Challenges)facing)An./tumour) Immunotherapy)in)Myeloma)))

Size: px
Start display at page:

Download "Challenges)facing)An./tumour) Immunotherapy)in)Myeloma)))"

Transcription

1 Challenges)facing)An./tumour) Immunotherapy)in)Myeloma))) Immune Dysfunction Prof)Gordon)Cook) Leeds)Ins.tute)of)Cancer)&)Pathology) University)of)Leeds)

2 Impaired)immunity)in)MM) )clinical) % of Infection-related Admissions Admission & infection No therapy Bortezomib-Based Thalidomide-Based Lenalidomide-Based Neutropenic No therapy Bortezomib-Based Thalidomide-Based Lenalidomide-Based Normal ANC 354 FCE in n=320 with median age 65.5 (range 40-91) 25.7% of FCE are infection-related

3 The immuno-surveillance hypothesis Ehrlich 1909: suggested immune system surveys body, eliminating newly transformed cells Thomas & Burnet 1959: mice rejected transplanted syngeneic tumours proposed immunosurveillance hypothesis Cannot directly observe immune reaction to subclinical cancers

4 The)danger)hypothesis)and)tumours) Signal 1 only (TAA) DC T T cell tolerance Tumour Danger Signal 1 and 2 + Activated DC Heat shock proteins, RNA & DNA, IFN-α, cytokines T T T Activated T cells Tumour death Matzinger P, Nature, 1994, 369(6482), Fuchs EJ & Matzinger P, Semin Immunol, 1996, 8(5),

5 Immuno/edi.ng)Hypothesis:)The)3)E s) Dunn GP, Ann Rev Immunol 2004 ELIMINATION EQUILIBRIUM ESCAPE

6 Immune)Surveillance)in)MM?) ELIMINATION EQUILIBRIUM ESCAPE????? MGUS Asy MM MM

7 Th 1 )cells)are)a)well)characterized)helper)subset) Th1 IFN-γ IL-12 IL-4 Th2 IL-4 IL-5 IL-13 Naive T cell TGF-β TGF-β + IL-6 Treg IL-10 TGF-β Th17 IL-17A IL-17F IL-21 IL-22 Maniati et al., Oncogene 29, (2010).

8 CD4 + )Lymphopenia)in)MM) CD4 RTE (Abs) cells/µl Control p=0.026 MM RTE (Abs) cells/µl CONTROL p= MM

9 Immune)modula.on)in)Myeloma) T/cell) T Effec' FoxP3 +' HLA/G) T=cell' DendriDc'cell' Plasma)cell) MM'Plasma'Cell' Soluble'factors' e.g.'tgfβ,'il=10' FoxP3 +' SDmulatory' Soluble'Factors' Physical'contact' Inhibitory' Cook, Blood, 120 (10),

10 Th 1 )cells) T cell subsets MM - Th1 only 40 CD4 + T-cells Normal donors MGUS Asymptomatic MM - untreated MM-plateau

11 Immune)Synapse)Dysfunc.on) U266 PB B-cells

12 )MM/induced)T/cell)Suppression) MM=derived'TGF=β'strongly' suppresses't'cell'acdvadon'and' proliferadon' Treatment'of'T'cells'with'LAP' (TGF=β'latency'associated'PepDde)' restores't'cell'funcdon' TGF=β'from'MM'cells'inhibits'IL=2' signalling'pathways'but'not'il=15' signalling' IL=15'pre=treatment'restores'IL=2' responses'in'padent't'cells'(pb)' TGF-β M Cook G, Campbell JDM, et al, J Leuk Biol, 1999, 66, Campbell JDM, Cook G, et al, J Immunol, 2001, 167,

13 Trogocytosis) Brown et al, Blood, 2012, 120(10), 2055

14 T Reg )cells)and)the)immune)response) Th1 IFN-γ IL-12 IL-4 Th2 IL-4 IL-5 IL-13 FoxP3 + Il-10 + TGF-β Naive T cell TGF-β + IL-6 Treg FoxP3 + IL-10 TGF-β FoxP3 + TGFβ + Th17 IL-17A IL-17F IL-21 IL-22 Adapted from Maniati et al., Oncogene 29, (2010).

15 CD25 Naturally)occurring)T Reg )cells ) CD4 1.5% 8.3% FoxP3

16 Natural T Reg cells in Myeloma p<0.003 (Anova) Feyler et al, B J Haem, 2009, 144(5),

17 Myeloma cells expand nt Reg cells Control %CD4+ T-cells 60 p= Co-culture 0 D0 CD25 pos D7 Control. D7 Coculture Feyler et al, PLoS ONE, (5) pp. e35981 FoxP3 CFSE

18 Myeloma cells generate de novo T Reg cells from CD25 - CD4 + T-cells Day 7 Control Hi Lo Hi %FoxP3+CD4 T-cells CD25 Lo Feyler et al, PLoS ONE, (5) pp. e35981 FoxP3 Day 7 Co-culture

19 Functionality of tt Reg Cells IL P=0.03 pg/ml Feyler et al, PLoS ONE, (5) pp. e D0 CM D7 U266B alone D7 Control D7 Coculture

20 Myeloma-specific effect? CD4 + CD25 - T-cells & Cells Lines BM vs HMCL %CD4 + CD25 + FoxP control U266B ** * * JMI3 JJN3 KMS11 K562 1-way ANOVA p= Mel888 HeLa %CD4+CD25+FoxP control p=0.004 p< BM 1-way ANOVA, p< HMCL Feyler et al, PLoS ONE, (5) pp. e35981

21 The Generation of tumour-associated regulatory T- cells is contact dependent. D7 Transwell Experiments with U266B %CD4 pos Control Coculture Transwell 0 Control Coculture Feyler et al, PLoS ONE, (5) pp. e35981 Transwell

22 ICOS-L Blockade tt Reg cells CD25 FoxP3 80 ICOS-L blockade (MoAb) 88.1% ICOS %Inhibition FoxP µm Feyler et al, PLoS ONE, (5) pp. e35981

23 T H 17)cells)are)a)recently)described)helper)subset) Th1 IFN-γ IL-12 IL-4 Th2 IL-4 IL-5 IL-13 Naive T cell TGF-β TGF-β + IL-6 Treg IL-10 TGF-β Th17 IL-17A IL-17F IL-21 IL-22 Maniati et al., Oncogene 29, (2010).

