Epigenetic versus genetic origins of health and diseases: the 7 key words

Size: px
Start display at page:

Download "Epigenetic versus genetic origins of health and diseases: the 7 key words"

Transcription

1 Fetal programming Ontogenesis 3 4 Evolutionary Medicine Phylogenesis Devo-Evo 5 2 Developmental Plasticity 6 Mismatch/DOHA Environment 1 From Genetics to Epigenetics Epigenetic versus genetic origins of health and diseases: the 7 key words Is DNA a sort of Project inscribed in our cells? 7 XX Century Epidemiological Transition ERNESTO BURGIO ISDE Scientific Committee ECERI - European Cancer and Environment Research Institute

2 (1989) b Let s begin by the seventh key word a The XX th Century Epidemiological transition Barker Hypothesis (1989) Insulino-resistance Diabetes Cardiovascular Diseases from a prevalence of acute, exogenous (infectious and parasitic) to a prevalence of chronic endogenous diseases (immunological, neurodegenerative, neuro-endocrine, cardiovascular and neoplastic..) c

3

4

5 TIPE I DIABETES ENVIRONMENTAL FACTORS >> DNA X 10 & Non- Communicable Diseases

6 Chronic Hunger and Obesity Epidemic Eroding Global Progress The Obesity and Diabesity Pandemics For the first time in human history, the number of overweight people rivals the number of underweight people. While the world s underfed population has slightly declined since 1980 to 1.1 billion, the number of overweight people has surged to 1.1 billion

7 Obesity Trends* Among U.S. Adults 1985 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, 2001;286:10.

8 Obesity Trends* Among U.S. Adults 1987 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, 2001;286:10.

9 Obesity Trends* Among U.S. Adults 1993 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, 2001;286:10.

10 Obesity Trends* Among U.S. Adults 1995 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, 2001;286:10.

11 Obesity Trends* Among U.S. Adults 1997 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, 2001;286:10.

12 Obesity Trends* Among U.S. Adults 1999 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, 2001;286:10

13 Obesity Trends* Among U.S. Adults 2001 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, 2001;286:10.

14 The Childhood Obesity Epidemic Matthew W. Gillman, MD, SM US DHHS, 2001; Hedley et al., 2004; Ogden et al., 2006, 2008

15

16

17 The main difference between the two large epidemics of malnutrition, even symbolically opposite, concerning half of the inhabitants of the planet is that -while malnutrition is the effect of an economic and political unbalanced and unfair situation -the pandemic of obesity and diabesity advancing all over the planet, that could transform into a kind of tsunami able to disintegrate the public health systems of the northern hemisphere is a symptom of a evolutionary dis-adaptation or a rapidly progressive misprogramming of the entire endocrine-metabolic (central / hypothalamic and peripheral) which should regulate income and energy consumption induced by environmental and nutritional dramatic transformations.

18

19 Many scientists and researchers claim that Autism is the fastest-growing developmental disorder in the world, with the prevalence of diagnosis having increased by 600 per cent over the last 20 years.. And from 1:1200 to 1:90 children in US in the last 30 years

20 Such comparisons show large recent increases in rates of autism and autistic spectrum disorders in both the U.S. and the U.K. Reported rates of autism in the US increased from < 3 per 10,000 children in the 1970s to > 30 per 10,000 children in the 1990s, a 10-fold increase. In the United Kingdom, autism rates rose from < 10 per 10,000 in the 1980s to roughly 30 per 10,000 in the 1990s. Reported rates for the full spectrum of autistic disorders rose from the 5 to 10 per 10,000 range to the 50 to 80 per 10,000 range in the two countries (1: ) Blaxill MF What's going on? The question of time trends in autism. Public Health Rep ;119(6):

21 AUTISME (ASD :Autism Spectrum Disorders) New diagnosed cases of autism (incidence) in US increased from 15,580 in 1992 to in Estimated prevalence: cases/1000 children (2012)

22 In 1997, the prevalence in the US was 2.32 million Alzheimer_and_other_dementias_world_map_-_DALY_-_WHO2004_svg

23 Increased amyloid A -deposition (LEARn) model : early environmental factors such as exposure to Pb, nutritional deficiencies (e.g., folate or B12), or oxidative stress alter DNA epigenetically, by reducing the activity of enzymes as DNMTs Accumulation of hyperphosphorylated microtubule associated protein tangles

24 Deaths from urban air pollution in 2000, as estimated by the WHO World Health Report, 2002 The WHO estimates that air pollution is responsible for 3 million premature deaths each year...

25 No one likes to talk about a CANCER PANDEMIC.. But we must not forget that today, practically all over the North of the world, one person out of two is likely to have a cancer..

