Development Supplementary information. Supplementary Figures * * +/+ +/- -/- +/+ +/- -/-

Size: px
Start display at page:

Download "Development Supplementary information. Supplementary Figures * * +/+ +/- -/- +/+ +/- -/-"

Transcription

1 Development 144: doi:1.1242/dev.1473: Supplementary information Supplementary Figures A (f) FRT LoxP B All Males Females I Ovary 1 (+) 77 bps (f) 78 bps (-) >13 bps (-) 2 4 (-) 424 bps M +/f +/- H 2 O f + - genotype +/- total p-value # % # % # % αkdm4a αkdm4a C All D Males E Females Percent survival 7 n.s. p=.78 (n=14) +/- (n=16) (n=16) Percent survival 7 n.s. p=.98 (n=8) +/- (n=1) (n=1) Percent survival 7 n.s. p=.96 (n=6) +/- (n=6) (n=6) time (weeks) time (weeks) time (weeks) F Males G Females 4 8 weeks 2 weeks 3 weeks 3 8 weeks 2 weeks 3 weeks H weight (g) +/β-gal p=.7 p=.38 +/- +/- genotype +/- weight (g) 3 2 +/- +/- +/- genotype 3. dpc 8. dpc 1. dpc 12. dpc 14. dpc

2 Development 144: doi:1.1242/dev.1473: Supplementary information Fig S1. Characterization of Kdm4a mice (A) Genotyping strategy used to detect wild type (+), LoxP flanked (f) and KO (-) alleles of Kdm4a. Positions of primers and their respective product sizes are indicated. (B) Kdm4a +/- mice were inter-crossed and the number of pups at time of weaning are reported. P values were calculated using a Chi-square test. Viability is shown for all, male and female animals. (C-E) Survival rates of wild type () and Kdm4a heterozygous (+/-) and KO () animals. Survival is shown for all (C), male (D) and female (E) animals. Log-rank (Mantel-Cox) test was used to determine significance. (F-G) Boxplot depicting average weights of Kdm4a, Kdm4a +/- and Kdm4a male (F) and female (G) animals at the indicated ages. Unpaired t-test was used to determine statistical significance. (H) Beta-galactosidase staining of embryos at the indicated stages expressing the LacZ reporter gene under control of the endogenous Kdm4a promoter (+/ Beta-Gal). Wild type embryos () were used as control. (I) Immunohistochemistry on paraffin embedded sections of control and Kdm4a ovary stained for Kdm4a. Staining is seen in the oocyte as highlighted with asterisk () as well as the surrounding granulosa cells of the ovarian follicle.

3 Development 144: doi:1.1242/dev.1473: Supplementary information Haematoxylin and eosin Oviduct Ovary Uterus BlV Lu En MuF Lu GC Myo TC Myo BlV TC Lu MuF En Lu GC Fig S2. Reproductive tissue histology in Kdm4a females Representative haematoxylin and eosin stained sections of ovary, oviduct and uterus of wild type () and Kdm4a females (n=3 tested /group). GC- Granulosa cell; TC Theca Cell; Endometrium; Myo Myometrium CL Corpus luteum; MuF Mucosal Fold; BlV Blood Vessel; Lu Lumen; En

4 ru s te ) (n =3 =3 ) Processed Mask (n Mask va ry te ru s 3) 3) (n = 3) (n = t( n= du c vi U O O Ki67 - Oviduct Ki67 - Uterus % Ki67 positive cells Ki67 - Ovary Processed Mask U IHC du ct =3 ) (n B Mask % Caspase 3 positive cells Caspase3 - Ovary IHC vi O va ry O Caspase3 - Oviduct A Caspase3 - Uterus Development 144: doi:1.1242/dev.1473: Supplementary information Ki67 (proliferation) Cleaved caspase-3 (Apoptosis) 1

5 Development 144: doi:1.1242/dev.1473: Supplementary information Fig S3. Proliferative and apoptosis levels in Kdm4a female reproductive tissues appear normal (A-B) Sections of ovary oviduct and uterus of wild type () and Kdm4a females were stained for Ki67 (A) and cleaved Caspase 3 (B). The result of image processing in ImageJ is depicted and the average percentages of positive cells (n=3 animals) are presented with SD. Unpaired t-test was used to determine statistical significance. Processed mask represents visualization of positive staining cells across the tissue section derived by equal colour threshold adjustment on unprocessed mask of wildtype and knockout samples

6 Development 144: doi:1.1242/dev.1473: Supplementary information A Flushed from oviduct at 3. dpc B p+/m+ p-/m+ p+/m- % ESC lines / plated embryos 1 7 Male Female n p<.1 +/- +/ Fig S4. Kdm4a females produce poor quality blastocysts in vivo (A) Representative images of embryos at 3. dpc flushed from Kdm4a, Kdm4a +/- and Kdm4a females that were crossed with males as indicated in the top right of each image. Delayed embryos (no sign of cavitation) are indicated with an asterisk. (B) 3. dpc embryos from wild type (), heterozygous (+/-) and Kdm4a () females were plated and the percentage of embryonic stem cell lines that were successfully generated is indicated. n indicated number of embryos plated in mesc medium to generate lines.

