Agenesis EC Dental Science Special Issue - 2017 Role of Paired Box9 (PAX9) (rs2073245) and Muscle Segment Homeobox1 (MSX1) (581C>T) Gene Polymorphisms in Tooth Agenesis Research Article Dr. Sonam Sethi 1, Dr. Anmol

More information

It has been shown that in human embryos and fetuses with cleft lips

It has been shown that in human embryos and fetuses with cleft lips SCIENTIFIC FOUNDATION Crown Morphologic Abnormalities in the Permanent: Dentition of Patients With Cleft Lip and Palate Ma amon A. Rawashdeh, BDS, MScD, FDSRCS (En),*Þ and Emad Omar Abu Sirdaneh, BDS,

More information

Xiao Xia ZHANG 1, Sing Wai WONG 1,2, Dong HAN 1, Hai Lan FENG 1

Xiao Xia ZHANG 1, Sing Wai WONG 1,2, Dong HAN 1, Hai Lan FENG 1 Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia Xiao Xia ZHANG 1, Sing Wai

More information

Tooth eruption and movement

Tooth eruption and movement Tooth eruption and movement Dr. Krisztián Nagy Diphydont dentition Deciduous dentition primary dentition Diphydont dentition Permanent dentition secondary dentition Mixed Dentition: Presence of both dentitions

More information

Remember from the first year embryology Trilaminar disc has 3 layers: ectoderm, mesoderm, and endoderm

Remember from the first year embryology Trilaminar disc has 3 layers: ectoderm, mesoderm, and endoderm Development of face Remember from the first year embryology Trilaminar disc has 3 layers: ectoderm, mesoderm, and endoderm The ectoderm forms the neural groove, then tube The neural tube lies in the mesoderm

More information

04 Development of the Face and Neck. Development of the Face Development of the neck

04 Development of the Face and Neck. Development of the Face Development of the neck 04 Development of the Face and Neck Development of the Face Development of the neck Development of the face Overview of facial development The fourth week ~ the twelfth week of prenatal development Between

More information

Christ Siemens Touraine Syndrome: An unusual Presentation of the ectodermal disorder. Abstract: Introduction:

Christ Siemens Touraine Syndrome: An unusual Presentation of the ectodermal disorder. Abstract: Introduction: Christ Siemens Touraine Syndrome: An unusual Presentation of the ectodermal disorder. Author: Dr.B.Senthilkumar, M.D.S., D.H.M., Asst. Professor, Dept.of Oral Medicine, Diagnosis & Radiology, K.S.R.Institute

More information

Urogenital Development

Urogenital Development 2-5-03 Urogenital Development Greg Dressler Assoc. Professor Dept. of Pathology x46490 Dressler@umich.edu The Origin of the Kidney In the vertebrate embryo, the first stage of kidney development occurs

More information

What ASE orthodontists must (?) know about genetics

What ASE orthodontists must (?) know about genetics Genetics Request from the ASE President 2013-2014 What ASE orthodontists must (?) know about genetics Carine CARELS, DDS, PhD professor of orthodontics OCB research group leader Radboudumc Department of

More information

Subject Index. AXIN2, cleft defects 24, 26

Subject Index. AXIN2, cleft defects 24, 26 Subject Index ADAMTS, mouse mutants and palate development 37, 38 Africa, cleft lip and palate prevalence 6, 7 Alcohol dependence, pregnancy risks for cleft 25, 61 Altitude, pregnancy risks for cleft 25,

More information

Development of teeth. 5.DM - Pedo

Development of teeth. 5.DM - Pedo Development of teeth 5.DM - Pedo Tooth development process of continuous changes in predetermined order starts from dental lamina A band of ectodermal cells growing from the epithelium of the embryonic

More information

Interactions of the endocrine system, bone and oral health

Interactions of the endocrine system, bone and oral health Interactions of the endocrine system, bone and oral health All bones are not equal! Dense high proportion of cortical bone High proportion of trabecular bone Mandible Functions: mastication, respiration,

More information

Table Clinical Features Related to Level of Spinal Cord Injury. Level of Spinal Cord Damage. Associated Clinical Features. respiratory paralysis