26 the significant increase in the Less Developed Countries & in young people all over the world demonstrates the limits of the SMT ( necessary link between aging &CA) Thousands per Annum Less Less Developed Developed More More Developed Developed

27 As we may easily argue from the recent project ACCIS (Automated Childhood Cancer Information System) - a comprehensive monitoring conducted by a team of epidemiologists IARC on 63 cancer registries from 19 European countries, for a total of over 130 thousand tumors of all types (113 thousand children and 18 thousand teenagers) Cancer incidence in childhood and adolescence - EUROPE ( ) latency mother A first draft of the report, published on the Lancet in 2004, demonstrates an annual increase of 1-1,5% for all cancers (with more marked increases in lymphomas, soft tissue sarcomas, tumors of the nervous system ). Steliarova-Foucher E, Stiller C, Kaatsch P, Berrino F, Coebergh JW, Lacour B, Parkin M. Geographical patterns and time trends of cancer incidence and survival among children and adolescents in Europe since the 1970s (the ACCISproject): an epidemiological study. Lancet Dec 11-17;364(9451):

28 Fetal programming Ontogenesis 3 Epigenetic versus genetic origins of health and diseases: the 7 key words 4 Evolutionary Medicine Phylogenesis Devo-Evo 5 2 Environment Developmental Plasticity At this point,having quickly mapped out the dramatic epidemiological transition underway, we can briefly examine the other 6 key words.. 6 Mismatch/DOHA 7 XX Century Epidemiologic Transition 1 From Genetics to Epigenetics Is DNA a sort of Project inscribed in our cells?

29 The first keyword: Epigenetics Heterochromatin Mitotic chromosome...revolving around it and playing an important role in transferring information from outside to DNA and in modulating the response, to the extent that some scientists have used the term natural genetic engineering Euchromatin Interphase chromosomes Multiple levels of packing are required to fit the DNA into the cell nucleus

30 Rudolf Jaenisch Whitehead Institute & Dept. of Biology, MIT, Cambridge, MA

31 The meeting-point between the information coming from the environment and the information encoded in the DNA (hardware) is the epigenome (software): mimetic molecules (EDCs) and other pollutants or danger-signals induce the epigenome to change Histone Acetyltransferases; Histone Methyltransferases Nuclear Receptor DNA Response Element Histone Lysine Acetylation H3-K9 ATP-dependent Nucleosome Remodeling Complex Histone Deacetylases. H3-S10 Chromatin itself is the direct target of many toxicants * toxicant-induced perturbations in chromatin structure may precipitate adverse effects.. Forcing genome to change P Many toxicants cause rapid alterations in gene expression by activating protein kinase signaling cascades. The resulting rapid, defensive alterations in gene activity require the transmission of a signal directly to the histones present in the chromatin of stress response genes: within minutes of exposure the phosphorylation of serine 10 of histone H3 and the acetylation of lysines 9 and/or 14 take place

32 Towards a Kuhnian Revolution in Biology and Cancer Research 2 1 We have wrongly 3 extended the linear theory of the gene to the realm of the gene management... but the gene management is an entirely different process, involving interactive cellular processes that display an interactive complexity which is epigenetic in nature In 1997 the well known molecular biologist R. Strohman attempted an oblique attack against the central dogma of molecular biology; the deterministic, linear, uni-directional, and encapsulated path from DNA to RNA to proteins to phenotype..

33 From directing the fate of stem cells to determining how.. we grow, the genes in our body act in complex networks.. the whole Genome is a Complex and highly dynamic molecular Network of interacting Genes and non-codifying sequences.. and proteins.genes Know How to Network BUT... Strohman R., April 2001 Beyond genetic determinism IN FACT Genes need to be told to switch off and on : Genes need to be told how much expression (protein) is required and where. Genes need to be regulated this regulation is not performed by DNA but by many other controls arranged in a complex network DNA has been called the Book of Life by the Human Genome Project scientists, but many other biologists consider DNA to be simply a random collection of words from which a meaningful story of life may be assembled In order to assemble that meaningful story, a living cell uses a second informational system. (...) The key concept here is that these dynamicepigenetic networks have a life of their own they follow network-rules not specified by DNA Aujourd'hui, nous savons que le génome est un réseau moléculaire unique, complexe et dynamique et qu'il ya un flux ininterrompu d'informations au sein du génome et entre le

34 Nuclear DNA is normally tightly wrapped around histones DNA double helix (2-nm diameter) Tight helical fiber (30-nm diameter) Beads on a string Histones Nucleosome (10-nm diameter) Supercoil (200-nm diameter) Euchromatin Multiple levels of packing are required to fit the DNA into the cell nucleus Heterochromatin Metaphase chromosome 700 nm Campbell NE et al (Eds): Biology: Concepts & Connections 4 th Edition, 2003

35 The Epigenetic Players 1 ON DNA Methylation Chromatin Remodeling machinery + Histone modification OFF MicroRNAs Euchromatin Heterochromatin The study of heritable changes in gene function that occur without a change in the DNA sequence Fraga et al., PNAS

36 DNA methylation Covalent modification of the DNA is also important for gene silencing human cells. Most genes have GC rich areas of DNA in their promoter regions, referred to as CpG islands. Methylation of the C residues within the CpG islands leads to gene silencing 2 (highly unstable base)

37 The Histone tails are a critical determinant of chromatin structure 1

38 Histone Tails are subject to a variety of covalent modifications Histone Code hypothesis: modifications of the Histone tails act as marks read by other proteins to control the expression or replication of chromosomal regions E.g. generally, Histone Acetylation is associated with transcriptionally active genes Deacetylation is associated with inactive genes (= gene silencing)

