Burping Yeast: An Investigation of Cellular Respiration

Size: px
Start display at page:

Download "Burping Yeast: An Investigation of Cellular Respiration"

Transcription

1 Burping Yeast: An Investigation of Cellular Respiration Student Materials Introduction... 2 Lab Protocol... 4 Data Collection Worksheet... 6 Pre-Lab Questions... 7 Post-Lab Questions and Analysis... 8 Last updated: 10/11/2018 Copyright MassBioEd

2 Burping Yeast: An Investigation of Cellular Respiration Introduction All living things have a number of characteristics in common. Whether a single-celled bacterium or a human, all living things grow, develop, sense their environment, and work to maintain stable internal conditions. Each of these activities requires energy, which brings us to another shared characteristic of all life: all living things convert the energy stored in food into cellular energy. Of course, what constitutes food for a plant or bacteria is a bit different from what you consider food. But no matter what form the food takes, it almost always comes down to the same basic building block the simple sugar glucose (C 6H 12O 6). The process of converting energy stored in the chemical bonds of glucose into the chemical bonds of the molecule ATP is called cellular respiration. During cellular respiration, glucose is broken down by a series of chemical reactions. As the chemical bonds of glucose are broken, the energy and electrons released can be used to produce ATP, or adenosine triphosphate. ATP, like glucose, is an energy storage molecule, but unlike glucose, cells can use ATP directly. ATP is used by cells to do everything from replicating DNA to transporting some molecules across the cell s membrane. In humans, it is ATP that makes our hearts beat, our muscles contract, and our lungs fill with air in short, ATP provides the energy that makes cells go no ATP, no life. Most cellular respiration occurs in the presence of oxygen and is called aerobic ( with oxygen ) cellular respiration. When oxygen is not available some cells (yeast and overworked muscles cells, for example), can undergo an anaerobic ( without oxygen ) process called fermentation. Both pathways begin with a set of reactions known as glycolysis, which transforms glucose to the 3-carbon molecule pyruvate. In the aerobic pathway, the pyruvate is further broken down in the reactions of the Krebs cycle. For most biochemical reactions (even spontaneous reactions) to occur in a time frame relevant in a cell, an energy barrier called the energy of activation must be overcome. Enzymes are specialized proteins that speed up chemical reactions by lowering the activation energy required. Enzymes are affected by the conditions of their environment, including ph and temperature. Each enzyme is specific for a single reaction and is effective within a narrow range of conditions. If conditions vary too much from this range, then the enzyme cannot work. Where do the carbon atoms from pyruvate end up? You know the answer to this question! Take a deep breath and hold it. Now blow out. What are you exhaling? Electrons released from the breakdown of glucose (and pyruvate) following the Krebs cycle are carried to the electron transport chain. What molecule accepts the electrons from glucose? You know the answer to this question, too! Take a deep breath. What did you just inhale? When oxygen is absent, where do the electrons released from the breakdown of glucose and pyruvate go? They are given back to pyruvate, generating ethanol and CO 2 (in the case of yeast) or lactic acid (in the case of muscle cells). Why does respiration or fermentation by yeast cause bread dough to rise? Copyright MassBioEd

3 Both aerobic respiration and fermentation produce ATP. The aerobic pathway (via glycolysis, the Krebs cycle, and electron transport chain) produces much more ATP than fermentation per molecule of glucose more than 30 ATPs for the aerobic pathway and just 2 ATPs (from glycolysis) for fermentation. Figure 1 shows the major sets of reactions involved in fermentation and aerobic respiration. Figure 1. Overview of the ATP production during cellular respiration. The aerobic cellular respiration pathway (glycolysis + Krebs cycle + electron transport chain) generates molecules of ATP per molecule of glucose. By contrast, fermentation generates just 2 ATPs per molecule of glucose. The overall equations for both aerobic cellular respiration and alcoholic fermentation (the type of fermentation carried out by yeast) are below. Aerobic Cellular Respiration: Alcoholic Fermentation: C 6H 12O 6 + 6O 2 6CO 2 + 6H 2O + energy Glucose + oxygen carbon dioxide + water C 6H 12O 6 2CO 2 + 2C 2H 5OH + energy Glucose carbon dioxide + ethyl alcohol In the lab today, you will investigate the breakdown of glucose by baker s yeast (Saccharomyces cerevisiae). Like all eukaryotes, baker s yeast cells contain a nucleus and other membrane-bound organelles including mitochondria, the site of aerobic cellular respiration in eukaryotes. But baker s yeast is special in that it is a facultative anaerobe, which means that under some conditions, such as low oxygen concentration and/or high glucose concentration, the cells can switch from aerobic respiration to fermentation. Notice from the equations that as the cells carry out both forms of cellular respiration, they break down glucose and release carbon dioxide gas. In this lab you will compare rates of under different conditions by counting the number of carbon dioxide bubbles released by the yeast over 10 minutes. Copyright MassBioEd