7 Development 144: doi:1.1242/dev.1473: Supplementary information Ovarian steroidogenesis pathway (2. dpc), n=11, n= p value p<. p<.1 Fold change / Rplp 2 1 Jmjd2a Lhr Prlr Ar Fshr Pgr Esr1 Esr2 Star Cyp17a1 Cyp1 1a1 Cyp19a1 2alphaHSD Hsd17b1 17b2 Hsd17b7 Hsd17b12 Hsd3 C Hsd cnd2 Cebp -beta Gdf-9 p<.1 Fig S. Gene expression of ovarian steroidogenesis pathway genes in Kdm4a females at 2. dpc Boxplot depicting average expression levels of the indicated genes in wild type () and Kdm4a ovary. Gene expression was determined through RT-qPCR from 11 animals per group. Statistical significance was determined using unpaired t-test and significance was reported for each gene if p<. (), p<.1 () and p<.1 ().

8 Development 144: doi:1.1242/dev.1473: Supplementary information A Genes downregulated in Kdm4a ovary Genes upregulated in Kdm4a ovary GO biological process count GO biological process count Sex differentiation Development of primary sexual characteristics Male gamete generation Cellular process involved in reproduction Cellular response to endogenous stimulus Response to hormone Development process involved in reproduction Reproduction Response to endogenous stimulus Cell development Phagocytic vesicle Cation transmembrane transporter activity Inorganic ion transmembrane transport Inorganic cation transmem. transporter activity Innate immune response Extracellular space Immune response Positive regulation of organismal process Defense response Immune system process B C Genes upregulated in Kdm4a uterus GO biological process Nuclear chromosome segregation Sister chromatid segregation Chromosome segregation Organelle fission Mitotic nuclear division Cell division Extracellular space Mitotic cell cycle Cell cycle process Cell cycle count GE enriched 2. dpc glandular epithelium (GE) genes vs 2. dpc Kdm4a knockout uterus Kdm4a _down GE enriched Kdm4a _up Fig S6. Investigation of ovarian and uterine target genes in Kdm4a (A) Gene ontology (GO) analysis on down and up regulated genes for processes affected by loss of Kdm4a in the 2.dpc ovary as determined from RNA Seq (n=3/group). (B) Overlap of published uterine glandular epithelium (GE) enriched genes at 2.dpc with genes that were downregulated or upregulated in the Kdm4a uterus. (C) Gene ontology (GO) analysis on upregulated genes for processes affected by loss of Kdm4a in the 2.dpc uterus as determined from RNA Seq.

9 Development 144: doi:1.1242/dev.1473: Supplementary information A Embryo transfer - foetus genotyping Ladder 1a 1b 1c 1d 1e 1f 2a 2b 2c 2d 2e 2f 2g 2h 2i 3a Ladder 3b 3c 3d 3e 3f 3g 3h 4a 4b 4c 4d 4e 4f a b c Ladder d e f g h i j k 6a 6b 7a 7b 7c wildtype allele knockout allele Number - Recipient female ID Alphabet - Foetus ID - Dead foetuses B Embryo transfer - Total foetus distribution Total embryos ( 17.dpc ) Cumulative distribution 12 m+/p- (Control) m-/p- (Mutant) 1 Embryo numbers % Mutant : Control Expected Total Recipient ID (n= 4) Fig S7. Bi-lateral embryo transfer of Kdm4a maternal zygotic mutants (A) Genotyping of individual embryos from recipient females following C-section at 17. dpc. The wildtype and knockout alleles are highlighted and dead/deformed foetuses obtained are highlighted with a red asterisk. (B) Individual numbers and cumulative distribution of total Kdm4a maternal zygotic mutants and control embryos from each recipient female. The red line at % represents the expected distribution based on the 1:1 mix of embryos transplanted into each oviduct.

10 Development 144: doi:1.1242/dev.1473: Supplementary information Table S1 Click here to Download Table S1 Table S2 Click here to Download Table S2 Table S3 Click here to Download Table S3

Supplemental Figure 1: Leydig cells are reduced at multiple stages in both male sterile mutants

Supplemental Figure 1: Leydig cells are reduced at multiple stages in both male sterile mutants SUPPLEMENTAL FIGURE LEGENDS: Supplemental Figure 1: Leydig cells are reduced at multiple stages in both male sterile mutants (Sgpl1 -/- and Plekha1 -/- ). Using an antibody against CYP11a1 to label Leydig

More information

Supplementary Figure 1: Expression of Gli1-lacZ in E17.5 ovary and mesonephros. a,

Supplementary Figure 1: Expression of Gli1-lacZ in E17.5 ovary and mesonephros. a, Supplementary Figure 1: Expression of Gli1-lacZ in E17.5 ovary and mesonephros. a, Transverse sections of E17.5 ovary and mesonephros from Gli1-LacZ reporter embryos (n=3) after LacZ staining (blue). The

More information

The intra-follicular molecular biology mandating advancement of egg retrieval in some women

The intra-follicular molecular biology mandating advancement of egg retrieval in some women The intra-follicular molecular biology mandating advancement of egg retrieval in some women David H. Barad, USA Director of Assisted Reproductive Technology, The Center for Human Reproduction New York

More information

10.7 The Reproductive Hormones

10.7 The Reproductive Hormones 10.7 The Reproductive Hormones December 10, 2013. Website survey?? QUESTION: Who is more complicated: men or women? The Female Reproductive System ovaries: produce gametes (eggs) produce estrogen (steroid