Table Clinical Features Related to Level of Spinal Cord Injury. Level of Spinal Cord Damage. Associated Clinical Features. respiratory paralysis Table 17.1. Clinical Features Related to Level of Spinal Cord Injury Level of Spinal Cord Damage C1 to C4 C4 to C5 C5 to C6 C6 to C7 T11 to T12 T12 to L1 S3 to S5 Associated Clinical Features Death secondary

More information

Genetics and Developmental Disabilities. Stuart K. Shapira, MD, PhD. Pediatric Genetics Team

Genetics and Developmental Disabilities. Stuart K. Shapira, MD, PhD. Pediatric Genetics Team Genetics and Developmental Disabilities Stuart K. Shapira, MD, PhD Pediatric Genetics Team National Center on Birth Defects and Developmental Disabilities Centers for Disease Control and Prevention The

More information

Oral Embryology and Histology

Oral Embryology and Histology Oral Embryology and Histology Chapter 8 Copyright 2018, Elsevier Inc. All Rights Reserved. 1 Learning Objectives Lesson 8.1: Oral Embryology 1. Pronounce, define, and spell the key terms. 2. Define embryology

More information

Developing Molecularly Targeted Therapies for Basal Cell Carcinoma. Ivor Caro, MD, FAAD

Developing Molecularly Targeted Therapies for Basal Cell Carcinoma. Ivor Caro, MD, FAAD Developing Molecularly Targeted Therapies for Basal Cell Carcinoma Ivor Caro, MD, FAAD Disclosures Genentech, Inc Medical Director, Dermatology (employee) Stock holder Hedgehog Signaling Pathway Fundamental

More information

ECTODERMAL DYSPLASIA: TWO CASE REPORTS

ECTODERMAL DYSPLASIA: TWO CASE REPORTS Case Report International Journal of Dental and Health Sciences Volume 01,Issue 03 ECTODERMAL DYSPLASIA: TWO CASE REPORTS Deepa Vinod Bhat 1,Kashika Arora 2,Malay Mitra 3, Subrata Saha 4 Post graduate

More information

Head and Neck Development and Malformations

Head and Neck Development and Malformations Head and Neck Development and Malformations Yang Chai, DDS, PhD Professor George and MaryLou Boone Chair Ostrow School of Dentistry of USC ychai@usc.edu C D E A. B Learning Objectives - Learn cranial neural

More information

Teeth, orofacial development and

Teeth, orofacial development and Teeth, orofacial development and cleft anomalies Miroslav Peterka Variability of jaws in vertebrates. (A) cartilaginous fish shark; (B) an example of a bone fish; (C ) amphibian frog; (D) reptile - turtle;

More information

a) They are the most common cause of pediatric kidney failure. b) They are always symptomatic. c) They can be asymmetric.

a) They are the most common cause of pediatric kidney failure. b) They are always symptomatic. c) They can be asymmetric. Practice questions: 1. The paraxial mesoderm gives rise to somites. The structure of the somite a) is a loose mesenchymal sheet that will migrate toward the notochord. b) is an epithelial rosette with

More information

Dentin Formation(Dentinogenesis)

Dentin Formation(Dentinogenesis) Lecture four Dr. Wajnaa Oral Histology Dentin Formation(Dentinogenesis) Dentinogenesis begins at the cusp tips after the odontoblasts have differentiated and begin collagen production. Dentinogenesis growth

More information

A Female Child with Oligodontia in Primary Dentition Report of a Rare Case

A Female Child with Oligodontia in Primary Dentition Report of a Rare Case British Journal of Medicine & Medical Research 10(12): 1-5, 2015, Article no.bjmmr.20565 ISSN: 2231-0614 SCIENCEDOMAIN international www.sciencedomain.org A Female Child with Oligodontia in Primary Dentition

More information

Pharyngeal Apparatus. Pouches Endoderm Grooves Ectoderm Arch Neural Crest Somitomeres Aortic Arch - Vessel

Pharyngeal Apparatus. Pouches Endoderm Grooves Ectoderm Arch Neural Crest Somitomeres Aortic Arch - Vessel Pharyngeal Apparatus Pouches Endoderm Grooves Ectoderm Arch Neural Crest Somitomeres Aortic Arch - Vessel Segmental Organization Humans: Arch 1-4 prominent Arch 5 absent Arch 6 - transient First Arch Face