4 Burping Yeast Lab Protocol Materials: Check your workstations to make sure all supplies are present before beginning the lab. Student Workstation: mL beakers (or 1-quart containers) 3 test tubes 1 test tube rack 5 transfer pipettes 3 metal hex nuts mL microcentrifuge tubes microcentrifuge tube rack 1 p1000 micropipette and pipette tips 1 thermometer timer calculator permanent marker (such as Sharpie) 0.5 M glucose solution 10% yeast solution Common Workstation: 5-6 C water 40 C water C water Protocol 1. Using the p1000 micropipettor, add 1000 L of yeast solution and 500 L of glucose solution to each of three microcentrifuge tubes. Caution! To avoid contamination, be sure to use a new tip for each solution. Cap the tubes and gently mix the solution by tapping the bottom of the tube with your finger. Set up your respirometers: Important! Each student in the group should set up a respirometer, so there will be three total per group. 2. When preparing the respirometer, it is very important that you get all of the yeast-glucose solution into the bulb of the transfer pipette. Follow the steps below to deposit the solution into the bulb of a transfer pipette. a) Obtain a clean transfer pipette. b) Completely depress the bulb of the pipette. c) Slowly draw up the entire 1.5 ml of yeast-glucose solution from one tube into the pipette. d) Flip the pipette bulb side down. e) Release the bulb to draw the solution into the bulb. f) Slide a metal hex nut over the shaft of the transfer pipette loaded with the yeast-glucose as shown in Figure 2 and place the respirometer (still inverted) into a test tube rack. Use an additional hex nut if needed. Figure 2. Respirometer. Carefully follow steps 2a 2f to ensure that all of your yeast-glucose solution is loaded into the bulb of the transfer pipette. Copyright MassBioEd

5 Prepare all three respirometers before going on to step 3 Set up the experimental conditions and control: 3. Obtain mL beakers and label them each with the permanent marker A, B, and C. Fill each one up, almost to the top, as outlined below: Beaker A: fill with water from source A (coolest temperature water) Beaker B: fill with water from source B (medium temperature water) Beaker C: fill with water from source C (warmest temperature water) 4. Fill a test tube with water from one of each of the three beakers (A, B, and C) and place it in the corresponding beaker. Example: Fill a test tube with water from Beaker A and then place it in Beaker A. Repeat for the remaining two beakers. 5. Slowly lower a respirometer (still inverted) into each of the test tubes in the three beaker water baths, as shown in Figure 3. Be sure that the tip of the respirometer is submerged. 6. Set your timer for three minutes. Do NOT record any data until the timer goes off. This time allows yeast-glucose solution in the respirometer to reach the same temperature as the surrounding water. While waiting for the three minutes to elapse, assign each of your group members to a beaker for data collection (Beaker A, B, or C) and place a thermometer into each beaker. 7. Once the timer goes off, record the starting water temperature in your beaker in the appropriate place in data collection table (next page). Important! Be sure to record this and all data you collect in the column that corresponds to your assigned beaker. Collect Data 8. Set the timer for one minute. Figure 3: Complete set-up. The respirometer has been placed into a test tube containing water from its associated beaker, and then the test tube has been placed into the beaker. 9. When all group members are ready, start the timer and begin counting the number of bubbles that rise from the tip of your assigned respirometers (A, B or C). Important! Be sure to watch carefully it is easy to miss the small bubbles! When the timer goes off, record your data in the data collection table. Once everyone is ready, reset and restart the timer and start your count again. Repeat for 8 more times for a total of 10 1-minute intervals. 10. At the end of the 10-minute period, calculate the total number of bubbles you observed and record the data in the appropriate place in the data collection table. 11. Complete your data table by copying the data recorded by each of your other group members. 12. Record any other observations you make during the experiment. Copyright MassBioEd

6 Burping Yeast: An Investigation of Cellular Respiration Data Collection Worksheet Name: Other group members: Class/period: Date: Assigned Beaker (circle one): A B C Time Number of Bubbles/Minute (After 4 minute equilibration time) Beaker A coolest-temperature Beaker B medium-temperature Beaker C warmest-temperature Starting Temp: C Starting Temp: C Starting Temp: C Minute 1 Minute 2 Minute 3 Minute 4 Minute 5 Minute 6 Minute 7 Minute 8 Minute 9 Minute 10 Total number of bubbles Copyright MassBioEd

7 Burping Yeast: An Investigation of Cellular Respiration Pre-Lab Questions Directions: After reading through the introduction and protocol for the Burping Yeast lab, answer the questions below. 1. Why is cellular respiration important to all living things? 2. What is the difference between glucose and ATP in terms of the cell s ability to use it? 3. Like baker s yeast, human muscle cells can perform fermentation. Explain why muscle cells are more likely to ferment during strenuous exercise than when at rest. 4. What is the role of enzymes in cellular respiration? 5. How will you measure the rate of cellular respiration in this experiment? 6. What is the purpose of the metal nut on the respirometer? 7. Propose a hypothesis about how temperature will affect the yeast s rate of cellular respiration. 8. What are the dependent and independent variables for this experiment? Copyright MassBioEd