More information

Phases of the Ovarian Cycle

Phases of the Ovarian Cycle OVARIAN CYCLE An ovary contains many follicles, and each one contains an immature egg called an oocyte. A female is born with as many as 2 million follicles, but the number is reduced to 300,000 to 400,000

More information

REPRODUCCIÓN. La idea fija. Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings

REPRODUCCIÓN. La idea fija. Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings REPRODUCCIÓN La idea fija How male and female reproductive systems differentiate The reproductive organs and how they work How gametes are produced and fertilized Pregnancy, stages of development, birth

More information

UMR 7221CNRS/MNHN Evolution des régulations endocriniennes Muséum National d Histoire Naturelle Paris - France

UMR 7221CNRS/MNHN Evolution des régulations endocriniennes Muséum National d Histoire Naturelle Paris - France Role of Foxl2 and Dlx5/6 on uterine development and function: implications for BPES UMR 7221CNRS/MNHN Evolution des régulations endocriniennes Muséum National d Histoire Naturelle Paris - France TAKE HOME

More information

Supplementary Material

Supplementary Material 10.1071/RD13007_AC CSIRO 2014 Supplementary Material: Reproduction, Fertility and Development, 2014, 26(2), 337-345. Supplementary Material Table S1. Details of primers used for quantitative reverse transcription-polymerase

More information

Chapter 36 Active Reading Guide Reproduction and Development

Chapter 36 Active Reading Guide Reproduction and Development Name: AP Biology Mr. Croft Chapter 36 Active Reading Guide Reproduction and Development Section 1 1. Distinguish between sexual reproduction and asexual reproduction. 2. Which form of reproduction: a.

More information

Unit 4 - Reproduction

Unit 4 - Reproduction Living Environment Practice Exam- Parts A and B-1 1. Which cell process occurs only in organisms that reproduce sexually? A) mutation B) replication C) meiosis D) mitosis 2. Which sequence represents the

More information

CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions

CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions Yi Feng, Peng Cui, Xiaowei Lu, Brian Hsueh, Fredrik Möller Billig, Livia Zarnescu Yanez, Raju Tomer, Derek

More information

Supplementary Materials and Methods

Supplementary Materials and Methods Supplementary Materials and Methods Whole Mount X-Gal Staining Whole tissues were collected, rinsed with PBS and fixed with 4% PFA. Tissues were then rinsed in rinse buffer (100 mm Sodium Phosphate ph

More information

REPRODUCTIVE CYCLE OF FEMALE MAMMAL

REPRODUCTIVE CYCLE OF FEMALE MAMMAL REPRODUCTIVE CYCLE OF FEMALE MAMMAL Fig. 8-12 Secondary follicles growing follicles increase in number of layers of granulosa cells Tertiary follicles maturing follicles antrum formation fluid filled space

More information

SISTEMA REPRODUCTOR (LA IDEA FIJA) Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings

SISTEMA REPRODUCTOR (LA IDEA FIJA) Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings SISTEMA REPRODUCTOR (LA IDEA FIJA) How male and female reproductive systems differentiate The reproductive organs and how they work How gametes are produced and fertilized Pregnancy, stages of development,

More information

1. Both asexual and sexual reproduction occur in the animal kingdom

1. Both asexual and sexual reproduction occur in the animal kingdom 1. Both asexual and sexual reproduction occur in the animal kingdom Asexual reproduction involves the formation of individuals whose genes all come from one parent. There is no fusion of sperm and egg.

More information

Supplementary Figure 1. A. Bar graph representing the expression levels of the 19 indicated genes in the microarrays analyses comparing human lung

Supplementary Figure 1. A. Bar graph representing the expression levels of the 19 indicated genes in the microarrays analyses comparing human lung Supplementary Figure 1. A. Bar graph representing the expression levels of the 19 indicated genes in the microarrays analyses comparing human lung immortalized broncho-epithelial cells (AALE cells) expressing

More information

Supporting Information

Supporting Information Supporting Information Franco et al. 10.1073/pnas.1015557108 SI Materials and Methods Drug Administration. PD352901 was dissolved in 0.5% (wt/vol) hydroxyl-propyl-methylcellulose, 0.2% (vol/vol) Tween

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following hormones controls the release of anterior pituitary gonadotropins? A) LH

More information

Bio 322 Human Anatomy Objectives for the laboratory exercise Female Reproductive System

Bio 322 Human Anatomy Objectives for the laboratory exercise Female Reproductive System Bio 322 Human Anatomy Objectives for the laboratory exercise Female Reproductive System Required reading before beginning this lab: Saladin, KS: Human Anatomy 5 th ed (2017) Chapter 26 For this lab you

More information

Chapter 46 ~ Animal Reproduction

Chapter 46 ~ Animal Reproduction Chapter 46 ~ Animal Reproduction Overview Asexual (one parent) fission (parent separation) budding (corals) fragmentation & regeneration (inverts) parthenogenesis Sexual (fusion of haploid gametes) gametes

More information

Sex Chromosomes Polygenic Trait

Sex Chromosomes Polygenic Trait Semester 2 Final Study Guide Part 2 Name Inheritance Key Term Definition Example Gene Allele Trait Dominant Allele Dominant Trait Recessive Allele Recessive Trait Genotype Phenotype Homozygous Heterozygous

More information

Biology of Reproduction- Zool 346 Exam 2

Biology of Reproduction- Zool 346 Exam 2 Biology of Reproduction- Zool 346 Exam 2 ANSWER ALL THE QUESTIONS ON THE ANSWER SHEET. THE ANSWER ON THE ANSWER SHEET IS YOUR OFFICIAL ANSWER. Some critical words are boldfaced. This exam is 7 pages long.