More information

Biology Developmental Biology Spring Quarter Midterm 1 Version A

Biology Developmental Biology Spring Quarter Midterm 1 Version A Biology 411 - Developmental Biology Spring Quarter 2013 Midterm 1 Version A 75 Total Points Open Book Choose 15 out the 20 questions to answer (5 pts each). Only the first 15 questions that are answered

More information

Week 14. Development of the Musculoskeletal System

Week 14. Development of the Musculoskeletal System Week 14 Development of the Musculoskeletal System Skeletal System Derived from: paraxial mesoderm somites and somitomeres sclerotome sclerotome differentiation induced by SHH from notochord and floor plate

More information

MODULE NO.14: Y-Chromosome Testing

MODULE NO.14: Y-Chromosome Testing SUBJECT Paper No. and Title Module No. and Title Module Tag FORENSIC SIENCE PAPER No.13: DNA Forensics MODULE No.21: Y-Chromosome Testing FSC_P13_M21 TABLE OF CONTENTS 1. Learning Outcome 2. Introduction:

More information

Faravareh Khordadpoor (PhD in molecular genetics) 1- Tehran Medical Genetics Laboratory 2- Science and research branch, Islamic Azad University

Faravareh Khordadpoor (PhD in molecular genetics) 1- Tehran Medical Genetics Laboratory 2- Science and research branch, Islamic Azad University Faravareh Khordadpoor (PhD in molecular genetics) 1- Tehran Medical Genetics Laboratory 2- Science and research branch, Islamic Azad University 1395 21 مشاوره ژنتیک و نقش آن در پیش گیری از معلولیت ها 20

More information

evolution and development of primate teeth

evolution and development of primate teeth evolution and development of primate teeth diversity of mammalian teeth upper left molars buccal mesial distal lingual Jernvall & Salazar-Ciudad 07 trends in dental evolution many similar single-cusped

More information

Amelogenesis Imperfecta type IV: A Challenge to Esthetics & Function

Amelogenesis Imperfecta type IV: A Challenge to Esthetics & Function aaaasasasss Shanila MA et al.: Amelogenesis Imperfecta type IV Amelogenesis Imperfecta type IV: A Challenge to Esthetics & Function Shanila A Majid 1, Manasa A Meundi 2, Namitha Jayapal 3, Chaya M David

More information

Development of the dentition

Development of the dentition 4 Development of the dentition 85 Humans have two dentitions, the deciduous (primary) and permanent (secondary). Each dentition is heterodont, meaning that it consists of teeth with different shapes and

More information

Semester Credits: 3 Lecture Hours: 3. Prerequisites:

Semester Credits: 3 Lecture Hours: 3. Prerequisites: Revised: Fall 2015 Semester Credits: 3 Lecture Hours: 3 21THistology DNH 115 Admission into dental hygiene program. Prerequisites: Course Description: Presents a study of the microscopic and macroscopic

More information

Dysmorphology. Sue White. Diagnostic Dysmorphology, Aase. Victorian Clinical Genetics Services

Dysmorphology. Sue White.   Diagnostic Dysmorphology, Aase. Victorian Clinical Genetics Services Dysmorphology Sue White www.rch.unimelb.edu.au/nets/handbook Diagnostic Dysmorphology, Aase Dysmorphology Assessment Algorithm no Are the features familial? yes Recognised syndrome yes no AD/XL syndrome

More information

Unusual transmigration of canines report of two cases in a family

Unusual transmigration of canines report of two cases in a family ISSN: Electronic version: 1984-5685 RSBO. 2014 Jan-Mar;11(1):88-92 Case Report Article Unusual transmigration of canines report of two cases in a family Sulabha A. Narsapur 1 Sameer Choudhari 2 Shrishal

More information

Amelogenesis Imperfecta: A Series of

Amelogenesis Imperfecta: A Series of Case Report Amelogenesis Imperfecta: A Series of Case Report Nuzula Begum 1, Gowri P Bhandarkar 2, Raghavendra Kini 3, Vathsala Naik 4, K Rashmi 1, Lizzy Carol D Souza 1 1 Post Graduate Student, Department

More information

Early cell death (FGF) B No RunX transcription factor produced Yes No differentiation