8 Burping Yeast: An Investigation of Cellular Respiration Post-Lab Questions and Analysis Directions: After completing the Burping Yeast lab, answer the questions below. 1. Why was counting the number of bubbles an appropriate way to measure the rate of cellular respiration occurring within the yeast? 2. What are some potential limitations to using this method to measure cellular respiration? 3. In Excel, or by hand, generate a bar graph to compare the total number of bubbles counted for each of the three beakers. Remember to label all axes and include an appropriate title. Copyright MassBioEd

9 4. Calculate the average number of bubbles per minute for each beaker and record the information below. Beaker A: Beaker B: Beaker C: 5. In Excel, or by hand, create a second bar graph (like that for #2 above) that includes both the total number of bubbles/10 minutes AND the average number of bubbles/minute for each temperature. Remember to label all axes, include an appropriate title, and label or include a key to indicate which bars represent the total number of bubbles and which represent the average number of bubbles. 6. What did the results indicate about the effect that temperature has on the rate of cellular respiration in baker s yeast? Copyright MassBioEd

10 7. Why did the temperature affect the rate of cellular respiration? 8. Do you think the first organisms on Earth used an aerobic cellular respiration pathway or an anaerobic cellular respiration pathway? Explain your answer. Hint: The first organisms on Earth were not photosynthetic. Where does the oxygen in Earth s atmosphere come from? 9. Bread dough is usually made using flour, water, salt, and sugar. You have learned that it will rise to a fluffy ball when baker s yeast is added and uses the sugar for fermentation. a. Do you think that bread dough made without sugar would rise? Explain your reasoning. b. Bread dough made with wheat flour can double or even triple in volume, but bread dough made with flour from other grains may not rise as much. Form a hypothesis that explains the difference. 10. Under what ph and temperature conditions do you think a human muscle cell carries out cellular respiration? What about a cell from the lining of the human stomach? Copyright MassBioEd

CHAPTER 6 CELLULAR RESPIRATION

CHAPTER 6 CELLULAR RESPIRATION CHAPTER 6 CELLULAR RESPIRATION Chemical Energy In Food Purpose of food: Source of raw materials used to make new molecules Source of energy calorie the amount of energy needed to raise the temperature

More information

Cellular Respiration. Release of Energy From Food (glucose)!

Cellular Respiration. Release of Energy From Food (glucose)! Cellular Respiration Release of Energy From Food (glucose)! Energy needs of life Animals are energy consumers What do we need energy for? synthesis (building for growth) reproduction active transport movement

More information

We can see the organelles that participate in photosynthesis with a microscope! Microscope Micro = small Scope = to look at

We can see the organelles that participate in photosynthesis with a microscope! Microscope Micro = small Scope = to look at We can see the organelles that participate in photosynthesis with a microscope! Microscope Micro = small Scope = to look at How do you use a microscope? 1. Always start on low power! 2. Use the coarse

More information

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1 Chapter 5 MITOCHONDRIA AND RESPIRATION All organisms must transform energy. This energy is required to maintain a dynamic steady state, homeostasis, and to insure continued survival. As will be discussed

More information

Cellular Respiration. Honors Biology I

Cellular Respiration. Honors Biology I Cellular Respiration Honors Biology I Anaerobic vs. Aerobic 1) Respiration vs. Cellular respiration 2) When you run, you re using respiration to make energy in the form of ATP to allow your muscles to

More information

Essential Question. How do organisms obtain energy?

Essential Question. How do organisms obtain energy? Dr. Bertolotti Essential Question How do organisms obtain energy? What is cellular respiration? Burn fuels to make energy combustion making heat energy by burning fuels in one step O 2 Fuel (carbohydrates)

More information

What are the similarities between this equation for burning glucose and the equation for cellular respiration of glucose when oxygen is available?

What are the similarities between this equation for burning glucose and the equation for cellular respiration of glucose when oxygen is available? Cellular Respiration in Yeast Adapted from Alcoholic Fermentation in Yeast Investigation in the School District of Philadelphia Biology Core Curriculum 2008 by Jennifer Doherty and Dr. Ingrid Waldron,

More information

CELLULAR RESPIRATION. Chapter 7

CELLULAR RESPIRATION. Chapter 7 CELLULAR RESPIRATION Chapter 7 7.1 GLYCOLYSIS AND FERMENTATION If I have a $10.00 bill and a $10.00 check, which is better? ATP is like cash in the cell Glucose, NADH, FADH2 are like checks in a cell.

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Energy Review Energy Storing Molecules ATP, NADPH (NAD + ), FADH (FAD + ), FADH 2 ATP supplies most of the energy that drives metabolism in living things ATP releases energy when converted

More information

Living organisms obtain energy by breaking down organic molecules during cellular respiration.