39 3

40 The second keyword: Environment EMF We may represent the environment as a continuous stream of information (simple: photons: individual packages of E = M = Information) or complex (organic molecules, viruses etc) interacting with our cells [membrane /transmembrane receptors, signal transduction proteins, nuclear receptors, genome (DNA + Epigenome)] forcing them to adapt 1 TCDD Viruses 3 SYNERGISM!! FLUID EPI-GENOME 2 HERVs 4

26/05/2015. Electromagnetic Fields Fetal Effects. We are currently facing a paradigm shift in biomedicine

26/05/2015. Electromagnetic Fields Fetal Effects. We are currently facing a paradigm shift in biomedicine Fetal programming 3 2 Environment 5 4 Developmental Plasticity Evolutionary Medicine Ontogeny* Devo Evo 6 Mismatch/DOHA 7 XXI Century Epidemiologic Transition 1 Phylogeny* Electromagnetic Fields Fetal

More information

From GENETICS to EPIGENETICS

From GENETICS to EPIGENETICS From GENETICS to EPIGENETICS.. to Primary Prevention ERNESTO BURGIO ISDE Scientific Committee ECERI - European Cancer and Environment Research Institute Prevenzione (pre)primaria delle patologie complesse:

More information

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON ... Epigenetics Lyle Armstrong f'ci Garland Science UJ Taylor & Francis Group NEW YORK AND LONDON Contents CHAPTER 1 INTRODUCTION TO 3.2 CHROMATIN ARCHITECTURE 21 THE STUDY OF EPIGENETICS 1.1 THE CORE

More information

Gene Expression DNA RNA. Protein. Metabolites, stress, environment

Gene Expression DNA RNA. Protein. Metabolites, stress, environment Gene Expression DNA RNA Protein Metabolites, stress, environment 1 EPIGENETICS The study of alterations in gene function that cannot be explained by changes in DNA sequence. Epigenetic gene regulatory

More information

Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3

Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3 Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3 1 Department of Biotechnology, JMIT, Radaur, Haryana, India 2 KITM, Kurukshetra, Haryana, India 3 NIDDK, National Institute of Health,

More information

Are you the way you are because of the

Are you the way you are because of the EPIGENETICS Are you the way you are because of the It s my fault!! Nurture Genes you inherited from your parents? Nature Experiences during your life? Similar DNA Asthma, Autism, TWINS Bipolar Disorders

More information

R. Piazza (MD, PhD), Dept. of Medicine and Surgery, University of Milano-Bicocca EPIGENETICS

R. Piazza (MD, PhD), Dept. of Medicine and Surgery, University of Milano-Bicocca EPIGENETICS R. Piazza (MD, PhD), Dept. of Medicine and Surgery, University of Milano-Bicocca EPIGENETICS EPIGENETICS THE STUDY OF CHANGES IN GENE EXPRESSION THAT ARE POTENTIALLY HERITABLE AND THAT DO NOT ENTAIL A

More information

Epigenetics Armstrong_Prelims.indd 1 04/11/2013 3:28 pm

Epigenetics Armstrong_Prelims.indd 1 04/11/2013 3:28 pm Epigenetics Epigenetics Lyle Armstrong vi Online resources Accessible from www.garlandscience.com, the Student and Instructor Resource Websites provide learning and teaching tools created for Epigenetics.

More information

Eukaryotic transcription (III)

Eukaryotic transcription (III) Eukaryotic transcription (III) 1. Chromosome and chromatin structure Chromatin, chromatid, and chromosome chromatin Genomes exist as chromatins before or after cell division (interphase) but as chromatids

More information

Epigenetics: The Future of Psychology & Neuroscience. Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1

Epigenetics: The Future of Psychology & Neuroscience. Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1 Epigenetics: The Future of Psychology & Neuroscience Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1 Nature versus Nurture Despite the belief that the Nature vs. Nurture

More information

Histones modifications and variants

Histones modifications and variants Histones modifications and variants Dr. Institute of Molecular Biology, Johannes Gutenberg University, Mainz www.imb.de Lecture Objectives 1. Chromatin structure and function Chromatin and cell state Nucleosome

More information

EPIGENETICS AND MENTAL HEALTH. William J. Walsh, Ph.D.

EPIGENETICS AND MENTAL HEALTH. William J. Walsh, Ph.D. EPIGENETICS AND MENTAL HEALTH.. William J. Walsh, Ph.D. The Epigenetics Revolution Until recently, heritable illnesses were presumed to genetic in nature, Several heritable disorders now appear to be epigenetic,

More information

Epigenetic Mechanisms

Epigenetic Mechanisms RCPA Lecture Epigenetic chanisms Jeff Craig Early Life Epigenetics Group, MCRI Dept. of Paediatrics Overview What is epigenetics? Chromatin The epigenetic code What is epigenetics? the interactions of

More information

Review II: Cell Biology

Review II: Cell Biology Review II: Cell Biology Rajan Munshi BBSI @ Pitt 2006 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2006 Outline Cell Cycle Signal Transduction 1 Cell Cycle Four

More information

9/3/2009 DNA i DNA n euk euk yotes Organizatio Organ izatio n of o f gen ge e n tic Locati t on: In n ucleu e s material mater in e ial