Early cell death (FGF) B No RunX transcription factor produced Yes No differentiation Solution Key - Practice Questions Question 1 a) A recent publication has shown that the fat stem cells (FSC) can act as bone stem cells to repair cavities in the skull, when transplanted into immuno-compromised

More information

Benefits of conducting research while completing the DDS program Critical thinking skills and opportunity to publish scientific papers NIH/NIDCR

Benefits of conducting research while completing the DDS program Critical thinking skills and opportunity to publish scientific papers NIH/NIDCR Benefits of conducting research while completing the DDS program Critical thinking skills and opportunity to publish scientific papers NIH/NIDCR training opportunities (basic and clinical research) Presentation

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

BCL11B Regulates Epithelial Proliferation and Asymmetric Development of the Mouse Mandibular Incisor

BCL11B Regulates Epithelial Proliferation and Asymmetric Development of the Mouse Mandibular Incisor BCL11B Regulates Epithelial Proliferation and Asymmetric Development of the Mouse Mandibular Incisor Kateryna Kyrylkova 1, Sergiy Kyryachenko 1, Brian Biehs 2 *, Ophir Klein 2, Chrissa Kioussi 1 *, Mark

More information

Vertebrate Limb Patterning

Vertebrate Limb Patterning Vertebrate Limb Patterning What makes limb patterning an interesting/useful developmental system How limbs develop Key events in limb development positioning and specification initiation of outgrowth establishment

More information

Introduction to Fetal Medicine: Genetics and Embryology

Introduction to Fetal Medicine: Genetics and Embryology Introduction to Fetal Medicine: Genetics and Embryology Question: What do cancer biology, molecular biology, neurobiology, cell biology developmental biology and reproductive biology, all have in common?

More information

NEUROCRANIUM VISCEROCRANIUM VISCEROCRANIUM VISCEROCRANIUM

NEUROCRANIUM VISCEROCRANIUM VISCEROCRANIUM VISCEROCRANIUM LECTURE 4 SKULL NEUROCRANIUM VISCEROCRANIUM VISCEROCRANIUM VISCEROCRANIUM CRANIUM NEUROCRANIUM (protective case around brain) VISCEROCRANIUM (skeleton of face) NASOMAXILLARY COMPLEX MANDIBLE (DESMOCRANIUM)

More information

Fundamental & Preventive Curvatures of Teeth and Tooth Development. Lecture Three Chapter 15 Continued; Chapter 6 (parts) Dr. Margaret L.

Fundamental & Preventive Curvatures of Teeth and Tooth Development. Lecture Three Chapter 15 Continued; Chapter 6 (parts) Dr. Margaret L. Fundamental & Preventive Curvatures of Teeth and Tooth Development Lecture Three Chapter 15 Continued; Chapter 6 (parts) Dr. Margaret L. Dennis Proximal contact areas Contact areas are on the mesial and

More information

PHENOTYPIC AND GENOTYPIC FEATURES OF FAMILIAL HYPODONTIA

PHENOTYPIC AND GENOTYPIC FEATURES OF FAMILIAL HYPODONTIA Institute of Dentistry, Department of Pedodontics and Orthodontics, University of Helsinki, Finland Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki PHENOTYPIC

More information

What is Craniosynostosis?

What is Craniosynostosis? What is Craniosynostosis? Craniosynostosis is defined as the premature closure of the cranial sutures (what some people refer to as soft spots). This results in restricted and abnormal growth of the head.

More information

DENTAL GENETICS, TOOTH DEVELOPMENT

DENTAL GENETICS, TOOTH DEVELOPMENT DENTAL GENETICS, TOOTH DEVELOPMENT DEAR STUDENTS! 12-size letters are basic requirement, 10-size letters are extra requirement. Text in blue is facultative material. TOOTH NUMBER ABNORMALITIES 5.-7. HYPERDONTIA

More information

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions Single Gene (Monogenic) Disorders Mendelian Inheritance: Definitions A genetic locus is a specific position or location on a chromosome. Frequently, locus is used to refer to a specific gene. Alleles are

More information

1. What is the highest and sharpest cusp on the lower first deciduous molar? 2. Which of the following is NOT the correct location of an embrasure?