24 Th 17 )cells)in)pb)/)age) T cell subsets in controls T cell subsets in normals by age - Th17 only % of CD4 positive cells % of CD4 positive cells Age R 2 = Th17 Th1 Th % 0.3% Th 17-1 IFNγ IL % Th 17

25 CD161)&)RORγt)expression)in)CD4 + )T/cell)subsets)in)health) ) CD161 RORγt IFNγ IL-17 CD161 in T cell subsets in normals p=ns 100 p=ns p= % of cells expressing CD Th17 Th1 Th17-1 Treg

26 Th 17 )cell)chemokine)receptor)expression) CCR6 CXCR3 IFNγ IL-17 CCR6 in T cell subsets in normals p=ns p=ns p< % of cells expressing CCR Th17 Th1 Th17-1 Treg

27 Th 17 )cells)in)myeloma) 2.0 Cell numbers - Th % 0.3% 0.9% % of CD4 positive cells IFNγ" IL Normal donors MGUS Asymptomatic MM - untreated MM-plateau Relapse

28 Th 17 )phenotype)in)myeloma) 80 p= Th17 phenotype - CD p= Th17 phenotype - CCR6 p= p= % Th17 cells 40 % of Th17 cells Normal donors MGUS Asymptomatic MM - untreated MM-plateau 0 Normal donors MGUS Asymptomatic MM - untreated MM-plateau

29 Cancer/induced)immunosuppresion) Tumour Cell Suppression" DC" Effector T cell" Survival" NKG2D TGF-β, VEGF, IL-6, HHV-8" Stromal cell" CD25 Induction" T Reg cell" γδ T-cell" NK cell" CD8 cell"

30 BM)Microenvironment)influences) an./mm)t/cell)cytotoxicity)(cam/ir) De Haart et al, Clin Cancer Res, 2013, 19(20), 1

31 Results)of)the)in#vitro)studies)&)in# What)does)it)mean?) vivo)observa.ons) Understanding)of)immuno/biology)of)the) disease) Influence)the)design)of)immunotherapy) strategies)

32 Immunotherapy)in)MM) ) Possibility)or)Probability?) 'Serotherapy' 'Cellular'Therapy' 'Pharmacological' 'Virotherapy'

33 Summary/1) Myeloma'plasma'cells'can'mediate'both' adapdve'and'innate'immune'dysfuncdon.' MM'cells'can'mediate'the'immuno=modulatory' effect'both'directly'and'via'microenvironment' cells.' IdenDfied'immune'deficiencies'may'in'part' relate'to'concurrent'therapy,'especially'steroids.' Novel'therapies'have'the'potenDal'not'only'to' be'tumoricidal'but'to'also'manipulate'the'host' immune'response.'

34 Summary/2) New'agents'in'MM'treatment'have'potenDal'to' reverse'immune'funcdonal'skewing.' PotenDal'for'targeDng'the'cyto=protecDve'(CAM= DR)'and'cyto=immunomodulatory'(CAM=IR)'effect' using'novel'approaches.' An'understanding'of'the'immuno=genomics'of'the' host'may'permit'more'adapdve'treatment' strategies' 'pharmaco(immunotherapy:0the0 drugable0immunome.'

35 Acknowledgements Transplant Immunology Group Clive Carter Chris Parrish Collaborators: Graham Cook University of Leeds Marie von Lillienfeld-Toal University of Bonn Sylvia Feyler Gina Scott The Friends of Leukaemia and Lymphoma Unit All patients and volunteers

SUPPLEMENTARY FIGURE 1

SUPPLEMENTARY FIGURE 1 SUPPLEMENTARY FIGURE 1 A LN Cell count (1 ) 1 3 1 CD+ 1 1 CDL lo CD hi 1 CD+FoxP3+ 1 1 1 7 3 3 3 % of cells 9 7 7 % of cells CD+ 3 1 % of cells CDL lo CD hi 1 1 % of CD+ cells CD+FoxP3+ 3 1 % of CD+ T

More information

Control of intestinal inflammation by regulatory T cells

Control of intestinal inflammation by regulatory T cells Control of intestinal inflammation by regulatory T cells Fiona Powrie Sir William Dunn School of Pathology University of Oxford fiona.powrie@path.ox.ac.uk Regulatory T cells prevent immune pathology in

More information

Bases for Immunotherapy in Multiple Myeloma

Bases for Immunotherapy in Multiple Myeloma Bases for Immunotherapy in Multiple Myeloma Paola Neri, MD, PhD Associate Professor of Medicine University of Calgary, Arnie Charbonneau Cancer Institute Disclosures Paola Neri MD, PhD Grants/research

More information

Human and mouse T cell regulation mediated by soluble CD52 interaction with Siglec-10. Esther Bandala-Sanchez, Yuxia Zhang, Simone Reinwald,

Human and mouse T cell regulation mediated by soluble CD52 interaction with Siglec-10. Esther Bandala-Sanchez, Yuxia Zhang, Simone Reinwald, Human and mouse T cell regulation mediated by soluble CD52 interaction with Siglec-1 Esther Bandala-Sanchez, Yuxia Zhang, Simone Reinwald, James A. Dromey, Bo Han Lee, Junyan Qian, Ralph M Böhmer and Leonard

More information

Belatacept: An Opportunity to Personalize Immunosuppression? Andrew Adams MD/PhD Emory Transplant Center

Belatacept: An Opportunity to Personalize Immunosuppression? Andrew Adams MD/PhD Emory Transplant Center Belatacept: An Opportunity to Personalize Immunosuppression? Andrew Adams MD/PhD Emory Transplant Center Disclosure Research Funding from BMS. Learning Objectives -Define belatacept-resistant rejection