9/3/2009 DNA i DNA n euk euk yotes Organizatio Organ izatio n of o f gen ge e n tic Locati t on: In n ucleu e s material mater in e ial DNA in eukaryotes Organization of genetic material in eukaryotes Location: In nucleus In mitochondria DNA in eukaryotes Nuclear DNA: Long, linear molecules; Chromatin chromosomes; 10% of DNA in genes,

More information

Chapter 11 How Genes Are Controlled

Chapter 11 How Genes Are Controlled Chapter 11 How Genes Are Controlled PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Mary

More information

Fragile X Syndrome. Genetics, Epigenetics & the Role of Unprogrammed Events in the expression of a Phenotype

Fragile X Syndrome. Genetics, Epigenetics & the Role of Unprogrammed Events in the expression of a Phenotype Fragile X Syndrome Genetics, Epigenetics & the Role of Unprogrammed Events in the expression of a Phenotype A loss of function of the FMR-1 gene results in severe learning problems, intellectual disability

More information

Epigenetics & cancer. Present by : Sanaz Zebardast Under supervision : Dr. Gheibi. 31 December 2016

Epigenetics & cancer. Present by : Sanaz Zebardast Under supervision : Dr. Gheibi. 31 December 2016 Epigenetics & cancer Present by : Sanaz Zebardast Under supervision : Dr. Gheibi 31 December 2016 1 contents Introduction Epigenetic & signaling pathways Epigenetic & integral protein Epigenetic & apoptosis

More information

Cellular Reproduction, Part 1: Mitosis Lecture 10 Fall 2008

Cellular Reproduction, Part 1: Mitosis Lecture 10 Fall 2008 Cell Theory 1 Cellular Reproduction, Part 1: Mitosis Lecture 10 Fall 2008 Cell theory: All organisms are made of cells All cells arise from preexisting cells How do new cells arise? Cell division the reproduction

More information

U3.2.3: Eukaryotic chromosomes are linear DNA molecules associated with histone proteins. (Oxford Biology Course Companion page 151).

U3.2.3: Eukaryotic chromosomes are linear DNA molecules associated with histone proteins. (Oxford Biology Course Companion page 151). Cell Division Study Guide U3.2.3: Eukaryotic chromosomes are linear DNA molecules associated with histone proteins. (Oxford Biology Course Companion page 151). 1. Describe the structure of eukaryotic DNA

More information

Genetics and Genomics in Medicine Chapter 6 Questions

Genetics and Genomics in Medicine Chapter 6 Questions Genetics and Genomics in Medicine Chapter 6 Questions Multiple Choice Questions Question 6.1 With respect to the interconversion between open and condensed chromatin shown below: Which of the directions

More information

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation Eukaryotic Gene Regulation Chapter 19: Control of Eukaryotic Genome The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different,

More information

Organization of genetic material in eukaryotes

Organization of genetic material in eukaryotes Organization of genetic material in eukaryotes biologiemoleculara.usmf.md pass.: bmgu e.usmf.md 1 DNA in eukaryotes Location: In nucleus In mitochondria biologiemoleculara.usmf.md e.usmf.md pass.: bmgu

More information

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Prokaryotes Have a Simpler Cell Cycle Cell division in prokaryotes takes place in two stages, which together make up a simple cell cycle 1. Copy

More information

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Chromosomes Chromosomes were first observed by the German embryologist Walther Fleming in 1882. Chromosome number varies among organisms most

More information

How Cells Divide. Chapter 10

How Cells Divide. Chapter 10 How Cells Divide Chapter 10 Bacterial Cell Division Bacteria divide by binary fission. -the single, circular bacterial chromosome is replicated -replication begins at the origin of replication and proceeds

More information

Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure

Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure Frederick E. Domann, Ph.D. Associate Professor of Radiation Oncology The University of Iowa Iowa City,

More information

4/20/2016. Objectives. Epigenetic Definitions. Gene Expression. More Questions. Questions to Consider

4/20/2016. Objectives. Epigenetic Definitions. Gene Expression. More Questions. Questions to Consider Objectives Epigentics: You Might Be What Your Grandmother Ate Lynda Britton, Ph.D., MLS(ASCP) CM Professor LSU Health Shreveport Discuss epigenetics and its role in cancer, imprinting and X chromosome

More information

Chapter 11 How Genes Are Controlled

Chapter 11 How Genes Are Controlled Chapter 11 How Genes Are Controlled PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Lecture by Edward J. Zalisko Introduction Well-preserved

More information

Stem Cell Epigenetics

Stem Cell Epigenetics Stem Cell Epigenetics Philippe Collas University of Oslo Institute of Basic Medical Sciences Norwegian Center for Stem Cell Research www.collaslab.com Source of stem cells in the body Somatic ( adult )

More information

'''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Five'Levels'of'Organiza-on' Molecular'

'''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Five'Levels'of'Organiza-on' Molecular' '''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Anggraini'Barlian,' Iriawa-' Tjandra'Anggraeni' SITH4ITB' Five'Levels'of'Organiza-on' Molecular'