1. What is the highest and sharpest cusp on the lower first deciduous molar? 2. Which of the following is NOT the correct location of an embrasure? 1 1. What is the highest and sharpest cusp on the lower first deciduous molar? a. mesiobuccal b. distobuccal c. distolingual d.mesiolingual 2. Which of the following is NOT the correct location of an embrasure?

More information

Drawings illustrating the human pharyngeal apparatus. Drawings illustrating the human pharyngeal apparatus. Drawings illustrating the human pharyngeal apparatus. Drawings illustrating the human pharyngeal

More information

Human Genetic Mutations

Human Genetic Mutations Human Genetic Mutations 2 Main Types of Mutations 1.) Chromosomal Mutations 2.) Gene Mutations What are chromosomes? Humans have 23 pairs of chromosomes, with one chromosome from each parent. The chromosomes

More information

Introduction to Fetal Medicine: Genetics and Embryology

Introduction to Fetal Medicine: Genetics and Embryology Introduction to Fetal Medicine: Genetics and Embryology Question: What do cancer biology, molecular biology, neurobiology, cell biology developmental biology and reproductive biology, all have in common?

More information

Lecture Content and learning outcomes

Lecture Content and learning outcomes DIPLOMA IN PAEDIATRIC DENTISTRY Subject Lecture Content and learning outcomes Craniofacial growth and development The process of pre-natal development The process of post-natal craniofacial growth The

More information

Journal of Advanced Medical and Dental Sciences of Scientific Research and Studies

Journal of Advanced Medical and Dental Sciences of Scientific Research and Studies Journal of Advanced Medical and Dental Sciences Research @Society of Scientific Research and Studies Journal home page: www.jamdsr.comdoi: 10.21276/jamdsr UGC approved journal no. 63854 (e) ISSN Online:

More information

Essentials in Head and Neck Embryology. Part 3 Development of the head, face, and oral cavity

Essentials in Head and Neck Embryology. Part 3 Development of the head, face, and oral cavity Essentials in Head and Neck Embryology Part 3 Development of the head, face, and oral cavity Outline General overview of prenatal development Embryonic period phase 1 Formation of bilaminar disk Formation

More information

Proceedings of the 12th International Congress of the World Equine Veterinary Association WEVA

Proceedings of the 12th International Congress of the World Equine Veterinary Association WEVA www.ivis.org Proceedings of the 12th International Congress of the World Equine Veterinary Association WEVA November 2-5, 2011 Hyderabad, India Reprinted in IVIS with the Permission of WEVA Organizers

More information

Chapter 11 Gene Expression

Chapter 11 Gene Expression Chapter 11 Gene Expression 11-1 Control of Gene Expression Gene Expression- the activation of a gene to form a protein -a gene is on or expressed when it is transcribed. -cells do not always need to produce

More information

CASE REPORT PROSTHETIC MANAGEMENT OF CHRIST-SIEMENS- TOURINE SYNDROME A CASE REPORT

CASE REPORT PROSTHETIC MANAGEMENT OF CHRIST-SIEMENS- TOURINE SYNDROME A CASE REPORT PROSTHETIC MANAGEMENT OF CHRIST-SIEMENS- TOURINE SYNDROME A Seema Sathe 1, Samrat Mankar 2, Surekha Godbole 3, Aniket Namdeowar 4, Sankal Arya 5 HOW TO CITE THIS ARTICLE: Seema Sathe, Samrat Mankar, Surekha

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Factors and Genes Mendel s model of inheritance was based on the idea of factors that were independently assorted and segregated into gametes We now know that these

More information

UNIT IX: GENETIC DISORDERS

UNIT IX: GENETIC DISORDERS UNIT IX: GENETIC DISORDERS Younas Masih Lecturer New Life College Of Nursing Karachi 3/4/2016 1 Objectives By the end of this session the Learners will be able to, 1. Know the basic terms related genetics

More information

Tetrapod Limb Development

Tetrapod Limb Development IBS 8102 Cell, Molecular and Developmental Biology Tetrapod Limb Development February 11, 2008 Tetrapod Limbs Merlin D. Tuttle Vicki Lockard and Paul Barry Father Alejandro Sanchez Anne Fischer Limb Patterning