More information

fl/+ KRas;Atg5 fl/+ KRas;Atg5 fl/fl KRas;Atg5 fl/fl KRas;Atg5 Supplementary Figure 1. Gene set enrichment analyses. (a) (b)

fl/+ KRas;Atg5 fl/+ KRas;Atg5 fl/fl KRas;Atg5 fl/fl KRas;Atg5 Supplementary Figure 1. Gene set enrichment analyses. (a) (b) KRas;At KRas;At KRas;At KRas;At a b Supplementary Figure 1. Gene set enrichment analyses. (a) GO gene sets (MSigDB v3. c5) enriched in KRas;Atg5 fl/+ as compared to KRas;Atg5 fl/fl tumors using gene set

More information

Male Reproduction Organs. 1. Testes 2. Epididymis 3. Vas deferens 4. Urethra 5. Penis 6. Prostate 7. Seminal vesicles 8. Bulbourethral glands

Male Reproduction Organs. 1. Testes 2. Epididymis 3. Vas deferens 4. Urethra 5. Penis 6. Prostate 7. Seminal vesicles 8. Bulbourethral glands Outline Terminology Human Reproduction Biol 105 Lecture Packet 21 Chapter 17 I. Male Reproduction A. Reproductive organs B. Sperm development II. Female Reproduction A. Reproductive organs B. Egg development

More information

Embryology Lecture # 4

Embryology Lecture # 4 1 Quick Review: Oogenesis : - Oogonia start appear in the ovary when the age of the fetus 1 is th (5 week). - Then the Oogonia transformed into 1ry Oocyte. - 1ry Oocyte is surrounded by a follicle (cover).

More information

Chapter 14 Reproduction Review Assignment

Chapter 14 Reproduction Review Assignment Date: Mark: _/45 Chapter 14 Reproduction Review Assignment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the diagram above to answer the next question.

More information

Disclosure. Dagan Wells University of Oxford Oxford, United Kingdom

Disclosure. Dagan Wells University of Oxford Oxford, United Kingdom Disclosure Dagan Wells University of Oxford Oxford, United Kingdom Disclosure Declared to be member of the advisory board, board of directors or other similar groups of Illumina Objectives Consider Aneuploidy

More information

The beginning of puberty is marked by the progressive increase in the production of sex hormones.

The beginning of puberty is marked by the progressive increase in the production of sex hormones. Puberty is characterized by the changes that prepare the human body for the ability to reproduce. This stage generally occurs between the ages of 10 and 14 years old. The beginning of puberty is marked

More information

Sperm production. Sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete

Sperm production. Sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete Sperm production Ductus deferens Epididymis The cells of Leydig in testes secrete Seminiferous testosterone (T) tubules T secreted at puberty produces 2 o sex characteristics, spermatogenesis, & maintain

More information

Sperm production. Sperm production. Controlling sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete

Sperm production. Sperm production. Controlling sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete Ductus deferens Sperm production Epididymis The cells of Leydig in testes secrete Seminiferous testosterone (T) tubules T secreted at puberty produces 2 o sex characteristics, spermatogenesis, & maintain

More information

OVARY The surface of the ovary is covered with surface epithelium

OVARY The surface of the ovary is covered with surface epithelium OVARY Cow The ovary, or female gonad, is: 1. an exocrine gland, producing oocytes 2. an endocrine gland, secreting hormones, i.e., estrogen and progesterone OVARY OVARY The surface of the ovary is covered

More information

oocytes were pooled for RT-PCR analysis. The number of PCR cycles was 35. Two

oocytes were pooled for RT-PCR analysis. The number of PCR cycles was 35. Two Supplementary Fig. 1 a Kdm3a Kdm4b β-actin Oocyte Testis Oocyte Testis Oocyte Testis b 1.8 Relative expression.6.4.2 Kdm3a Kdm4b RT-PCR analysis of Kdm3a and Kdm4b expression in oocytes and testes. Twenty

More information

Reproductive Endocrinology. Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007

Reproductive Endocrinology. Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007 Reproductive Endocrinology Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007 isabelss@hkucc.hku.hk A 3-hormone chain of command controls reproduction with

More information

Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature

Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature REPRODUCTION Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature reduction -Testes wall made of fibrous connective

More information

Student Academic Learning Services Page 1 of 5 Reproductive System Practice

Student Academic Learning Services Page 1 of 5 Reproductive System Practice Student Academic Learning Services Page 1 of 5 Reproductive System Practice Fill in the blanks using the words listed: accessory glands, vas deferens, penis, scrotum, fallopian tube, testes, urethra, vagina,

More information

Unit 2 Reproduction & Genetics Grade 9 Science SCI 10F Mr. Morris

Unit 2 Reproduction & Genetics Grade 9 Science SCI 10F Mr. Morris Unit 2 Reproduction & Genetics Grade 9 Science SCI 10F Mr. Morris This booklet belongs to: Lesson 1 Cells and Organelles Lesson 1 SCI10F A short list of Organelles (little organs): Nucleus Cytoplasm Chromosome