More information

Chapter 8 The Cell Cycle

Chapter 8 The Cell Cycle What molecule stores your genetic information or determines everything about you? DNA a nucleic acid How are DNA molecules arranged in the nucleus? As you can see DNA is: Chapter 8 The Cell Cycle 1. Arranged

More information

4/8/2016. Objectives. Epigenetic Definitions. Gene Expression. More Questions. Epigentics. Questions to Consider

4/8/2016. Objectives. Epigenetic Definitions. Gene Expression. More Questions. Epigentics. Questions to Consider Objectives Epigentics Lynda Britton, Ph.D., MLS(ASCP) CM Professor LSU Health Shreveport Discuss epigenetics and its role in cancer, imprinting and X chromosome inactivation. Describe the modifications/mechanisms

More information

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression Chromatin Array of nuc 1 Transcriptional control in Eukaryotes: Chromatin undergoes structural changes

More information

AN INTRODUCTION TO EPIGENETICS DR CHLOE WONG

AN INTRODUCTION TO EPIGENETICS DR CHLOE WONG AN INTRODUCTION TO EPIGENETICS DR CHLOE WONG MRC SGDP CENTRE, INSTITUTE OF PSYCHIATRY KING S COLLEGE LONDON Oct 2015 Lecture Overview WHY WHAT EPIGENETICS IN PSYCHIARTY Technology-driven genomics research

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Where it all began You started as a cell smaller than a

More information

Epigenetics q&more 01.11

Epigenetics q&more 01.11 Laurie. Knight, istockphoto.com Epigenetics 6 Bookmarks About the reading of genes in the Book of Life Prof. Dr. Manfred Jung, Julia M. Wagner, Institute for Pharmaceutical Sciences, Albert-Ludwig-University

More information

Lecture 10. Eukaryotic gene regulation: chromatin remodelling

Lecture 10. Eukaryotic gene regulation: chromatin remodelling Lecture 10 Eukaryotic gene regulation: chromatin remodelling Recap.. Eukaryotic RNA polymerases Core promoter elements General transcription factors Enhancers and upstream activation sequences Transcriptional

More information

Epigenetics 101. Kevin Sweet, MS, CGC Division of Human Genetics

Epigenetics 101. Kevin Sweet, MS, CGC Division of Human Genetics Epigenetics 101 Kevin Sweet, MS, CGC Division of Human Genetics Learning Objectives 1. Evaluate the genetic code and the role epigenetic modification plays in common complex disease 2. Evaluate the effects

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division The Cell Cycle: Cell Growth, Cell Division 2007-2008 2007-2008 Getting from there to here Going from egg to baby. the original

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

Not IN Our Genes - A Different Kind of Inheritance.! Christopher Phiel, Ph.D. University of Colorado Denver Mini-STEM School February 4, 2014

Not IN Our Genes - A Different Kind of Inheritance.! Christopher Phiel, Ph.D. University of Colorado Denver Mini-STEM School February 4, 2014 Not IN Our Genes - A Different Kind of Inheritance! Christopher Phiel, Ph.D. University of Colorado Denver Mini-STEM School February 4, 2014 Epigenetics in Mainstream Media Epigenetics *Current definition:

More information

Imprinting. Joyce Ohm Cancer Genetics and Genomics CGP-L2-319 x8821

Imprinting. Joyce Ohm Cancer Genetics and Genomics CGP-L2-319 x8821 Imprinting Joyce Ohm Cancer Genetics and Genomics CGP-L2-319 x8821 Learning Objectives 1. To understand the basic concepts of genomic imprinting Genomic imprinting is an epigenetic phenomenon that causes

More information

APGRU4L1 Chap 12 Extra Reading Cell Cycle and Mitosis

APGRU4L1 Chap 12 Extra Reading Cell Cycle and Mitosis APGRU4L1 Chap 12 Extra Reading Cell Cycle and Mitosis Dr. Ramesh Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008

More information

Epigenetics and Environmental Health A Step-by-Step Tutorial

Epigenetics and Environmental Health A Step-by-Step Tutorial Powerful ideas for a healthier world Epigenetics and Environmental Health A Step-by-Step Tutorial Andrea Baccarelli, MD, PhD, MPH Laboratory of Environmental Epigenetics Objective of my presentation To

More information

Transcription and chromatin. General Transcription Factors + Promoter-specific factors + Co-activators

Transcription and chromatin. General Transcription Factors + Promoter-specific factors + Co-activators Transcription and chromatin General Transcription Factors + Promoter-specific factors + Co-activators Cofactor or Coactivator 1. work with DNA specific transcription factors to make them more effective

More information

Beads-on-a- The 30nm Fibre Active Chromosome The Metaphase Chromosome. Less active genes During interphase During cell division

Beads-on-a- The 30nm Fibre Active Chromosome The Metaphase Chromosome. Less active genes During interphase During cell division Overview of Epigenetics Figure 2.2. The Increasing Structural Complexity of Genetic Information from the Double-Helical Structure of DNA, through Nucleosome and Chromatin Structures, to the Chromosome