More information

Index. osteonecrosis, 104 prophylactic antibiotics, 105

Index. osteonecrosis, 104 prophylactic antibiotics, 105 A Actinobacillus actinomycetemcomitans, 34 AI. See Amelogenesis imperfecta (AI) Alloplastic tooth replacement, 59 Alveolar bone mass dental radiographs, 30 eruption pathway, 12 exfoliation, 33 periodontitis,

More information

DHYG 121 Winter, 2009 COURSE OUTLINE

DHYG 121 Winter, 2009 COURSE OUTLINE CAMOSUN COLLEGE School of Health & Human Services Dental Hygiene Department DHYG 121 Winter, 2009 COURSE OUTLINE The Approved Course Description is available on the web @ http://www.camosun.bc.ca/calendar/current/web/dhyg.html#dhyg121

More information

BRAIN DEVELOPMENT I: ESTABLISHMENT OF BASIC ARCHITECTURE. Thomas Marino, Ph.D.

BRAIN DEVELOPMENT I: ESTABLISHMENT OF BASIC ARCHITECTURE. Thomas Marino, Ph.D. BRAIN DEVELOPMENT I: ESTABLISHMENT OF BASIC ARCHITECTURE Thomas Marino, Ph.D. Development of the Brain I. Competencies: Upon completion of this section of the course, the student must be able to: 1. Understand

More information

Chapter 2 Tooth Development

Chapter 2 Tooth Development Chapter 2 Tooth Development Experimental research on tooth development or odontogenesis is based very largely on the teeth of murine rodents (Butler 1967 ). Pioneering work by Shirley Glasstone on rat

More information

Skeletal Development Multiple Cellular Origins. Intramembranous Bone. Endochondrial Bone. Cartilage template of the limb in the Chick wing

Skeletal Development Multiple Cellular Origins. Intramembranous Bone. Endochondrial Bone. Cartilage template of the limb in the Chick wing Skeletal Development Multiple Cellular Origins 1 - Paraxial Mesoderm Somite, Sclerotome Axial Skeleton (e.g. vertebra) 2 - Lateral Plate Mesoderm Appendicular Skeleton (e.g. limb) 3 - Neural Crest Head

More information

Supplemental mandibular incisors: a Recherché

Supplemental mandibular incisors: a Recherché CASE REPORT 34 Supplemental mandibular incisors: a Recherché Sankriti Murthy Introduction: Supernumerary teeth are a developmental disturbance encountered in the dental arches. These teeth are in excess

More information

Tetrapod Limb Development

Tetrapod Limb Development Biology 4361 Developmental Biology Tetrapod Limb Development July 29, 2009 Tetrapod Limbs Merlin D. Tuttle Vicki Lockard and Paul Barry Father Alejandro Sanchez Anne Fischer Limb Development - Overview

More information

Skeleton. Flexibility. Protection of vital organs. Strength

Skeleton. Flexibility. Protection of vital organs. Strength Skeleton Flexibility Protection of vital organs Strength Skeletal defects Developmental defects Degenerative diseases Fibrous dysplasia (fibrous tissue develops in place of normal bones), Cleidocranial

More information

Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis

Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis + MODEL Available online at www.sciencedirect.com European Journal of Medical Genetics 51 (2008) 536e546 http://www.elsevier.com/locate/ejmg Original article Novel EDA mutation resulting in X-linked non-syndromic

More information

Institution : College of Dentistry Academic Department : Maxillofacial surgery and Diagnostic sciences

Institution : College of Dentistry Academic Department : Maxillofacial surgery and Diagnostic sciences Institution : College of Dentistry Academic Department : Maxillofacial surgery and Diagnostic sciences [MDS] Program : Bachelor of Dentistry [ BDS ] Course : Oral Biology Course Coordinator : Saleem Shaikh

More information

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi 2 CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE Dr. Bahar Naghavi Assistant professor of Basic Science Department, Shahid Beheshti University of Medical Sciences, Tehran,Iran 3 Introduction Over 4000

More information

Association of MSX1 and TGF-β1 genetic polymorphisms with hypodontia: meta-analysis

Association of MSX1 and TGF-β1 genetic polymorphisms with hypodontia: meta-analysis Association of MSX1 and TGF-β1 genetic polymorphisms with hypodontia: meta-analysis W. Zhang, H.C. Qu and Y. Zhang Department of Orthodontics, Hospital of Stomatology, China Medical University, Shenyang,