More information

Supplementary Table 1 Clinicopathological characteristics of 35 patients with CRCs

Supplementary Table 1 Clinicopathological characteristics of 35 patients with CRCs Supplementary Table Clinicopathological characteristics of 35 patients with CRCs Characteristics Type-A CRC Type-B CRC P value Sex Male / Female 9 / / 8.5 Age (years) Median (range) 6. (9 86) 6.5 (9 76).95

More information

Immunological alterations in mice irradiated with low doses

Immunological alterations in mice irradiated with low doses Immunological alterations in mice irradiated with low doses "Frédéric Joliot-Curie" National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary The structure of the immune system INNATE

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

Immune Checkpoints. PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich

Immune Checkpoints. PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich Immune Checkpoints PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich Activation of T cells requires co-stimulation Science 3

More information

New insights into CD8+ T cell function and regulation. Pam Ohashi Princess Margaret Cancer Centre

New insights into CD8+ T cell function and regulation. Pam Ohashi Princess Margaret Cancer Centre New insights into CD8+ T cell function and regulation Pam Ohashi Princess Margaret Cancer Centre New insights into CD8+ T cell function and regulation Pam Ohashi Princess Margaret Cancer Centre No Disclosures

More information

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model.

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model. A B16F1 s.c. Lung LN Distant lymph nodes Colon B B16F1 s.c. Supplementary Figure 1. Deletion of Smad3 prevents B16F1 melanoma invasion and metastasis in a mouse s.c. tumor model. Highly invasive growth

More information

Darwinian selection and Newtonian physics wrapped up in systems biology

Darwinian selection and Newtonian physics wrapped up in systems biology Darwinian selection and Newtonian physics wrapped up in systems biology Concept published in 1957* by Macfarland Burnet (1960 Nobel Laureate for the theory of induced immune tolerance, leading to solid

More information

Immune surveillance hypothesis (Macfarlane Burnet, 1950s)

Immune surveillance hypothesis (Macfarlane Burnet, 1950s) TUMOR-IMMUNITÄT A.K. Abbas, A.H. Lichtman, S. Pillai (6th edition, 2007) Cellular and Molecular Immunology Saunders Elsevier Chapter 17, immunity to tumors Immune surveillance hypothesis (Macfarlane Burnet,

More information

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases Abul K. Abbas UCSF Balancing lymphocyte activation and control Activation Effector T cells Tolerance Regulatory T cells

More information

Priming the Immune System to Kill Cancer and Reverse Tolerance. Dr. Diwakar Davar Assistant Professor, Melanoma and Phase I Therapeutics

Priming the Immune System to Kill Cancer and Reverse Tolerance. Dr. Diwakar Davar Assistant Professor, Melanoma and Phase I Therapeutics Priming the Immune System to Kill Cancer and Reverse Tolerance Dr. Diwakar Davar Assistant Professor, Melanoma and Phase I Therapeutics Learning Objectives Describe the role of the immune system in cancer

More information

CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells

CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells Karin Pfisterer, Karoline M Lipnik, Erhard Hofer and Adelheid Elbe-Bürger Journal of Investigative Dermatology (2015)

More information

Cytokine Arrays Reveal Black Ops Tactics of Tumor-induced Immunosuppression

Cytokine Arrays Reveal Black Ops Tactics of Tumor-induced Immunosuppression Cytokine Arrays Reveal Black Ops Tactics of Tumor-induced Immunosuppression Jarad J Wilson, Ph.D. Technical Support & Marketing Specialist Ruo-Pan Huang, MD, Ph.D. Founder and CEO What are Antibody Arrays?

More information

Akt and mtor pathways differentially regulate the development of natural and inducible. T H 17 cells

Akt and mtor pathways differentially regulate the development of natural and inducible. T H 17 cells Akt and mtor pathways differentially regulate the development of natural and inducible T H 17 cells Jiyeon S Kim, Tammarah Sklarz, Lauren Banks, Mercy Gohil, Adam T Waickman, Nicolas Skuli, Bryan L Krock,

More information

Supplemental Materials

Supplemental Materials Supplemental Materials Programmed death one homolog maintains the pool size of regulatory T cells by promoting their differentiation and stability Qi Wang 1, Jianwei He 1, Dallas B. Flies 2, Liqun Luo

More information

Rationale for Combining Immunotherapy with Chemotherapy or Targeted Therapy

Rationale for Combining Immunotherapy with Chemotherapy or Targeted Therapy Society for Immunotherapy of Cancer (SITC) Rationale for Combining Immunotherapy with Chemotherapy or Targeted Therapy Qing Yi, MD, PhD Staff and Chair, Department of Cancer Biology Betsy B. DeWindt Endowed

More information

ASH 2011 aktualijos: MSC TPŠL gydyme. Mindaugas Stoškus VULSK HOTC MRMS

ASH 2011 aktualijos: MSC TPŠL gydyme. Mindaugas Stoškus VULSK HOTC MRMS ASH 2011 aktualijos: MSC TPŠL gydyme Mindaugas Stoškus VULSK HOTC MRMS #3042. Yukiyasu Ozawa et al. Mesenchymal Stem Cells As a Treatment for Steroid-Resistant Acute Graft Versus Host Disease (agvhd);

More information

Cell-mediated Immunity

Cell-mediated Immunity Cellular & Molecular Immunology Cell-mediated Immunity Nicholas M. Ponzio, Ph.D. Department of Pathology & Laboratory Medicine April 6, 2009 Today s Presentation: Overview Cellular Interactions In Humoral

More information

Blocking antibodies and peptides. Rat anti-mouse PD-1 (29F.1A12, rat IgG2a, k), PD-