More information

Mitosis. An Introduction to Genetics. An Introduction to Cell Division

Mitosis. An Introduction to Genetics. An Introduction to Cell Division Mitosis An Introduction to Genetics An Introduction to Cell Division DNA is Packaged in Chromosomes Cell Cycle Mitosis and Cytokinesis Variations in Cell Division Cell Division and Cancer An Introduction

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

Host cell activation

Host cell activation Dept. of Internal Medicine/Infectious and Respiratory Diseases Stefan Hippenstiel Epigenetics as regulator of inflammation Host cell activation LPS TLR NOD2 MDP TRAF IKK NF-κB IL-x, TNFα,... Chromatin

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division Ch. 10 Where it all began You started as a cell smaller than a period

More information

Biology is the only subject in which multiplication is the same thing as division. AP Biology

Biology is the only subject in which multiplication is the same thing as division. AP Biology Biology is the only subject in which multiplication is the same thing as division Chapter 12. The Cell Cycle: Cell Growth, Cell Division Where it all began You started as a cell smaller than a period at

More information

EPIGENOMICS PROFILING SERVICES

EPIGENOMICS PROFILING SERVICES EPIGENOMICS PROFILING SERVICES Chromatin analysis DNA methylation analysis RNA-seq analysis Diagenode helps you uncover the mysteries of epigenetics PAGE 3 Integrative epigenomics analysis DNA methylation

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Where it all began You started as a cell smaller than a

More information

Ch. 18 Regulation of Gene Expression

Ch. 18 Regulation of Gene Expression Ch. 18 Regulation of Gene Expression 1 Human genome has around 23,688 genes (Scientific American 2/2006) Essential Questions: How is transcription regulated? How are genes expressed? 2 Bacteria regulate

More information

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development

More information

An introduction to Epigenetics and Psychology

An introduction to Epigenetics and Psychology An introduction to Epigenetics and Psychology Dr Emma Meaburn e.meaburn@bbk.ac.uk Centre for Brain and Cognitive Development Department of Psychological Sciences Birkbeck, University of London Learning

More information

I) Development: tissue differentiation and timing II) Whole Chromosome Regulation

I) Development: tissue differentiation and timing II) Whole Chromosome Regulation Epigenesis: Gene Regulation Epigenesis : Gene Regulation I) Development: tissue differentiation and timing II) Whole Chromosome Regulation (X chromosome inactivation or Lyonization) III) Regulation during

More information

Epigenetic processes are fundamental to development because they permit a

Epigenetic processes are fundamental to development because they permit a Early Life Nutrition and Epigenetic Markers Mark Hanson, PhD Epigenetic processes are fundamental to development because they permit a range of phenotypes to be formed from a genotype. Across many phyla

More information

Cellular Reproduction Chapter 8

Cellular Reproduction Chapter 8 Cellular Reproduction Chapter 8 1. Importance of Cell Division 2. Eukaryotic Cell Cycle 3. Eukaryotic Chromosomes 4. Mitosis 5. Cytokinesis in animal and plant cells 6. Sexual Iife cycle 7. Meiosis 8.

More information

Epigenetic Principles and Mechanisms Underlying Nervous System Function in Health and Disease Mark F. Mehler MD, FAAN

Epigenetic Principles and Mechanisms Underlying Nervous System Function in Health and Disease Mark F. Mehler MD, FAAN Epigenetic Principles and Mechanisms Underlying Nervous System Function in Health and Disease Mark F. Mehler MD, FAAN Institute for Brain Disorders and Neural Regeneration F.M. Kirby Program in Neural

More information

Repressive Transcription

Repressive Transcription Repressive Transcription The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Guenther, M. G., and R. A.

More information

Epigenetics: A historical overview Dr. Robin Holliday

Epigenetics: A historical overview Dr. Robin Holliday Epigenetics 1 Rival hypotheses Epigenisis - The embryo is initially undifferentiated. As development proceeds, increasing levels of complexity emerge giving rise to the larval stage or to the adult organism.

More information

5.2. Mitosis and Cytokinesis. Chromosomes condense at the start of mitosis. Connecting

5.2. Mitosis and Cytokinesis. Chromosomes condense at the start of mitosis. Connecting 5.2 Mitosis and Cytokinesis KEY CONCEPT Cells divide during mitosis and cytokinesis. MAIN IDEAS Chromosomes condense at the start of mitosis. Mitosis and cytokinesis produce two genetically identical daughter

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Getting from there to here Going from egg to baby. the original

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions.

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 5.1 The Cell Cycle KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. Objective: Cells have distinct phases of growth, reproduction and normal functions. APK: Why do

More information

This colorized scanning electron micrograph is showing a white blood cell undergoing cell division.

This colorized scanning electron micrograph is showing a white blood cell undergoing cell division. 10 1 Cell Growth Why are cells small? This colorized scanning electron micrograph is showing a white blood cell undergoing cell division. This relates to cell theory because this is HOW all cells come

More information

5.1. KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 68 Reinforcement Unit 2 Resource Book

5.1. KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 68 Reinforcement Unit 2 Resource Book 5.1 THE CELL CYCLE KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. Cells have a regular pattern of growth, DNA duplication, and division that is called the cell cycle.