More information

Development of the Axial Skeleton and Limbs. Professor Alfred Cuschieri Department of Anatomy University of Malta

Development of the Axial Skeleton and Limbs. Professor Alfred Cuschieri Department of Anatomy University of Malta Development of the Axial Skeleton and Limbs Professor Alfred Cuschieri Department of Anatomy University of Malta During the Fourth Week the Embryo Is Segmented. Each segment consists of: a segment of neural

More information

WNT10A polymorphism may be a risk factor for non-syndromic hypodontia

WNT10A polymorphism may be a risk factor for non-syndromic hypodontia WNT10A polymorphism may be a risk factor for non-syndromic hypodontia S.J. Zhang 1 and Z.Z. Wu 2 1 Department of Stomatology, Qilu Hospital of Shandong University, Jinan, China 2 Department of Stomatology,

More information

Joyti Vasudev BDS, MJDF, MORTH

Joyti Vasudev BDS, MJDF, MORTH A Study of Non-Syndromic Hypodontia in a High Risk Population Joyti Vasudev BDS, MJDF, MORTH A thesis submitted to the University of Birmingham for the degree of Master of Philosophy Birmingham Dental

More information

The Epithelial-Mesenchymal Interaction Plays a Role in the Maintenance of the Stem Cell Niche of Mouse Incisors via Fgf10 and Fgf9 Signaling

The Epithelial-Mesenchymal Interaction Plays a Role in the Maintenance of the Stem Cell Niche of Mouse Incisors via Fgf10 and Fgf9 Signaling The Open Biotechnology Journal, 2008, 2, 111-115 111 The Epithelial-Mesenchymal Interaction Plays a Role in the Maintenance of the Stem Cell Niche of Mouse Incisors via Fgf10 and Fgf9 Signaling Tamaki

More information

The clinical appearance and diagnosis of odontogenic cysts. SE Arc-Állcsont-Szájsebészeti és Fogászati Klinika BUDAPEST

The clinical appearance and diagnosis of odontogenic cysts. SE Arc-Állcsont-Szájsebészeti és Fogászati Klinika BUDAPEST The clinical appearance and diagnosis of odontogenic cysts SE Arc-Állcsont-Szájsebészeti és Fogászati Klinika BUDAPEST DEFINITION A cyst is a sac with walls of connective tissue, lined by epithelium, containing

More information

6610 NE 181st Street, Suite #1, Kenmore, WA

6610 NE 181st Street, Suite #1, Kenmore, WA 660 NE 8st Street, Suite #, Kenmore, WA 9808 www.northshoredentalacademy.com.08.900 READ CHAPTER The Professional Dental Assistant (p.-9) No Key Terms Recall Questions:,,,, and 6 CLASS SYLLABUS DAY READ

More information

Case Report Typical Radiographic Findings of Dentin Dysplasia Type 1b with Dental Fluorosis

Case Report Typical Radiographic Findings of Dentin Dysplasia Type 1b with Dental Fluorosis Case Reports in Dentistry Volume 2013, Article ID 902861, 4 pages http://dx.doi.org/10.1155/2013/902861 Case Report Typical Radiographic Findings of Dentin Dysplasia Type 1b with Dental Fluorosis S. Venkata

More information

Is Third-Molar Agenesis Related to the Incidence of Other Missing Teeth?

Is Third-Molar Agenesis Related to the Incidence of Other Missing Teeth? Original Article Is Third-Molar Agenesis Related to the Incidence of Other Missing Teeth? A. Burcu Altan, DDS, MS, PhD 1,* and Ali Altuğ Bıçakçı, DDS, MS 2 ABSTRACT Objective: The aim of this study was

More information

Chapter 1 : Genetics 101

Chapter 1 : Genetics 101 Chapter 1 : Genetics 101 Understanding the underlying concepts of human genetics and the role of genes, behavior, and the environment will be important to appropriately collecting and applying genetic

More information

CAP STAGE. Ans 1 The following are the stages of tooth development :

CAP STAGE. Ans 1 The following are the stages of tooth development : Ans 1 The following are the stages of tooth development : 1. Bud stage 2. Cap stage 3. Bell stage 4. Advanced bell stage 5. Formation of Hertwig s epithelial root sheath BUD STAGE 1. Around the eighth