Blocking antibodies and peptides. Rat anti-mouse PD-1 (29F.1A12, rat IgG2a, k), PD- Supplementary Methods Blocking antibodies and peptides. Rat anti-mouse PD-1 (29F.1A12, rat IgG2a, k), PD- L1 (10F.9G2, rat IgG2b, k), and PD-L2 (3.2, mouse IgG1) have been described (24). Anti-CTLA-4 (clone

More information

Umbilical Cord Blood-Derived T Regulatory Cells

Umbilical Cord Blood-Derived T Regulatory Cells Umbilical Cord Blood-Derived T Regulatory Cells David H. McKenna, M.D. PACT Workshop - University of Pittsburgh May 5, 2008 Slide 1 Outline Overview of T regulatory (T R ) cells Potential for clinical

More information

Disclosure Information. Mary L. Disis

Disclosure Information. Mary L. Disis Disclosure Information Mary L. Disis I have the following financial relationships to disclose: Consultant for: VentiRx, Celgene, Emergent, EMD Serono Speaker s Bureau for: N/A Grant/Research support from:

More information

Basic Immunology. Immunological tolerance. Cellular and molecular mechanisms of the immunological tolerance. Lecture 23 rd

Basic Immunology. Immunological tolerance. Cellular and molecular mechanisms of the immunological tolerance. Lecture 23 rd Basic Immunology Lecture 23 rd Immunological tolerance Cellular and molecular mechanisms of the immunological tolerance Tolerated skin grafts on MHC (H2) identical mice TOLERANCE & AUTOIMMUNITY Upon encountering

More information

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells ICI Basic Immunology course Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells Abul K. Abbas, MD UCSF Stages in the development of T cell responses: induction

More information

Immunological biomarkers predictive of clinical response to chemotherapy and maintenance HAART in HIV + patients with Kaposi sarcoma

Immunological biomarkers predictive of clinical response to chemotherapy and maintenance HAART in HIV + patients with Kaposi sarcoma P909 Immunological biomarkers predictive of clinical response to chemotherapy and maintenance HAART in HIV + patients with Kaposi sarcoma Tedeschi R, Bidoli E 2, Bortolin MT, Pratesi C, Basaglia G, Zanussi

More information

Supplementary Figure 1. IL-12 serum levels and frequency of subsets in FL patients. (A) IL-12

Supplementary Figure 1. IL-12 serum levels and frequency of subsets in FL patients. (A) IL-12 1 Supplementary Data Figure legends Supplementary Figure 1. IL-12 serum levels and frequency of subsets in FL patients. (A) IL-12 serum levels measured by multiplex ELISA (Luminex) in FL patients before

More information

Harnessing tolerance mechanisms with monoclonal antibodies Prof. Herman Waldmann

Harnessing tolerance mechanisms with monoclonal antibodies Prof. Herman Waldmann Harnessing tolerance mechanisms Herman Waldmann Sir William Dunn School of Pathology, Oxford University, UK 1 1. Transplantation 2 Lymphocyte depletion strategies to minimise drug immunosuppression in

More information

Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured

Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured under Th0, Th1, Th2, Th17, and Treg conditions. mrna

More information

D CD8 T cell number (x10 6 )

D CD8 T cell number (x10 6 ) IFNγ Supplemental Figure 1. CD T cell number (x1 6 ) 18 15 1 9 6 3 CD CD T cells CD6L C CD5 CD T cells CD6L D CD8 T cell number (x1 6 ) 1 8 6 E CD CD8 T cells CD6L F Log(1)CFU/g Feces 1 8 6 p

More information

Innate Immunity, Inflammation and Cancer

Innate Immunity, Inflammation and Cancer Innate Immunity, Inflammation and Cancer Willem Overwijk, Ph.D. Melanoma Medical Oncology Center for Cancer Immunology Research MD Anderson Cancer Center, Houston, TX SITC/MDACC -6/14/2013 www.allthingsbeautiful.com

More information

Naive, memory and regulatory T lymphocytes populations analysis

Naive, memory and regulatory T lymphocytes populations analysis Naive, memory and regulatory T lymphocytes populations analysis Jaen Olivier, PhD ojaen@beckmancoulter.com Cellular Analysis application specialist Beckman Coulter France Introduction Flow cytometric analysis

More information

Immune Tolerance. Kyeong Cheon Jung. Department of Pathology Seoul National University College of Medicine

Immune Tolerance. Kyeong Cheon Jung. Department of Pathology Seoul National University College of Medicine Immune Tolerance Kyeong Cheon Jung Department of Pathology Seoul National University College of Medicine Immune tolerance Unresponsiveness to an antigen that is induced by previous exposure to that antigen

More information

Tolerance 2. Regulatory T cells; why tolerance fails. FOCiS. Lecture outline. Regulatory T cells. Regulatory T cells: functions and clinical relevance

Tolerance 2. Regulatory T cells; why tolerance fails. FOCiS. Lecture outline. Regulatory T cells. Regulatory T cells: functions and clinical relevance 1 Tolerance 2. Regulatory T cells; why tolerance fails Abul K. Abbas UCSF FOCiS 2 Lecture outline Regulatory T cells: functions and clinical relevance Pathogenesis of autoimmunity: why selftolerance fails

More information

Central tolerance. Mechanisms of Immune Tolerance. Regulation of the T cell response

Central tolerance. Mechanisms of Immune Tolerance. Regulation of the T cell response Immunoregulation: A balance between activation and suppression that achieves an efficient immune response without damaging the host. Mechanisms of Immune Tolerance ACTIVATION (immunity) SUPPRESSION (tolerance)

More information

Mechanisms of Immune Tolerance

Mechanisms of Immune Tolerance Immunoregulation: A balance between activation and suppression that achieves an efficient immune response without damaging the host. ACTIVATION (immunity) SUPPRESSION (tolerance) Autoimmunity Immunodeficiency

More information

SEVENTH EDITION CHAPTER

SEVENTH EDITION CHAPTER Judy Owen Jenni Punt Sharon Stranford Kuby Immunology SEVENTH EDITION CHAPTER 16 Tolerance, Autoimmunity, and Transplantation Copyright 2013 by W. H. Freeman and Company Immune tolerance: history * Some