Living organisms obtain energy by breaking down organic molecules during cellular respiration. Section 3: Living organisms obtain energy by breaking down organic molecules during cellular respiration. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the stages

More information

How is energy transferred and transformed in living systems?

How is energy transferred and transformed in living systems? Why? Cellular Respiration How is energy transferred and transformed in living systems? Living organisms display the property of metabolism, which is a general term to describe the processes carried out

More information

Biology 2201 Unit 1 Matter & Energy for Life

Biology 2201 Unit 1 Matter & Energy for Life Biology 2201 Unit 1 Matter & Energy for Life 3.3 Cellular Respiration 3.4 The Carbon Cycle What is cellular respiration? Cellular respiration all of the chemical reactions needed to break down (metabolize)

More information

MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY

MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY BOOKLET 10 NAME: CLASS: 1 S.Tagore Middletown South High School March 2013 LEARNING OUTCOMES The role and production of ATP (a) Importance, role and structure of ATP

More information

9.1 Chemical Pathways ATP

9.1 Chemical Pathways ATP 9.1 Chemical Pathways ATP 2009-2010 Objectives Explain cellular respiration. Describe what happens during glycolysis. Describe what happens during fermentation. Where do we get energy? Energy is stored

More information

Lesson Overview. Cellular Respiration: An Overview. Lesson Overview. 9.1 Cellular Respiration: An Overview

Lesson Overview. Cellular Respiration: An Overview. Lesson Overview. 9.1 Cellular Respiration: An Overview 9.1 Cellular Respiration: An Overview Chemical Energy and Food Food provides living things with the chemical building blocks they need to grow and reproduce. Food molecules contain chemical energy that

More information

CELLULAR RESPIRATION

CELLULAR RESPIRATION CELLULAR RESPIRATION ESSENTIAL QUESTIONS How is energy transferred between the processes of cellular respiration and photosynthesis? What are the reactants and products for photosynthesis and cellular

More information

Cellular Respiration

Cellular Respiration Cellular Respiration I. The Importance of Food A. Food provides living things with the: B. Food serves as a source of: C. Food serves as a source of: II. Chemical Energy and ATP A. Inside living cells,

More information

(Figure revised from Johnson and Raven, 2004, Biology, Holt Rinehart and Winston, p. 110)

(Figure revised from Johnson and Raven, 2004, Biology, Holt Rinehart and Winston, p. 110) Alcoholic Fermentation in Yeast Adapted from Alcoholic Fermentation in Yeast Investigation in the School District of Philadelphia Biology Core Curriculum 2011 by Drs. Jennifer Doherty and Ingrid Waldron,

More information

Cellular Respiration. Biology Standard B-3.2

Cellular Respiration. Biology Standard B-3.2 Cellular Respiration Biology Standard B-3.2 Warm-UP p. 100 Study for quiz on ATP and Photosynthesis. Agenda: Quiz Cellular Respiration Notes Cellular Respiration Lab Cellular respiration is a process that

More information

Cellular Respiration Let s get energized!

Cellular Respiration Let s get energized! Copyrighted by Amy Brown Science Stuff Cellular Respiration Let s get energized! Amy Brown Science Food provides living things with the: chemical building blocks they need to grow and reproduce. Food serves

More information

chemical compounds

chemical compounds chemical compounds Adenine 3 Phosphate groups Ribose The three phosphate groups are the key to ATP's ability to store and release energy. Storing Energy ADP has two (di) phosphate groups instead of three.

More information

Cellular Respiration Notes. Biology - Mrs. Kaye

Cellular Respiration Notes. Biology - Mrs. Kaye Cellular Respiration Notes Biology - Mrs. Kaye Energy Transfer In cellular respiration, chemical energy is converted into usable energy which is converted into heat energy. ATP and ADP ATP acts as an energy

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen In biology and chemistry, energy is referred to

More information

10. The diagram below shows two different kinds of substances, A and B, entering a cell.

10. The diagram below shows two different kinds of substances, A and B, entering a cell. 1. In the binomial system of nomenclature, which two classification groups provide the scientific name of an organism? A) kingdom and phylum B) phylum and species C) kingdom and genus D) genus and species

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2009-2010 Ch.8.3 Section Objectives: Compare and contrast cellular respiration and fermentation. Explain how cells obtain energy from cellular respiration.