More information

Dynamics of mono, di and tri-methylated histone H3 lysine 4 during male meiotic prophase I. Nuclei were co-stained for H3.1/H3.2. Progressing stages

Dynamics of mono, di and tri-methylated histone H3 lysine 4 during male meiotic prophase I. Nuclei were co-stained for H3.1/H3.2. Progressing stages Dynamics of mono, di and tri-methylated histone H3 lysine 4 during male meiotic prophase I. Nuclei were co-stained for H3.1/H3.2. Progressing stages of spermatogenesis are shown from left to right. Arrows/dotted

More information

5.2. Mitosis and Cytokinesis. Chromosomes condense at the start of mitosis.

5.2. Mitosis and Cytokinesis. Chromosomes condense at the start of mitosis. 5.2 Mitosis and Cytokinesis VOCABULARY chromosome histone chromatin chromatid centromere prophase metaphase anaphase telophase Biochemistry As you will learn in the chapter From DNA to Proteins, a nucleotide

More information

Today. Genomic Imprinting & X-Inactivation

Today. Genomic Imprinting & X-Inactivation Today 1. Quiz (~12 min) 2. Genomic imprinting in mammals 3. X-chromosome inactivation in mammals Note that readings on Dosage Compensation and Genomic Imprinting in Mammals are on our web site. Genomic

More information

The Process of Cell Division

The Process of Cell Division Lesson Overview 10.2 The Process of Cell Division THINK ABOUT IT What role does cell division play in your life? Does cell division stop when you are finished growing? Chromosomes What is the role of chromosomes

More information

An epigenetic approach to understanding (and predicting?) environmental effects on gene expression

An epigenetic approach to understanding (and predicting?) environmental effects on gene expression www.collaslab.com An epigenetic approach to understanding (and predicting?) environmental effects on gene expression Philippe Collas University of Oslo Institute of Basic Medical Sciences Stem Cell Epigenetics

More information

Cell Growth, Division, & Reproduction

Cell Growth, Division, & Reproduction Cell Growth, Division, & Reproduction Two main reasons why cells divide rather than continue growing: A larger cell places more demand on the DNA. When a cell s size increases, its DNA does not & the extra

More information

Chromatin position in HepG2 cells: Although being non-random, significantly changed in daughter cells

Chromatin position in HepG2 cells: Although being non-random, significantly changed in daughter cells Chromatin position in HepG2 cells: Although being non-random, significantly changed in daughter cells Ivan Raška mother cell nucleus Charles University in Prague, First Faculty of Medicine, and Institute

More information

Ploidy and Human Cell Types. Cell Cycle and Mitosis. DNA and Chromosomes. Where It All Began 11/19/2014. Chapter 12 Pg

Ploidy and Human Cell Types. Cell Cycle and Mitosis. DNA and Chromosomes. Where It All Began 11/19/2014. Chapter 12 Pg Ploidy and Human Cell Types Cell Cycle and Mitosis Chapter 12 Pg. 228 245 Cell Types Somatic cells (body cells) have 46 chromosomes, which is the diploid chromosome number. A diploid cell is a cell with

More information

Chromatin-Based Regulation of Gene Expression

Chromatin-Based Regulation of Gene Expression Chromatin-Based Regulation of Gene Expression.George J. Quellhorst, Jr., PhD.Associate Director, R&D.Biological Content Development Topics to be Discussed Importance of Chromatin-Based Regulation Mechanism

More information

Lecture 5: Drug targets (continued)

Lecture 5: Drug targets (continued) Lecture 5: Drug targets (continued) IIa. Enzymes as drug targets (HMG-CoA example) Many drugs are inhibitors of enzymes that catalyze biologically important reactions. The conversion of HMG-CoA to mevalonic

More information

Dominic J Smiraglia, PhD Department of Cancer Genetics. DNA methylation in prostate cancer

Dominic J Smiraglia, PhD Department of Cancer Genetics. DNA methylation in prostate cancer Dominic J Smiraglia, PhD Department of Cancer Genetics DNA methylation in prostate cancer Overarching theme Epigenetic regulation allows the genome to be responsive to the environment Sets the tone for

More information

Epigenetic Inheritance

Epigenetic Inheritance (2) The role of Epigenetic Inheritance Lamarck Revisited Lamarck was incorrect in thinking that the inheritance of acquired characters is the main mechanism of evolution (Natural Selection more common)

More information

Chromatin Structure & Gene activity part 2

Chromatin Structure & Gene activity part 2 Chromatin Structure & Gene activity part 2 Figure 13.30 Make sure that you understand it. It is good practice for identifying the purpose for various controls. Chromatin remodeling Acetylation helps to

More information

Chapter 21: Prokaryotes & Viruses

Chapter 21: Prokaryotes & Viruses Chapter 21: Prokaryotes & Viruses Microorganisms Single-celled organisms that are too small to be seen without a microscope Bacteria are the smallest living organisms Viruses are smaller but are not alive

More information

Cancer and Gene Regulation

Cancer and Gene Regulation OpenStax-CNX module: m44548 1 Cancer and Gene Regulation OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Mitosis. AND Cell DiVISION

Mitosis. AND Cell DiVISION Mitosis AND Cell DiVISION Cell Division Characteristic of living things: ability to reproduce their own kind. Cell division purpose: When unicellular organisms such as amoeba divide to form offspring reproduction