More information

Supplemental Materials for. Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to. FTY720 during neuroinflammation

Supplemental Materials for. Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to. FTY720 during neuroinflammation Supplemental Materials for Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to FTY7 during neuroinflammation This file includes: Supplemental Table 1. EAE clinical parameters of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplemental Figure 1. Furin is efficiently deleted in CD4 + and CD8 + T cells. a, Western blot for furin and actin proteins in CD4cre-fur f/f and fur f/f Th1 cells. Wild-type and furin-deficient CD4 +

More information

of whole cell cultures in U-bottomed wells of a 96-well plate are shown. 2

of whole cell cultures in U-bottomed wells of a 96-well plate are shown. 2 Supplementary online material Supplementary figure legends Supplementary Figure 1 Exposure to T reg cells causes loss of T resp cells in co-cultures. T resp cells were stimulated with CD3+CD28 alone or

More information

Supplementary Figure 1

Supplementary Figure 1 d f a IL7 b IL GATA RORγt h HDM IL IL7 PBS Ilra R7 PBS HDM Ilra R7 HDM Foxp Foxp Ilra R7 HDM HDM Ilra R7 HDM. 9..79. CD + FOXP + T reg cell CD + FOXP T conv cell PBS Ilra R7 PBS HDM Ilra R7 HDM CD + FOXP

More information

Supplementary information. Characterization of c-maf + Foxp3 - Regulatory T Cells Induced by. Repeated Stimulation of Antigen-Presenting B Cells

Supplementary information. Characterization of c-maf + Foxp3 - Regulatory T Cells Induced by. Repeated Stimulation of Antigen-Presenting B Cells Chien 1 Supplementary information Manuscript: SREP-16-42480A Characterization of c-maf + Foxp3 - Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells Chien-Hui Chien 1, Hui-Chieh

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1554 a TNF-α + in CD4 + cells [%] 1 GF SPF 6 b IL-1 + in CD4 + cells [%] 5 4 3 2 1 Supplementary Figure 1. Effect of microbiota on cytokine profiles of T cells in GALT. Frequencies of TNF-α

More information

T cell manipulation of the graft: Yes

T cell manipulation of the graft: Yes T cell manipulation of the graft: Yes J.H. Frederik Falkenburg Department of Hematology L M U C Allogeneic Hematopoietic Stem Cell Transplantation (SCT) for non-malignant disorders: no need for anti-tumor

More information

FcγRIIIA (CD16)-expressing monocytes mediate the depletion of tumor-infiltrating Tregs via ipilimumab-dependent ADCC in melanoma patients

FcγRIIIA (CD16)-expressing monocytes mediate the depletion of tumor-infiltrating Tregs via ipilimumab-dependent ADCC in melanoma patients FcγRIIIA (CD16)-expressing monocytes mediate the depletion of tumor-infiltrating Tregs via ipilimumab-dependent ADCC in melanoma patients Emanuela Romano Department of Oncology University of Lausanne and

More information

Children's Hospital of Pittsburgh Annual Progress Report: 2011 Formula Grant

Children's Hospital of Pittsburgh Annual Progress Report: 2011 Formula Grant Children's Hospital of Pittsburgh Annual Progress Report: 2011 Formula Grant Reporting Period July 1, 2012 June 30, 2013 Formula Grant Overview The Children's Hospital of Pittsburgh received $228,401 in

More information

Supplementalgfigureg1gSchematicgdiagramgofgtumor1modellingg

Supplementalgfigureg1gSchematicgdiagramgofgtumor1modellingg SChinjectionh F:LuchLCLsh IVhinjectionh T:cellsh Monitorhforhtumorh growthhandhxeno: reactivehgvhd GVLgexperimentg kcbgvsgpbgt1cellse Xeno1reactiveg experimentg kcbgvsgpbgt1cellse IVhinjectionh 5xh,N^6

More information

Glioma cancer stem cells mediate immune suppression that can be reversed with STAT3 blockade

Glioma cancer stem cells mediate immune suppression that can be reversed with STAT3 blockade Glioma cancer stem cells mediate immune suppression that can be reversed with STAT3 blockade Jun Wei Department of Neurosurgery October 23, 2009 Immune suppression in Malignant Glioma Patients Mechanisms

More information

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco Determinants of Immunogenicity and Tolerance Abul K. Abbas, MD Department of Pathology University of California San Francisco EIP Symposium Feb 2016 Why do some people respond to therapeutic proteins?

More information

Supplemental Information. T Cells Enhance Autoimmunity by Restraining Regulatory T Cell Responses via an Interleukin-23-Dependent Mechanism

Supplemental Information. T Cells Enhance Autoimmunity by Restraining Regulatory T Cell Responses via an Interleukin-23-Dependent Mechanism Immunity, Volume 33 Supplemental Information T Cells Enhance Autoimmunity by Restraining Regulatory T Cell Responses via an Interleukin-23-Dependent Mechanism Franziska Petermann, Veit Rothhammer, Malte

More information

Lecture outline. Immunological tolerance and immune regulation. Central and peripheral tolerance. Inhibitory receptors of T cells. Regulatory T cells

Lecture outline. Immunological tolerance and immune regulation. Central and peripheral tolerance. Inhibitory receptors of T cells. Regulatory T cells 1 Immunological tolerance and immune regulation Abul K. Abbas UCSF 2 Lecture outline Central and peripheral tolerance Inhibitory receptors of T cells Regulatory T cells 1 The immunological equilibrium:

More information

Supplementary Figure Legends. group) and analyzed for Siglec-G expression utilizing a monoclonal antibody to Siglec-G (clone SH2.1).