More information

Outline. Male Reproductive System Testes and Sperm Hormonal Regulation

Outline. Male Reproductive System Testes and Sperm Hormonal Regulation Outline Male Reproductive System Testes and Sperm Hormonal Regulation Female Reproductive System Genital Tract Hormonal Levels Uterine Cycle Fertilization and Pregnancy Control of Reproduction Infertility

More information

Female Reproductive Physiology. Dr Raelia Lew CREI, FRANZCOG, PhD, MMed, MBBS Fertility Specialist, Melbourne IVF

Female Reproductive Physiology. Dr Raelia Lew CREI, FRANZCOG, PhD, MMed, MBBS Fertility Specialist, Melbourne IVF Female Reproductive Physiology Dr Raelia Lew CREI, FRANZCOG, PhD, MMed, MBBS Fertility Specialist, Melbourne IVF REFERENCE Lew, R, Natural History of ovarian function including assessment of ovarian reserve

More information

Supplementary Information

Supplementary Information Supplementary Information 1 Supplementary information, Figure S1 Establishment of PG-haESCs. (A) Summary of derivation of PG-haESCs. (B) Upper, Flow analysis of DNA content of established PG-haES cell

More information

2. Which of the following factors does not contribute to ion selectivity?

2. Which of the following factors does not contribute to ion selectivity? General Biology Summer 2014 Exam II Sample Answers 1. Which of the following is TRUE about a neuron at rest? A. The cytosol is positive relative to the outside B. Na+ concentrations are higher inside C.

More information

ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 15 AND 16

ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 15 AND 16 ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 15 AND 16 Name Identify the following: 1) The ureter is indicated by letter 2) The renal pyramid is indicated by letter 3) The fibrous capsule is indicated by letter

More information

Meiosis & Sexual Reproduction. AP Biology

Meiosis & Sexual Reproduction. AP Biology Meiosis & Sexual Reproduction 2007-2008 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes

More information

6.6 Hormones, homeostasis and reproduction

6.6 Hormones, homeostasis and reproduction 6.6 Hormones, homeostasis and reproduction Essential idea: Hormones are used when signals need to be widely distributed. Thyroxin is a hormone produced by the thyroid gland. It's key role is in controlling

More information

Human Reproductive Anatomy The female anatomy first just the reproductive parts:

Human Reproductive Anatomy The female anatomy first just the reproductive parts: Human Reproduction: Structures, Functions, and Hormones Human reproduction differs from the mechanisms in lower vertebrates and many invertebrates. We depend on internal fertilization sperm are deposited

More information

Genotype analysis by Southern blots of nine independent recombinated ES cell clones by

Genotype analysis by Southern blots of nine independent recombinated ES cell clones by Supplemental Figure 1 Selected ES cell clones show a correctly recombined conditional Ngn3 allele Genotype analysis by Southern blots of nine independent recombinated ES cell clones by hybridization with

More information

Chapter 14 The Reproductive System

Chapter 14 The Reproductive System Biology 12 Name: Reproductive System Per: Date: Chapter 14 The Reproductive System Complete using BC Biology 12, page 436-467 14. 1 Male Reproductive System pages 440-443 1. Distinguish between gametes

More information

Anatomy & Physiology Revealed Instructions. 1. From the Module dropdown menu, chose the 12. Digestive system.

Anatomy & Physiology Revealed Instructions. 1. From the Module dropdown menu, chose the 12. Digestive system. #10 - Objectives: Examine the histology of selected body organs using Anatomy & Physiology Revealed software and microscope slides. Be able to identify each organ and the specific structures indicated

More information

A263 A352 A204. Pan CK. pstat STAT3 pstat3 STAT3 pstat3. Columns Columns 1-6 Positive control. Omentum. Rectosigmoid A195.

A263 A352 A204. Pan CK. pstat STAT3 pstat3 STAT3 pstat3. Columns Columns 1-6 Positive control. Omentum. Rectosigmoid A195. pstat3 75 Pan CK A A263 A352 A24 B Columns 1-6 Positive control A195 A22 A24 A183 Rectal Nodule STAT3 pstat3 STAT3 pstat3 Columns 7-12 Omentum Rectosigmoid Left Ovary Right Ovary Omentum Uterus Uterus

More information

Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63.

Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63. Supplementary Figure Legends Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63. A. Screenshot of the UCSC genome browser from normalized RNAPII and RNA-seq ChIP-seq data

More information

The subcortical maternal complex controls symmetric division of mouse zygotes by

The subcortical maternal complex controls symmetric division of mouse zygotes by The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics Xing-Jiang Yu 1,2, Zhaohong Yi 1, Zheng Gao 1,2, Dan-dan Qin 1,2, Yanhua Zhai 1, Xue Chen 1,

More information

STRUCTURE AND FUNCTION OF THE FEMALE REPRODUCTIVE SYSTEM

STRUCTURE AND FUNCTION OF THE FEMALE REPRODUCTIVE SYSTEM Unit 7B STRUCTURE AND FUNCTION OF THE FEMALE REPRODUCTIVE SYSTEM LEARNING OBJECTIVES 1. Learn the structures of the female reproductive tract. 2. Learn the functions of the female reproductive tract. 3.