More information

Gene Regulation Part 2

Gene Regulation Part 2 Michael Cummings Chapter 9 Gene Regulation Part 2 David Reisman University of South Carolina Other topics in Chp 9 Part 2 Protein folding diseases Most diseases are caused by mutations in the DNA that

More information

Epigenetics in evolution and disease

Epigenetics in evolution and disease Epigenetics in evolution and disease Manel Esteller We are not our genes. Genes are just part of the story. We cannot fully blame our genome for our behaviour and susceptibility to disease. In Lehninger

More information

Where Splicing Joins Chromatin And Transcription. 9/11/2012 Dario Balestra

Where Splicing Joins Chromatin And Transcription. 9/11/2012 Dario Balestra Where Splicing Joins Chromatin And Transcription 9/11/2012 Dario Balestra Splicing process overview Splicing process overview Sequence context RNA secondary structure Tissue-specific Proteins Development

More information

PowerPoint Image Slideshow

PowerPoint Image Slideshow COLLEGE BIOLOGY PHYSICS Chapter 10 # Cell Chapter Reproduction Title PowerPoint Image Slideshow CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 12 The Cell Cycle 2014 Pearson

More information

BIO360 Fall 2013 Quiz 1

BIO360 Fall 2013 Quiz 1 BIO360 Fall 2013 Quiz 1 1. Examine the diagram below. There are two homologous copies of chromosome one and the allele of YFG carried on the light gray chromosome has undergone a loss-of-function mutation.

More information

The Importance of Citizen Science in Autism Research

The Importance of Citizen Science in Autism Research The Importance of Citizen Science in Autism Research Jill Escher, MA, JD @JillEscher Escher Fund GermlineExposures.org Humans start as molecules for Autism Citizen Science: Part of ASA s Heritage ASA co-founder

More information

Why do cells divide? The Cell Cycle: Cell Growth, Cell Division. Making new cells. Getting the right stuff. Overview of mitosis 1/5/2015

Why do cells divide? The Cell Cycle: Cell Growth, Cell Division. Making new cells. Getting the right stuff. Overview of mitosis 1/5/2015 Why do cells divide? The Cell Cycle: Cell Growth, Cell Division For reproduction asexual reproduction one-celled organisms For growth from fertilized egg to multi-celled organism For repair & renewal replace

More information

Cell Overview. Hanan Jafar BDS.MSc.PhD

Cell Overview. Hanan Jafar BDS.MSc.PhD Cell Overview Hanan Jafar BDS.MSc.PhD THE CELL is made of: 1- Nucleus 2- Cell Membrane 3- Cytoplasm THE CELL Formed of: 1. Nuclear envelope 2. Chromatin 3. Nucleolus 4. Nucleoplasm (nuclear matrix) NUCLEUS

More information

Expert Intelligence for Better Decisions Epigenetics:

Expert Intelligence for Better Decisions Epigenetics: Expert Intelligence for Better Decisions Epigenetics: Emerging Targets, Available Technologies, Expert Interviews, and an Epigenetic Community Perspective Using This Document Insight Pharma Reports are

More information

Chapter 12 The Cell Cycle: Cell Growth, Cell Division

Chapter 12 The Cell Cycle: Cell Growth, Cell Division Chapter 12 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Where it all began You started as a cell smaller than a period at the end of a sentence And now look at you How did you get from there to

More information

Chapter 12. living /non-living? growth repair renew. Reproduction. Reproduction. living /non-living. fertilized egg (zygote) next chapter

Chapter 12. living /non-living? growth repair renew. Reproduction. Reproduction. living /non-living. fertilized egg (zygote) next chapter Chapter 12 How cells divide Reproduction living /non-living? growth repair renew based on cell division first mitosis - distributes identical sets of chromosomes cell cycle (life) Cell Division in Bacteria

More information

CHROMOSOME. Chromosomes are act as factors which distinguished one species from another.

CHROMOSOME. Chromosomes are act as factors which distinguished one species from another. CHROMOSOMES The chromosome comes from Greek Chroma = color CHROMOSOME Soma= body (the colored body) Chromosomes are act as factors which distinguished one species from another. Chromosomes are formed of

More information

Epigenetic Variation in Human Health and Disease

Epigenetic Variation in Human Health and Disease Epigenetic Variation in Human Health and Disease Michael S. Kobor Centre for Molecular Medicine and Therapeutics Department of Medical Genetics University of British Columbia www.cmmt.ubc.ca Understanding

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol claus.schwechheimer@wzw.tum.de

More information

1 DEVELOPMENTS AND EXPANSIONS IN BIOLOGY AND GENETICS Ernesto Burgio ISDE Scientific Office

1 DEVELOPMENTS AND EXPANSIONS IN BIOLOGY AND GENETICS Ernesto Burgio ISDE Scientific Office 1 DEVELOPMENTS AND EXPANSIONS IN BIOLOGY AND GENETICS Ernesto Burgio ISDE Scientific Office FROM GENETICS to EPIGENETICS The Times They Are a-changin' In the collective consciousness the word Genomics

More information