Supplementary Figure Legends. group) and analyzed for Siglec-G expression utilizing a monoclonal antibody to Siglec-G (clone SH2.1). Supplementary Figure Legends Supplemental Figure : Naïve T cells express Siglec-G. Splenocytes were isolated from WT B or Siglec-G -/- animals that have not been transplanted (n= per group) and analyzed

More information

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant Tumor Immunology Wirsma Arif Harahap Surgical Oncology Consultant 1) Immune responses that develop to cancer cells 2) Escape of cancer cells 3) Therapies: clinical and experimental Cancer cells can be

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. NKT ligand-loaded tumour antigen-presenting B cell- and monocyte-based vaccine induces NKT, NK and CD8 T cell responses. (A) The cytokine profiles of liver

More information

BASIC MECHANISM OF TUMOR IMMUNE SUPPRESSION

BASIC MECHANISM OF TUMOR IMMUNE SUPPRESSION BASIC MECHANISM OF TUMOR IMMUNE SUPPRESSION Zihai Li, M.D., Ph.D. Leader, Cancer Immunology Program Hollings Cancer Center Medical University of South Carolina (MUSC) DISCLOSURE GOALS Understand that immune

More information

T cell maturation. T-cell Maturation. What allows T cell maturation?

T cell maturation. T-cell Maturation. What allows T cell maturation? T-cell Maturation What allows T cell maturation? Direct contact with thymic epithelial cells Influence of thymic hormones Growth factors (cytokines, CSF) T cell maturation T cell progenitor DN DP SP 2ry

More information

Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells

Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells Research article Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells Chen Wang, 1 Tai Yi, 1 Lingfeng Qin, 2 Roberto A. Maldonado, 3 Ulrich H. von Andrian, 3

More information

Tolerance 2. Regulatory T cells; why tolerance fails. Abul K. Abbas UCSF. FOCiS

Tolerance 2. Regulatory T cells; why tolerance fails. Abul K. Abbas UCSF. FOCiS 1 Tolerance 2. Regulatory T cells; why tolerance fails Abul K. Abbas UCSF FOCiS 2 Lecture outline Regulatory T cells: functions and clinical relevance Pathogenesis of autoimmunity: why selftolerance fails

More information

IMMUNOLOGICAL MEMORY. CD4 T Follicular Helper Cells. Memory CD8 T Cell Differentiation

IMMUNOLOGICAL MEMORY. CD4 T Follicular Helper Cells. Memory CD8 T Cell Differentiation IMMUNOLOGICAL MEMORY CD4 T Follicular Helper Cells Memory CD8 T Cell Differentiation CD4 T Cell Differentiation Bcl-6 T-bet GATA-3 ROR t Foxp3 CD4 T follicular helper (Tfh) cells FUNCTION Provide essential

More information

PD-L1 Expression and Signaling by Tumors and Macrophages: Comparative Studies in Mice and Dogs

PD-L1 Expression and Signaling by Tumors and Macrophages: Comparative Studies in Mice and Dogs PD-L1 Expression and Signaling by Tumors and Macrophages: Comparative Studies in Mice and Dogs Steven Dow, DVM, PhD Department of Clinical Sciences, Animal Cancer Center Colorado State University Consortium

More information

B220 CD4 CD8. Figure 1. Confocal Image of Sensitized HLN. Representative image of a sensitized HLN

B220 CD4 CD8. Figure 1. Confocal Image of Sensitized HLN. Representative image of a sensitized HLN B220 CD4 CD8 Natarajan et al., unpublished data Figure 1. Confocal Image of Sensitized HLN. Representative image of a sensitized HLN showing B cell follicles and T cell areas. 20 µm thick. Image of magnification

More information

Immune Cells in Atherosclerosis Regulatory vs Inflammatory T cells Göran K Hansson

Immune Cells in Atherosclerosis Regulatory vs Inflammatory T cells Göran K Hansson Immune Cells in Atherosclerosis Regulatory vs Inflammatory T cells Göran K Hansson Center for Molecular Medicine Karolinska Institute Stockholm, Sweden DECLARATION OF CONFLICT OF INTEREST Goran Hansson

More information

NK cell flow cytometric assay In vivo DC viability and migration assay

NK cell flow cytometric assay In vivo DC viability and migration assay NK cell flow cytometric assay 6 NK cells were purified, by negative selection with the NK Cell Isolation Kit (Miltenyi iotec), from spleen and lymph nodes of 6 RAG1KO mice, injected the day before with

More information

Immune response to infection

Immune response to infection Immune response to infection Dr. Sandra Nitsche (Sandra.Nitsche@rub.de ) 20.06.2018 1 Course of acute infection Typical acute infection that is cleared by an adaptive immune reaction 1. invasion of pathogen

More information

Drug profiling in an immune cell-tumor spheroid co-culture model

Drug profiling in an immune cell-tumor spheroid co-culture model Oncology Drug Discovery Molecular Pharmacology Drug profiling in an immune cell-tumor spheroid co-culture model Silvia Goldoni, Investigator Novartis Institutes for Biomedical Research, Cambridge MA, USA

More information

Th17 Pathway Research By Bio-Plex

Th17 Pathway Research By Bio-Plex Th17 Pathway Research By Bio-Plex Zhiyang Shen, Senior Product Manager Bio-Rad Laboratories, Inc 2011 年 6 月 28 日星期二 T helper cell research Timeline: advances on T helper research. Figure depicts some of

More information

MECHANISMS OF CELLULAR REJECTION IN ORGAN TRANSPLANTATION AN OVERVIEW

MECHANISMS OF CELLULAR REJECTION IN ORGAN TRANSPLANTATION AN OVERVIEW MECHANISMS OF CELLULAR REJECTION IN ORGAN TRANSPLANTATION AN OVERVIEW YVON LEBRANCHU Service Néphrologie et Immunologie Clinique CHU TOURS ANTIGEN PRESENTING CELL CD4 + T CELL CYTOKINE PRODUCTION CLONAL

More information

A Multifaceted Immunomonitoring to Identify Predictive Biomarkers for the Clinical Outcome of Immunotherapy-Treated Melanoma Patients