More information

9-1 Chemical Pathways

9-1 Chemical Pathways 2 of 39 Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells 3 of 39 1 Both plant and animal cells carry out

More information

Chapter 12 Respiration

Chapter 12 Respiration Chapter 12 Respiration R. Cummins 1 Chapter 12 Respiration External Respiration is the exchange of gases with the environment. Internal Respiration is the controlled release of energy from food. Respiration

More information

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this! Cellular Respiration LISA Biology Cellular Respiration C 6 H 12 O 6 + 6O 2 - - - - - > 6CO 2 + 6H 2 0 + energy You need to know this! Heat + ATP 1 Did that equation look familiar? * The equation for cellular

More information

CH 9 CELLULAR RESPIRATION. 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport

CH 9 CELLULAR RESPIRATION. 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport CH 9 CELLULAR RESPIRATION 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport Chemical Energy and Food Energy source = food = ATP A calorie is the unit for the amount of energy needed to raise

More information

Harvesting Energy: Glycolysis and Cellular Respiration

Harvesting Energy: Glycolysis and Cellular Respiration Lesson 5 Harvesting Energy: Glycolysis and Cellular Respiration Introduction to Life Processes - SCI 102 1 How Cells Obtain Energy Cells require a constant flow of energy Most cellular energy is stored

More information

Energy in the Cell. ATP= Most commonly used energy in the cell. Adenosine triphosphate - Adenosine with 3 phosphate molecules attached

Energy in the Cell. ATP= Most commonly used energy in the cell. Adenosine triphosphate - Adenosine with 3 phosphate molecules attached Energy in the Cell ATP= Most commonly used energy in the cell Adenosine triphosphate - Adenosine with 3 phosphate molecules attached Origins of ATP Mitochondria convert food energy (i.e. carbohydrates)

More information

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.

More information

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology 1 of 39 2 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells 3 of 39 Both

More information

Releasing Food Energy

Releasing Food Energy Releasing Food Energy All food is broken down by the body into small molecules through digestion. By the time food reaches your, bloodstream it has been broken down into nutrient rich molecules that can

More information

9-1 Chemical Pathways Interactive pgs

9-1 Chemical Pathways Interactive pgs Interactive pgs. 221-225 1 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells

More information

Cellular Respiration. April 9, 2013 Mr. Alvarez

Cellular Respiration. April 9, 2013 Mr. Alvarez Cellular Respiration April 9, 2013 Mr. Alvarez Do Now: Answer on a sheet of Loose-leaf 1) What is the equation for Photosynthesis 2) Explain how plants (leaves) regulate water loss use term negative feedback

More information

10/31/2016 CHAPTER 9 RESPIRATION I. RESPIRATION II. ENERGY FOR LIFE A. DEFINITION-THE TOTAL CHEMICAL BREAK DOWN OF GLUCOSE WITH OXYGEN

10/31/2016 CHAPTER 9 RESPIRATION I. RESPIRATION II. ENERGY FOR LIFE A. DEFINITION-THE TOTAL CHEMICAL BREAK DOWN OF GLUCOSE WITH OXYGEN CHAPTER 9 RESPIRATION KENNEDY BIOL. 1AB I. RESPIRATION A. DEFINITION-THE TOTAL CHEMICAL BREAK DOWN OF GLUCOSE WITH OXYGEN II. ENERGY FOR LIFE ALL THE ENERGY FOR LIFE COMES FROM THE METABOLISM OF GLUCOSE

More information

Cellular Respiration. How our body makes ATP, ENERGY!!

Cellular Respiration. How our body makes ATP, ENERGY!! Cellular Respiration How our body makes ATP, ENERGY!! Useable Energy Adenosine Tri-Phosphate (ATP) Adenosine Ribose Sugar 3 Phosphates November 27, 2017 November 27, 2017 Where do our cells get energy?

More information

I. ATP: Energy In A Molecule

I. ATP: Energy In A Molecule I. ATP: Energy In A Molecule All food is broken down by the body into small molecules through digestion By the time food reaches your bloodstream, it has been broken down into nutrient molecules that can

More information

Section 9-1 Chemical Pathways (pages )

Section 9-1 Chemical Pathways (pages ) Section 9-1 Chemical Pathways (pages 221-225) Key Concepts What is cellular respiration? What happens during the process of glycolysis? What are the two main types of fermentation? Chemical Energy and

More information

Energy is stored in the form of ATP!! ADP after ATP is broken down

Energy is stored in the form of ATP!! ADP after ATP is broken down Cellular Respiration Cellular respiration is the process in which plants and animals convert FOOD into ENERGY (ATP!) in their cells. This occurs in the Mitochondria! Energy is stored in the form of ATP!!

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Chemical Equation 6 O 2 + C 6 H 12 O 6 6 H 2 O + 6 CO 2 + Page 107 Adenosine Triphosphate Adenosine Diphosphate Background Aerobic= requires oxygen Anaerobic= does not require oxygen

More information

Macromolecules. SC.912.L.18.1 Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules.