More information

Stem Cells and The Endometrium. Director, Division of Reproductive Endocrinology and infertility

Stem Cells and The Endometrium. Director, Division of Reproductive Endocrinology and infertility Stem Cells and The Endometrium Hugh S. Taylor, M.D. Director, Division of Reproductive Endocrinology and infertility Nothing to disclose Stem Cells Cells that are capable of both self-renewal and have

More information

AP Biology Ch ANIMAL REPRODUCTION. Using only what you already know (you cannot look up anything) complete the chart below.

AP Biology Ch ANIMAL REPRODUCTION. Using only what you already know (you cannot look up anything) complete the chart below. AP Biology Ch. 46 - ANIMAL REPRODUCTION Using only what you already know (you cannot look up anything) complete the chart below. I. Overview of Animal Reproduction A. Both asexual and sexual reproduction

More information

Chapter 27 The Reproductive System. MDufilho

Chapter 27 The Reproductive System. MDufilho Chapter 27 The Reproductive System 1 Figure 27.19 Events of oogenesis. Before birth Meiotic events 2n Oogonium (stem cell) Mitosis Follicle development in ovary Follicle cells Oocyte 2n Primary oocyte

More information

ABSTRACT. Key words: ovulation, ovary, human, follicle, collagen, MMP and TIMP. ISBN-10: ISBN-13:

ABSTRACT. Key words: ovulation, ovary, human, follicle, collagen, MMP and TIMP. ISBN-10: ISBN-13: HUMAN OVULATION Studies on collagens, gelatinases and tissue inhibitors of metalloproteinases Anna Karin Lind Department of Obstetrics and Gynecology Institute of Clinical Sciences Sahlgrenska University

More information

Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS:

Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: CHROMOSOME GENE DNA TRAIT HEREDITY INTERPHASE MITOSIS CYTOKINESIS ASEXUAL BINARY FISSION CELL CYCLE GENETIC DIVERSITY

More information

Reproductive physiology. About this Chapter. Case introduction. The brain directs reproduction 2010/6/29. The Male Reproductive System

Reproductive physiology. About this Chapter. Case introduction. The brain directs reproduction 2010/6/29. The Male Reproductive System Section Ⅻ Reproductive physiology Ming-jie Wang E-Mail: mjwang@shmu.edu.cn About this Chapter The reproductive organs and how they work the major endocrine functions of sexual glands actions of sex hormones

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature19360 Supplementary Tables Supplementary Table 1. Number of monoclonal reads in each sample Sample Number of cells Total reads Aligned reads Monoclonal reads

More information

The reproductive lifespan

The reproductive lifespan The reproductive lifespan Reproductive potential Ovarian cycles Pregnancy Lactation Male Female Puberty Menopause Age Menstruation is an external indicator of ovarian events controlled by the hypothalamicpituitary

More information

Sample Provincial exam Q s: Reproduction

Sample Provincial exam Q s: Reproduction Sample Provincial exam Q s: Reproduction 11. Functions Testosterone Makes the male sex organs function normally, and also inhibits hypothalamus s release of GnRH and thus LH & FSH and thus testosterone

More information

Unit 15 ~ Learning Guide

Unit 15 ~ Learning Guide Unit 15 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons. You are required to have this package completed BEFORE you write your unit

More information

Unit 2 Physiology and Health Part (a) The Reproductive System HOMEWORK BOOKLET

Unit 2 Physiology and Health Part (a) The Reproductive System HOMEWORK BOOKLET Unit 2 Physiology and Health Part (a) The Reproductive System HOMEWORK BOOKLET Name: Homework Date Due Mark % Key Area 1 The structure and function of reproductive organs Key Area 2 Hormonal control of

More information

Animal Reproduction Chapter 46. Fission. Budding. Parthenogenesis. Fragmentation 11/27/2017

Animal Reproduction Chapter 46. Fission. Budding. Parthenogenesis. Fragmentation 11/27/2017 Animal Reproduction Chapter 46 Both asexual and sexual reproduction occur in the animal kingdom Sexual reproduction is the creation of an offspring by fusion of a male gamete (sperm) and female gamete

More information

a. the tail disappears b. they become spermatids c. they undergo capacitation d. they have been stored in the uterus for several days

a. the tail disappears b. they become spermatids c. they undergo capacitation d. they have been stored in the uterus for several days (2 points each) Multiple Choice. Read each question thoroughly before answering. From the choices available, choose the answer that is the most correct. Place all answers on the accompanying answer sheet.

More information

Female Reproductive System. Lesson 10

Female Reproductive System. Lesson 10 Female Reproductive System Lesson 10 Learning Goals 1. What are the five hormones involved in the female reproductive system? 2. Understand the four phases of the menstrual cycle. Human Reproductive System

More information

Chapter 7 DEVELOPMENT AND SEX DETERMINATION

Chapter 7 DEVELOPMENT AND SEX DETERMINATION Chapter 7 DEVELOPMENT AND SEX DETERMINATION Chapter Summary The male and female reproductive systems produce the sperm and eggs, and promote their meeting and fusion, which results in a fertilized egg.