A Multifaceted Immunomonitoring to Identify Predictive Biomarkers for the Clinical Outcome of Immunotherapy-Treated Melanoma Patients A Multifaceted Immunomonitoring to Identify Predictive Biomarkers for the Clinical Outcome of Immunotherapy-Treated Melanoma Patients Immunotherapy Biomarkers: Overcoming the Barriers NIH, Bethesda, April

More information

Rationale and results from. BRAFi and immunotherapy

Rationale and results from. BRAFi and immunotherapy Rationale and results from emerging combinations of BRAFi and immunotherapy Antoni Ribas, M.D. rofessor of Medicine rofessor of Surgery rofessor of Molecular and Medical harmacology Director, Tumor Immunology

More information

Induction of donor-specific hyporesponsiveness after renal. transplantation. Long term follow-up

Induction of donor-specific hyporesponsiveness after renal. transplantation. Long term follow-up Induction of donor-specific hyporesponsiveness after renal transplantation. Long term follow-up Marc Lúcia, Oriol Bestard, Marcel la Franquesa, Josep M Cruzado, Montse Gomà, Núria Bolaños, Gema Cerezo,

More information

Regulation of anti-tumor immunity through migration of immune cell subsets within the tumor microenvironment Thomas F. Gajewski, M.D., Ph.D.

Regulation of anti-tumor immunity through migration of immune cell subsets within the tumor microenvironment Thomas F. Gajewski, M.D., Ph.D. Regulation of anti-tumor immunity through migration of immune cell subsets within the tumor microenvironment Thomas F. Gajewski, M.D., Ph.D. Professor, Departments of Pathology and Medicine Program Leader,

More information

Alessandra Franco MD PhD UCSD School of Medicine Department of Pediatrics Division of Allergy Immunology and Rheumatology

Alessandra Franco MD PhD UCSD School of Medicine Department of Pediatrics Division of Allergy Immunology and Rheumatology Immunodominant peptides derived from the heavy constant region of IgG1 stimulate natural regulatory T cells: identification of pan- HLA binders for clinical translation Alessandra Franco MD PhD UCSD School

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Identification of IFN-γ-producing CD8 + and CD4 + T cells with naive phenotype by alternative gating and sample-processing strategies. a. Contour 5% probability plots show definition

More information

VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses. Li Wang. Dartmouth Medical School

VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses. Li Wang. Dartmouth Medical School VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses Li Wang Dartmouth Medical School The B7 Immunoglobulin Super-Family immune regulators APC T cell Co-stimulatory:

More information

SUPPLEMENT Supplementary Figure 1: (A) (B)

SUPPLEMENT Supplementary Figure 1: (A) (B) SUPPLEMENT Supplementary Figure 1: CD4 + naïve effector T cells (CD4 effector) were labeled with CFSE, stimulated with α-cd2/cd3/cd28 coated beads (at 2 beads/cell) and cultured alone or cocultured with

More information

Effect of Cytomegalovirus Infection on Immune Responsiveness. Rene van Lier Sanquin Blood Supply Foundation

Effect of Cytomegalovirus Infection on Immune Responsiveness. Rene van Lier Sanquin Blood Supply Foundation Effect of Cytomegalovirus Infection on Immune Responsiveness Rene van Lier Sanquin Blood Supply Foundation OUTLINE CMV infection and vaccination responses Effects of CMV infection on CD8 + T cell numbers

More information

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 Tumor Immunology M. Nagarkatti Teaching Objectives: Introduction to Cancer Immunology Know the antigens expressed by cancer cells Understand

More information

Nature Medicine: doi: /nm.3922

Nature Medicine: doi: /nm.3922 Title: Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells Authors: Il-Kyu Kim, Byung-Seok Kim, Choong-Hyun

More information

Innate Immunity and Inflammation

Innate Immunity and Inflammation SITC Primer on Tumor Immunology and Biological Therapy of Cancer Innate Immunity and Inflammation Willem Overwijk, Ph.D. MD Anderson Cancer Center Center for Cancer Immunology Research Houston, TX www.allthingsbeautiful.com

More information

Gene+c fate mapping. x loxp. Foxp3 3 UTR ROSA26 RFP IRES GFP CRE. STOP loxp. Stable Foxp3 expression. Foxp3 expression in new Treg.

Gene+c fate mapping. x loxp. Foxp3 3 UTR ROSA26 RFP IRES GFP CRE. STOP loxp. Stable Foxp3 expression. Foxp3 expression in new Treg. 1 Introduc+on (CD4 + CD25 + Foxp3 + )are indispensable for immune homeostasis. Muta+ons in Foxp3 gene leads to fatal autoimmune disorder. Condi+onal dele+on of Foxp3 reprograms cells into pathogenic Th

More information

Adenovirus engineered human dendritic cell vaccine induces natural killer cell chemotaxis

Adenovirus engineered human dendritic cell vaccine induces natural killer cell chemotaxis Adenovirus engineered human dendritic cell vaccine induces natural killer cell chemotaxis via CXCL8/IL 8 and CXCL10/IP 10 chemokines Lazar Vujanović, Ph.D. Research Instructor P.I. Lisa H. Butterfield,

More information

A different view on immunity Dempsey, Claire; Jones, Nicholas

A different view on immunity Dempsey, Claire; Jones, Nicholas A different view on immunity Dempsey, Claire; Jones, Nicholas DOI: 10.1097/TP.0000000000000738 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard):

More information

Sensitization testing in the frame of REACH: Any reliable in vitro alternatives in sight?