More information

Tooth agenesis in patients referred to an Irish tertiary care clinic for the developmental dental disorders

Tooth agenesis in patients referred to an Irish tertiary care clinic for the developmental dental disorders Tooth agenesis in patients referred to an Irish tertiary care clinic for the developmental dental disorders Journal of the Irish Dental Association 29; 56 (1): 23-27. Précis Hypodontia is the most common

More information

Dental Morphology and Vocabulary

Dental Morphology and Vocabulary Dental Morphology and Vocabulary Palate Palate Palate 1 2 Hard Palate Rugae Hard Palate Palate Palate Soft Palate Palate Palate Soft Palate 4 Palate Hard Palate Soft Palate Maxillary Arch (Maxilla) (Uppers)

More information

Regionalization of the nervous system. Paul Garrity 7.68J/9.013J February 25, 2004

Regionalization of the nervous system. Paul Garrity 7.68J/9.013J February 25, 2004 Regionalization of the nervous system Paul Garrity 7.68J/9.013J February 25, 2004 Patterning along: Rostral/Caudal (AP) axis Dorsal/Ventral (DV) axis Start with DV axial patterning in Spinal Cord Dorsal/Ventral

More information

Egyptian Dermatology Online Journal Vol. 6 No 2: 16, December Hypohidrotic Ectodermal Dysplasia with Arachnodactyl and Palmoplanter Keratoderma

Egyptian Dermatology Online Journal Vol. 6 No 2: 16, December Hypohidrotic Ectodermal Dysplasia with Arachnodactyl and Palmoplanter Keratoderma Hypohidrotic Ectodermal Dysplasia with Arachnodactyl and Palmoplanter Keratoderma Taseer Ahmed Bhatt Department of Dermatology, STD & Leprosy Govt. Medical College Srinagar, Kashmir Egyptian Dermatology

More information

CNS Developmental. Anke van Eekelen, PhD. Telethon Institute for Child Health Research

CNS Developmental. Anke van Eekelen, PhD. Telethon Institute for Child Health Research CNS Developmental Anke van Eekelen, PhD Telethon Institute for Child Health Research (Some slides are modified versions of Prof. Alan Harvey s Neuroscience lecture at ANHB and Dr. Joanne Britto s Dev Neuroscience

More information

Tetrapod Limb Development

Tetrapod Limb Development Biology 4361 Developmental Biology Tetrapod Limb Development July 29, 2009 Tetrapod Limbs Merlin D. Tuttle Vicki Lockard and Paul Barry Father Alejandro Sanchez Anne Fischer Limb Development - Overview

More information

The embryological basis of craniofacial dysplasias D. E. POSWILLO

The embryological basis of craniofacial dysplasias D. E. POSWILLO Postgraduate Medical Journal (August 1977) 53, 517-522. The embryological basis of craniofacial dysplasias D. E. POSWILLO D.D.S., D.Sc., F.D.S., F.I.Biol., M.R.C.Path. Department of Teratology, Royal College

More information

A Genetic Program for Embryonic Development

A Genetic Program for Embryonic Development Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism During embryonic development, a fertilized egg gives rise to many different cell types

More information

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO SELECTION EXAMINATION IN MD (ORAL SURGERY) OCTOBER 2009 PAPER 1.1. Part A (General Anatomy)

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO SELECTION EXAMINATION IN MD (ORAL SURGERY) OCTOBER 2009 PAPER 1.1. Part A (General Anatomy) POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO SELECTION EXAMINATION IN MD (ORAL SURGERY) OCTOBER 2009 Date : 5 th October 2009 Time : 2.00 p.m. 5.00p.m. PAPER 1.1 Answer three (03) questions

More information

Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch

Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch Development 127, 217-224 (2000) Printed in Great Britain The Company of Biologists Limited 2000 DEV2450 217 Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Lecture 3: Skeletogenesis and diseases

Lecture 3: Skeletogenesis and diseases Jilin University School of Stomatology Skeletogenesis Lecture 3: Skeletogenesis and diseases Aug. 21, 2015 Yuji Mishina, Ph.D. mishina@umich.edu Bone Development Mouse embryo, E14.5 Mouse embryo, E18.0

More information