More information

Reproductive System. Testes. Accessory reproductive organs. gametogenesis hormones. Reproductive tract & Glands

Reproductive System. Testes. Accessory reproductive organs. gametogenesis hormones. Reproductive tract & Glands Reproductive System Testes gametogenesis hormones Accessory reproductive organs Reproductive tract & Glands transport gametes provide nourishment for gametes Hormonal regulation in men Hypothalamus - puberty

More information

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor)

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Indifferent ducts of embryo Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Y chromosome present Y chromosome absent Phenotypic sex is depends on development of external

More information

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor)

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Indifferent ducts of embryo Y chromosome present Y chromosome absent Male Female penis ovary uterus vagina testis Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Phenotypic

More information

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14-

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14- 1 Supplemental Figure Legends Figure S1. Mammary tumors of ErbB2 KI mice with 14-3-3σ ablation have elevated ErbB2 transcript levels and cell proliferation (A) PCR primers (arrows) designed to distinguish

More information

18 Urinary system. 19 Male reproductive system. Female reproductive system. Blok 11: Genital and Urinary Tract Diseases

18 Urinary system. 19 Male reproductive system. Female reproductive system. Blok 11: Genital and Urinary Tract Diseases Blok 11: Genital and Urinary Tract Diseases 18 Urinary System 19 Male Genital System 20 Female Genital System 18 Urinary system You should be able to: 1. Describe the structures and associated functions

More information

SUPPLEMENTARY FIGURE LEGENDS

SUPPLEMENTARY FIGURE LEGENDS SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1. Hippocampal sections from new-born Pten+/+ and PtenFV/FV pups were stained with haematoxylin and eosin (H&E) and were imaged at (a) low and (b) high

More information

Female Reproductive System

Female Reproductive System Female Reproductive System (Part A-1) Module 10 -Chapter 12 Overview Female reproductive organs Ovaries Fallopian tubes Uterus and vagina Mammary glands Menstrual cycle Pregnancy Labor and childbirth Menopause

More information

The Wnt/βcatenin signaling pathway

The Wnt/βcatenin signaling pathway Wnt signaling is crucial for functioning of the endometrium The Role of Wnt Signaling in Uterus Development (I) and in Homeostasis (II) and Malignancy (III) of the Uterine Endometrium Leen J Blok Erasmus

More information

Reproduction Worksheet

Reproduction Worksheet Name: Date: Reproduction Worksheet Directions: Base your answers to questions 1-4 on the diagram below and your knowledge of biology. 1. Identify the structure in which sperm is produced. What is the name

More information

Single-cell RNA-Seq profiling of human pre-implantation embryos and embryonic stem cells

Single-cell RNA-Seq profiling of human pre-implantation embryos and embryonic stem cells Single-cell RNA-Seq profiling of human pre-implantation embryos and embryonic stem cells Liying Yan,2,5, Mingyu Yang,5, Hongshan Guo, Lu Yang, Jun Wu, Rong Li,2, Ping Liu, Ying Lian, Xiaoying Zheng, Jie

More information

Supplemental Information. Fluorescence-based visualization of autophagic activity predicts mouse embryo

Supplemental Information. Fluorescence-based visualization of autophagic activity predicts mouse embryo Supplemental Information Fluorescence-based visualization of autophagic activity predicts mouse embryo viability Satoshi Tsukamoto*, Taichi Hara, Atsushi Yamamoto, Seiji Kito, Naojiro Minami, Toshiro Kubota,

More information

SUMMARY. Keywords: quail, Coturnix japonica, morphology, ovary, oviduct, neurotrophins, immunohistochemistry

SUMMARY. Keywords: quail, Coturnix japonica, morphology, ovary, oviduct, neurotrophins, immunohistochemistry SUMMARY Keywords: quail, Coturnix japonica, morphology, ovary, oviduct, neurotrophins, immunohistochemistry Studies on the development of biological systems have expanded using animal models, always to

More information

BIOL2005 WORKSHEET 2008

BIOL2005 WORKSHEET 2008 BIOL2005 WORKSHEET 2008 Answer all 6 questions in the space provided using additional sheets where necessary. Hand your completed answers in to the Biology office by 3 p.m. Friday 8th February. 1. Your

More information

Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A.

Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A. Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A. Upper part, three-primer PCR strategy at the Mcm3 locus yielding

More information

Human Anatomy Unit 3 REPRODUCTIVE SYSTEM

Human Anatomy Unit 3 REPRODUCTIVE SYSTEM Human Anatomy Unit 3 REPRODUCTIVE SYSTEM In Anatomy Today Male Reproductive System Gonads = testes primary organ responsible for sperm production development/maintenan ce of secondary sex characteristics

More information

9.4 Regulating the Reproductive System

9.4 Regulating the Reproductive System 9.4 Regulating the Reproductive System The Reproductive System to unite a single reproductive cell from a female with a single reproductive cell from a male Both male and female reproductive systems include

More information

The Human Menstrual Cycle

The Human Menstrual Cycle The Human Menstrual Cycle Name: The female human s menstrual cycle is broken into two phases: the Follicular Phase and the Luteal Phase. These two phases are separated by an event called ovulation. (1)

More information

Human Reproductive System

Human Reproductive System Human Reproductive System I. The male reproductive anatomy is a delivery system for sperm. A. The male=s external reproductive organs consist of the scrotum and penis. 1. The penis is the external organ

More information

Study Guide Answer Key Reproductive System

Study Guide Answer Key Reproductive System Biology 12 Human Biology Textbook: BC Biology 12 Study Guide Answer Key Reproductive System 1. Distinguish between a gamete and a gonad using specific examples from the male and female systems. Gonads

More information

Chapter 26: Reproductive Systems. Male 11/29/2015. Male reproductive system is composed of... BIO 218 Fall Gonads (testes)