Macromolecules. SC.912.L.18.1 Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules. Macromolecules SC.912.L.18.1 Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules. FOUR MAJOR BIOLOGICAL MACROMOLECULES 1.Carbohydrates

More information

Cellular Respiration an overview Section 9.1

Cellular Respiration an overview Section 9.1 Cellular Respiration an overview Section 9.1 Where do organisms get their energy? Unit calories 1 calorie = amount of energy required to increase 1 gram of water by 1 degrees Celsius 1000 calories 1 Calorie

More information

Cellular Respiration. Agriculture Biology

Cellular Respiration. Agriculture Biology Cellular Respiration Agriculture Biology Why are photosynthesis and respiration important in agriculture? Biomass is all plant and animal matter on the Earth's surface. Harvesting biomass such as crops,

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Overview Heterotrophs obtain glucose from plants and plant matter. The goal is to convert food energy (glucose) into chemical energy! (ATP) Why would we do this? The process by which

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Cellular Respiration and Fermentation How do plants and animals obtain the glucose they need? Plants: Animals: Cellular Respiration the process that releases energy from food in the presence of oxygen

More information

Cellular Respiration Guided Notes

Cellular Respiration Guided Notes Respiration After you hear word 'respiration', you may now think about breathing. During breathing, the is entered with each inhale and is released with each exhale. You may have noticed that breathing

More information

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology 1 of 39 EQ What is glycolysis? What are the results from the Krebs Cycle and Electron Transport? 2 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body

More information

CarolinaTM Cell Respiration for AP Biology

CarolinaTM Cell Respiration for AP Biology Student Guide CarolinaTM Cell Respiration for AP Biology Background You are probably familiar with photosynthesis, the metabolic process that plants use to harness energy from the sun. But how do plants

More information

Chapter 4: Bioenergetics- Cells and Cell Processes Lesson 4.3: Powering the Cell: Cellular Respiration

Chapter 4: Bioenergetics- Cells and Cell Processes Lesson 4.3: Powering the Cell: Cellular Respiration Chapter 4: Bioenergetics- Cells and Cell Processes Lesson 4.3: Powering the Cell: Cellular Respiration You have just read how photosynthesis stores energy in glucose. How do living things make use of this

More information

Photosynthesis and Respiration. The BIG Idea All cells need energy and materials for life processes.

Photosynthesis and Respiration. The BIG Idea All cells need energy and materials for life processes. Photosynthesis and Respiration Objectives Explain why cells need energy. Summarize how energy is captured and stored. Describe how plants and animals get energy. The BIG Idea All cells need energy and

More information

Cellular Respiration. May 2017

Cellular Respiration. May 2017 Cellular Respiration May 2017 What is cellular respiration Is the gradual release of energy by the stepwise breakdown of energy-rich fuel molecules, example glucose within a plant or animal cell to keep

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Name Class Date 9 Cellular Respiration and Fermentation Big idea Cellular Basis of Life Q: How do organisms obtain energy? WHAT I KNOW WHAT I LEARNED 9.1 Why do most organisms undergo the process of cellular

More information

General Biology 1004 Chapter 6 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 6 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 6 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C.

More information

Energy storing Compounds

Energy storing Compounds Chapter 4 ENERGY!!! Energy storing Compounds Adenosine Triphosphate ATP. Energy is stored in between the phosphate bonds. AMP- little energy, ADP some energy, ATP the most energy ATP is used by all living

More information

What is respiration:

What is respiration: Respiration What is respiration: Aerobic respiration is the controlled release of energy from food using oxygen. The food involved in respiration is glucose. The energy is trapped in molecules of ATP.

More information

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized!

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized! Copyrighted by Amy Brown Science Stuff Cellular Respiration Let s get energized! A. Food provides living things with the: chemical building blocks they need to grow and reproduce. C. Food serves as a source

More information

9-1 Cellular Respiration Slide 1 of 39

9-1 Cellular Respiration Slide 1 of 39 9-1 Cellular Respiration 1 of 39 Learning Targets TN State Standards CLE 3210.3.2 Distinguish between aerobic and anaerobic respiration. CLE 3216.3.3 Describe how mitochondria make stored chemical energy

More information

Cell Biology Sub-Topic (1.6) Respiration

Cell Biology Sub-Topic (1.6) Respiration Cell Biology Sub-Topic (1.6) Respiration On completion of this subtopic I will be able to state that: Glucose is a source of energy in the cell. The chemical energy stored in glucose is released by a series

More information

Yeast and Molasses Examining the Effect of Food Concentration on Fermentation

Yeast and Molasses Examining the Effect of Food Concentration on Fermentation 15 Examining the Effect of Food oncentration on Fermentation All cells need energy, and the most common form of energy used by cells is ATP. The full name given to ATP by chemists is adenosine triphosphate.

More information

Food serves as a source of raw materials for the cells in the body and as a source of energy.