Sensitization testing in the frame of REACH: Any reliable in vitro alternatives in sight? Endpoint Skin Sensitization FEDERAL INSTITUTE FOR RISK ASSESSMENT Sensitization testing in the frame of REACH: Any reliable in vitro alternatives in sight? Andreas Luch & Matthias Peiser Department of

More information

Respuesta inmune anti-tumoral. Aura Muntasell Institut Hospital del Mar d Investigacions Mèdiques Parc de Recerca Biomèdica de Barcelona

Respuesta inmune anti-tumoral. Aura Muntasell Institut Hospital del Mar d Investigacions Mèdiques Parc de Recerca Biomèdica de Barcelona Respuesta inmune anti-tumoral Aura Muntasell Institut Hospital del Mar d Investigacions Mèdiques Parc de Recerca Biomèdica de Barcelona CANCER IMMUNOEDITING Zitvogel et al Nat Rev Immunol (2006) Evidences

More information

B6/COLODR/SPL/11C/83/LAP/#2.006 B6/COLODR/SPL/11C/86/LAP/#2.016 CD11C B6/COLODR/SPL/11C/80/LAP/#2.011 CD11C

B6/COLODR/SPL/11C/83/LAP/#2.006 B6/COLODR/SPL/11C/86/LAP/#2.016 CD11C B6/COLODR/SPL/11C/80/LAP/#2.011 CD11C CD3-specific antibody-induced immune tolerance and suppression of autoimmune encephalomyelitis involves TGF-β production through phagocytes digesting apoptotic T cells Sylvain Perruche 1,3, Pin Zhang 1,

More information

Innate immune regulation of T-helper (Th) cell homeostasis in the intestine

Innate immune regulation of T-helper (Th) cell homeostasis in the intestine Innate immune regulation of T-helper (Th) cell homeostasis in the intestine Masayuki Fukata, MD, Ph.D. Research Scientist II Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation,

More information

Supplementary Figure 1. Ex vivo IFNγ production by Tregs. Nature Medicine doi: /nm % CD127. Empty SSC 98.79% CD25 CD45RA.

Supplementary Figure 1. Ex vivo IFNγ production by Tregs. Nature Medicine doi: /nm % CD127. Empty SSC 98.79% CD25 CD45RA. SSC CD25 1.8% CD127 Empty 98.79% FSC CD45RA CD45RA Foxp3 %IFNγ + cells 4 3 2 1 + IL-12 P =.3 IFNγ p=.9 %IL-4+ cells 3 2 1 IL-4 P =.4 c %IL-1 + cells IFNγ 4 3 2 1 Control Foxp3 IL-1 P =.41.64 4.76 MS 2.96

More information

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University CANCER IMMUNOPATHOLOGY Eryati Darwin Faculty of Medicine Andalas University Padang 18 Mei 2013 INTRODUCTION Tumor: cells that continue to replicate, fail to differentiate into specialized cells, and become

More information

FOCiS. Lecture outline. The immunological equilibrium: balancing lymphocyte activation and control. Immunological tolerance and immune regulation -- 1

FOCiS. Lecture outline. The immunological equilibrium: balancing lymphocyte activation and control. Immunological tolerance and immune regulation -- 1 1 Immunological tolerance and immune regulation -- 1 Abul K. Abbas UCSF FOCiS 2 Lecture outline Principles of immune regulation Self-tolerance; mechanisms of central and peripheral tolerance Inhibitory

More information

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk -/- mice were stained for expression of CD4 and CD8.

More information

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All MATERIALS AND METHODS Antibodies (Abs), flow cytometry analysis and cell lines Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All other antibodies used

More information

Mechanisms of allergen-specific immunotherapy

Mechanisms of allergen-specific immunotherapy 2012 KAAACI/EAAS Spring Mechanisms of allergen-specific immunotherapy Woo-Jung Song, MD Division of Allergy and Clinical Immunology Department of Internal Medicine Seoul National University Hospital, Seoul,

More information

Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation

Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation C. Andrew Stewart,, Werner Müller, Giorgio Trinchieri J Clin Invest. 2013;123(11):4859-4874. https://doi.org/10.1172/jci65180.

More information

Primer on Tumor Immunology. International Society for Biological Therapy of Cancer. C. H. June, M.D. November 10, 2005

Primer on Tumor Immunology. International Society for Biological Therapy of Cancer. C. H. June, M.D. November 10, 2005 Primer on Tumor Immunology International Society for Biological Therapy of Cancer C. H. June, M.D. November 10, 2005 Outline: Primer on Tumor Immunology T Cell Receptors T Cell Biology Tumor immunology

More information

for six pairs of mice. (b) Representative FACS analysis of absolute number of T cells (CD4 + and

for six pairs of mice. (b) Representative FACS analysis of absolute number of T cells (CD4 + and SUPPLEMENTARY DATA Supplementary Figure 1: Peripheral lymphoid organs of SMAR1 -/- mice have an effector memory phenotype. (a) Lymphocytes collected from MLNs and Peyer s patches (PPs) of WT and SMAR1

More information

Cell isolation. Spleen and lymph nodes (axillary, inguinal) were removed from mice

Cell isolation. Spleen and lymph nodes (axillary, inguinal) were removed from mice Supplementary Methods: Cell isolation. Spleen and lymph nodes (axillary, inguinal) were removed from mice and gently meshed in DMEM containing 10% FBS to prepare for single cell suspensions. CD4 + CD25

More information

Supplemental Information. CD4 + CD25 + Foxp3 + Regulatory T Cells Promote. Th17 Cells In Vitro and Enhance Host Resistance

Supplemental Information. CD4 + CD25 + Foxp3 + Regulatory T Cells Promote. Th17 Cells In Vitro and Enhance Host Resistance Immunity, Volume 34 Supplemental Information D4 + D25 + + Regulatory T ells Promote Th17 ells In Vitro and Enhance Host Resistance in Mouse andida albicans Th17 ell Infection Model Pushpa Pandiyan, Heather

More information

Supplemental Information. Checkpoint Blockade Immunotherapy. Induces Dynamic Changes. in PD-1 CD8 + Tumor-Infiltrating T Cells

Supplemental Information. Checkpoint Blockade Immunotherapy. Induces Dynamic Changes. in PD-1 CD8 + Tumor-Infiltrating T Cells Immunity, Volume 50 Supplemental Information Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1 CD8 + Tumor-Infiltrating T Cells Sema Kurtulus, Asaf Madi, Giulia Escobar, Max Klapholz, Jackson

More information