Chapter 26: Reproductive Systems. Male 11/29/2015. Male reproductive system is composed of... BIO 218 Fall Gonads (testes) Chapter 26: Reproductive Systems BIO 218 Fall 2015 Male Male reproductive system is composed of... Gonads (testes) Duct system (epididymis, ductus deferens, ejaculatory ducts, urethra) Accessory sex glands

More information

Ch 28 Lecture Study Guide

Ch 28 Lecture Study Guide Ch 28 Lecture Study Guide 1. List the characteristics of the reproductive system. Only organ system not essential to life Ensures continued existence of human species Produces, stores, nourishes, and transports

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 A B mir-141, human cell lines mir-2c, human cell lines mir-141, hepatocytes mir-2c, hepatocytes Relative RNA.1.8.6.4.2 Relative RNA.3.2.1 Relative RNA 1.5 1..5 Relative RNA 2. 1.5

More information

MULTIPLE CHOICE: match the term(s) or description with the appropriate letter of the structure.

MULTIPLE CHOICE: match the term(s) or description with the appropriate letter of the structure. Chapter 27 Exam Due NLT Thursday, July 31, 2015 Name MULTIPLE CHOICE: match the term(s) or description with the appropriate letter of the structure. Figure 27.1 Using Figure 27.1, match the following:

More information

Supplementary Figure 1. Efficiency of Mll4 deletion and its effect on T cell populations in the periphery. Nature Immunology: doi: /ni.

Supplementary Figure 1. Efficiency of Mll4 deletion and its effect on T cell populations in the periphery. Nature Immunology: doi: /ni. Supplementary Figure 1 Efficiency of Mll4 deletion and its effect on T cell populations in the periphery. Expression of Mll4 floxed alleles (16-19) in naive CD4 + T cells isolated from lymph nodes and

More information

Supplementary Figure 1: Hsp60 / IEC mice are embryonically lethal (A) Light microscopic pictures show mouse embryos at developmental stage E12.

Supplementary Figure 1: Hsp60 / IEC mice are embryonically lethal (A) Light microscopic pictures show mouse embryos at developmental stage E12. Supplementary Figure 1: Hsp60 / IEC mice are embryonically lethal (A) Light microscopic pictures show mouse embryos at developmental stage E12.5 and E13.5 prepared from uteri of dams and subsequently genotyped.

More information

Reproduction and Development. Female Reproductive System

Reproduction and Development. Female Reproductive System Reproduction and Development Female Reproductive System Outcomes 5. Identify the structures in the human female reproductive system and describe their functions. Ovaries, Fallopian tubes, Uterus, Endometrium,

More information

Human Physiology 6.6- Hormones, Homeostasis, and Reproduction

Human Physiology 6.6- Hormones, Homeostasis, and Reproduction Human Physiology 6.6- Hormones, Homeostasis, and Reproduction Essential idea: Hormones are used when signals need to be widely distributed. Application: William Harvey s investigation of sexual reproduction

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Confirmation of Dnmt1 conditional knockout out mice. a, Representative images of sorted stem (Lin - CD49f high CD24 + ), luminal (Lin - CD49f low CD24 + )

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb3311 A B TSC2 -/- MEFs C Rapa Hours WCL 0 6 12 24 36 pakt.s473 AKT ps6k S6K CM IGF-1 Recipient WCL - + - + - + pigf-1r IGF-1R pakt ps6 AKT D 1 st SILAC 2 nd SILAC E GAPDH FGF21 ALKPGVIQILGVK

More information

JUNE EXAM QUESTIONS (LIVE) 03 JUNE 2015 Section B: Practice Questions

JUNE EXAM QUESTIONS (LIVE) 03 JUNE 2015 Section B: Practice Questions JUNE EXAM QUESTIONS (LIVE) 03 JUNE 2015 Section B: Practice Questions Question 1 Multiple choice 1.1 Study the following list of molecules: (i) Sugar (ii) Phosphate (iii) Nitrogenous base (iv) Amino acid

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES 1 Supplementary Figure 1, Adult hippocampal QNPs and TAPs uniformly express REST a-b) Confocal images of adult hippocampal mouse sections showing GFAP (green), Sox2 (red), and REST

More information

Module J ENDOCRINE SYSTEM. Learning Outcome

Module J ENDOCRINE SYSTEM. Learning Outcome Module J ENDOCRINE SYSTEM Topic from HAPS Guidelines General functions of the endocrine system Chemical classification of hormones & mechanism of hormone actions at receptors. Control of hormone secretion

More information

MITOSIS IN ONION ROOTLET CELLS

MITOSIS IN ONION ROOTLET CELLS Lesson 6: CELL CYCLE, MITOSIS Name: Group: MITOSIS IN ONION ROOTLET CELLS Permanent slide: onion rootlet stained with acetorcein The particular mitotic phases are visible in the onion rootlet cells. Chromosomes

More information

Supplementary Figure 1 IMQ-Induced Mouse Model of Psoriasis. IMQ cream was

Supplementary Figure 1 IMQ-Induced Mouse Model of Psoriasis. IMQ cream was Supplementary Figure 1 IMQ-Induced Mouse Model of Psoriasis. IMQ cream was painted on the shaved back skin of CBL/J and BALB/c mice for consecutive days. (a, b) Phenotypic presentation of mouse back skin

More information