Food serves as a source of raw materials for the cells in the body and as a source of energy. 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells 1 of 39 Both plant and animal cells

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Producers Producers get their energy from the sun. Producers convert this light energy into stored chemical energy (glucose). This process is called photosynthesis. Consumers Consumers

More information

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation Chapter 9: Cellular Respiration & Fermentation SE C TION 1: C E LLULAR RE SP IRATION: AN OVERVIEW As we learned last chapter, energy from the sun is transformed into different forms. In this chapter you

More information

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)

More information

CELLULAR RESPIRATION REVIEW MULTIPLE CHOICE. Circle ALL that are TRUE. There may be MORE THAN one correct answer. 1. is the first step in cellular res

CELLULAR RESPIRATION REVIEW MULTIPLE CHOICE. Circle ALL that are TRUE. There may be MORE THAN one correct answer. 1. is the first step in cellular res CELLULAR RESPIRATION REVIEW MULTIPLE CHOICE. Circle ALL that are TRUE. There may be MORE THAN one correct answer. 1. is the first step in cellular respiration that begins releasing energy stored in glucose.

More information

Bell Work. b. is wrong because combining two glucose molecules requires energy, it does not release energy

Bell Work. b. is wrong because combining two glucose molecules requires energy, it does not release energy Bell Work How is energy made available to the cell to move large starch molecules across the cell membrane through the process of endocytosis? a. removing a phosphate from ATP b. combining two glucose

More information

Lab 6: Cellular Respiration

Lab 6: Cellular Respiration Lab 6: Cellular Respiration Metabolism is the sum of all chemical reactions in a living organism. These reactions can be catabolic or anabolic. Anabolic reactions use up energy to actually build complex

More information

Background knowledge

Background knowledge Background knowledge This is the required background knowledge: State three uses of energy in living things Give an example of an energy conversion in a living organism State that fats and oils contain

More information

Reading Preview. Cellular Respiration. Overview of Cellular Respiration. Glycolysis. Essential Questions

Reading Preview. Cellular Respiration. Overview of Cellular Respiration. Glycolysis. Essential Questions Cellular Respiration Living organisms obtain energy by breaking down organic molecules during cellular respiration. Real-World Reading Link Monarch butterflies must constantly feed on nectar from flowers

More information

Cell Respiration. Anaerobic & Aerobic Respiration

Cell Respiration. Anaerobic & Aerobic Respiration Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State

More information

Chapter 9: Cellular Respiration

Chapter 9: Cellular Respiration Chapter 9: Cellular Respiration Breaking down glucose a little at a time.. It s like turning a five pound bag of sugar into several tiny sugar packets worth of energy in the form of ATP. Remember the carbon

More information

Harvesting energy: photosynthesis & cellular respiration

Harvesting energy: photosynthesis & cellular respiration Harvesting energy: photosynthesis & cellular respiration Learning Objectives Know the relationship between photosynthesis & cellular respiration Know the formulae of the chemical reactions for photosynthesis

More information

Chapter 5-7, 10. Read P , , and

Chapter 5-7, 10. Read P , , and Chapter 5-7, 10 Read P. 75-82, 91-100, 107-117 and 173-185 Introduction to Metabolism and Enzymes Catabolic reactions (also called catabolism ) break down larger, more complex molecules into smaller molecules

More information

How Did Energy-Releasing Pathways Evolve? (cont d.)

How Did Energy-Releasing Pathways Evolve? (cont d.) How Did Energy-Releasing Pathways Evolve? (cont d.) 7.1 How Do Cells Access the Chemical Energy in Sugars? In order to use the energy stored in sugars, cells must first transfer it to ATP The energy transfer

More information

serves as a source of raw materials and energy for cellsslide

serves as a source of raw materials and energy for cellsslide 9-1 Chemical Pathways (Metabolism) refers to all of the chemical that take place in an organism or cell. Each reaction may handle materials or and is catalyzed by an enzyme. Metabolism has two parts: 1.

More information

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014 Structure of the Mitochondrion Cellular Respiration Chapter 9 Pgs. 163 183 Enclosed by a double membrane Outer membrane is smooth Inner, or cristae, membrane is folded - this divides the mitochondrion

More information

Chapter Seven (Cellular Respiration)

Chapter Seven (Cellular Respiration) Chapter Seven (Cellular Respiration) 1 SECTION ONE: GLYCOLYSIS AND FERMENTATION HARVESTING CHEMICAL ENERGY Cellular respiration is the process in which cells make adenosine triphosphate (ATP) by breaking

More information

LAB 6 Fermentation & Cellular Respiration

LAB 6 Fermentation & Cellular Respiration LAB 6 Fermentation & Cellular Respiration INTRODUCTION The cells of all living organisms require energy to keep themselves alive and fulfilling their roles. Where does this energy come from? The answer

More information

You Are What You Eat

You Are What You Eat An Investigation of Macromolecules Student Materials Introduction....2 Pre-Lab Questions.5 Lab Protocol..6 Post-Lab Questions and Analysis 9 Last updated: September 26 th, 2017 1 Introduction When deciding

More information

Lesson Objective: By the end of the lesson (s), I can: Vocabulary: Lesson Question: Focus Question: Overarching questions:

Lesson Objective: By the end of the lesson (s), I can: Vocabulary: Lesson Question: Focus Question: Overarching questions: Lesson Objective: By the end of the lesson (s), I can: Vocabulary: 1. Describe the process of cell respiration, including reactants and products, glycolysis, the Krebs cycle, and the electron transport

More information

CHAPTER 9 CELLULAR RESPIRATION & FERMENTATION

CHAPTER 9 CELLULAR RESPIRATION & FERMENTATION CHAPTER 9 CELLULAR RESPIRATION & FERMENTATION Summary of Photosynthesis & Cellular Respiration How much energy is stored in food? Energy stored in food is expressed in units of CALORIES. Calorie: the amount

More information

Cellular Respiration Chapter 5 Notes

Cellular Respiration Chapter 5 Notes Cellular Respiration Chapter 5 Notes Some Terms to Know Aerobic = WITH oxygen Anaerobic = without oxygen NAD+ electron carrier = NADH FAD electron carrier = FADH 2 Cellular Respiration a way for cells

More information

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25 Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell

More information

Cellular Respiration. How We Release Energy From Food!

Cellular Respiration. How We Release Energy From Food! Cellular Respiration How We Release Energy From Food! Energy Transformations Energy is transformed from one to! What type of energy conversion do you see below? Energy Transformations Energy exists in

More information

Chapter 4.2. pages 74-80

Chapter 4.2. pages 74-80 Chapter 4.2 pages 74-80 Cellular Respiration Cellular respiration changes energy in bonds of food into energy that cells can use. Structure of ATP Adenosine triphosphate or ATP stores energy in its bonds.

More information

Chapter 4: Cellular Metabolism. KEY CONCEPT Cellular respiration is an aerobic process with two main stages.

Chapter 4: Cellular Metabolism. KEY CONCEPT Cellular respiration is an aerobic process with two main stages. KEY CONCEPT Cellular respiration is an aerobic process with two main stages. Glycolysis is needed for cellular respiration. The products of glycolysis enter cellular respiration when oxygen is available.

More information

Cellular Respira,on. Topic 3.7 and 3.8

Cellular Respira,on. Topic 3.7 and 3.8 Cellular Respira,on Topic 3.7 and 3.8 Defini,on of cellular respira,on Controlled release of energy from organic compounds to produce ATP Chemical energy is stored in covalent bonds Cells break down organic

More information

Lesson 1. ATP / ADP Energy

Lesson 1. ATP / ADP Energy Lesson 1 ATP / ADP Energy Saving for a Rainy Day Suppose you earned extra money by having a job. At first, you might be tempted to spend all of the money, but then you decide to open a bank account. 1.

More information

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans?

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans? 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans? I. Pyruvate II. III. ATP Lactate A. I only B. I and II only C. I, II and III D. II and III

More information

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal

More information

Section 9 2 The Krebs Cycle and Electron Transport (pages )

Section 9 2 The Krebs Cycle and Electron Transport (pages ) Section 9 2 The Krebs Cycle and Electron Transport (pages 226 232) This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy

More information

Remember: Photosynthesis occurs in plants and creates glucose and oxygen from CO 2 and H 2 O

Remember: Photosynthesis occurs in plants and creates glucose and oxygen from CO 2 and H 2 O Cellular Respiration Chapter 7 Lesson 1 Importance of Cellular Respiration Remember: Photosynthesis occurs in plants and creates glucose and oxygen from CO 2 and H 2 O We consume glucose in the form of

More information

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?-

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?- HB Cell Respiration Questions (1/2 point each question or blank to fill in 37 points) 1. Organisms, such as plants that make their own food are called -?- 2. Cellular respiration uses oxygen to convert

More information

Chapter 3 CELL PROCESSES AND ENERGY

Chapter 3 CELL PROCESSES AND ENERGY Chapter 3 CELL PROCESSES AND ENERGY Section 1: Chemical Compounds in Cells Elements= Any substance that cannot be broken down into a simpler form Made up of only one kind of atom Found in the body Carbon

More information

Harvesting energy: photosynthesis & cellular respiration part 1I

Harvesting energy: photosynthesis & cellular respiration part 1I Harvesting energy: photosynthesis & cellular respiration part 1I Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

AP BIOLOGY Chapter 7 Cellular Respiration =

AP BIOLOGY Chapter 7 Cellular Respiration = 1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food

More information

Cellular Respiration

Cellular Respiration Name: Cellular Respiration Date: Part 1: A Review of Energy Transformations To maintain life, organisms must be able to convert energy from one form to another. For example, in the process of photosynthesis,

More information

Biology Ch 9 Cellular Respiration & Fermentation ( )

Biology Ch 9 Cellular Respiration & Fermentation ( ) Name Class Date Biology Ch 9 Cellular Respiration & Fermentation (9.1-9.2) For Questions 1 10, complete each statement by writing the correct word or words. 1. A calorie is a unit of. 2. The Calorie used

More information