8th Warren K. Sinclair Keynote Address 47th Annual NCRP Meeting Bethesda, MD, March 7, 2011 Heavy ions in therapy and space: benefits and risks

Size: px
Start display at page:

Download "8th Warren K. Sinclair Keynote Address 47th Annual NCRP Meeting Bethesda, MD, March 7, 2011 Heavy ions in therapy and space: benefits and risks"

Transcription

1 8th Warren K. Sinclair Keynote Address 47th Annual NCRP Meeting Bethesda, MD, March 7, 2011 Heavy ions in therapy and space: benefits and risks Marco Durante

2 What are heavy ions? 50 um

3 What are heavy ions? X-rays 2 kev/μm 2 Gy 177 MeV/u Fe-ions 335 kev/μm 2 Gy, 3.7*10 6 /cm MeV/u Cr-ions 3160 kev/μm 20.3 Gy, 4*10 6 /cm 2 same dose same fluence Courtesy of M. Scholz

4 The most unkindest cut of all (W. Shakespeare, Julius Caesar, Act 3) h n h h n n n h h n h h h h hh n h h Courtesy of NASA Courtesy of D.T. Goodhead

5 Tracks in cells γ-rays silicon iron Cucinotta and Durante, Lancet Oncol. 2006

6 Live cell imaging of heavy ion traversals High energy Fe-ions Low energy Ni-ions ions,, human cells, GFP-APTX GFP-NSBS1 Jakob et al., Proc. Natl. Acad. Sci. USA 2009 GFP-XRCC1

7 Recruitment of XRCC1 to heterochromatin and euchromatin after exposure of mouse embryo fibroblasts to heavy ions X-ray repair complementing defective in Chinese hamster cells 1 (SSB and β- excision repair pathways) Courtesy of B. Jakob

8 Co-localization of DNA double-strand breaks (green; lebeled by TUNEL) and immunostained XRCC1 (red) 5 min after exposure to U-ions and kinetics of GFP-XRCC1 recruitment and release from euchromatic and heterochromatic compartments of mouse embryo cell nuclei Courtesy of G. Taucher-Scholz

9 From DNA to chromosomes: heavy-ion induced rearrangements

10 to cell killing.. W. Kraft-Weyrather et al., Int. J. Radiat. Biol. 1999

11 and to cancer Acute myeloid leukemia and hepatocellular carcinoma induced in CBA/CaJ mice by γ-rays ( ) or 1 GeV/n Fe-ions ( ) M. M. Weil et al., Radiat. Res. 2009

12 Why are we interested in energetic heavy ions?

13 ROUGH GUIDES Health in Deep Space 1. Protection from space radiation THE ROUGH GUIDE to The Moon & Mars 2. Psychosocial and behavioural problems 3. Physiological changes caused by microgravity Courtesy of Mike Lockwood

14 GCR Charge Contributions 100 Free Space 10 % Contribution Fluence Dose Dose Eq Charge Number

15 Radiation doses in different missions Dose (msv) Apollo Skylab Past STS/Mir Shuttle 1 Population per year Gemini Year ISS Future Mars Moon Callisto Astronauts career RadWork per year

16 Carbon-ion therapy

17 Treatment plans for a base of the skull tumor Heavy Ions (2 Fields) C-ions, 2 fields IMRT, 9 fields Courtesy of O. Jäkel

18 Graphics courtesy of M. Belli Relative dose Normal tissue Tumor Durante & Loeffler, Nature Rev Clin Oncol Depth (mm) Energy high low LET low high Dose low high RBE 1 > 1 OER 3 < 3 Potential advantages High tumor dose, normal tissue sparing Effective for radioresistant tumors Effective against hypoxic tumor cells Cell-cycle dependence Fractionation dependence Angiogenesis Cell migration high low high low Increased Decreased Increased Decreased Increased lethality in the target because cells in radioresistant (S) phase are sensitized Fractionation spares normal tissue more than tumor Reduced angiogenesis and metastatization

19 Exposure scenarios Particles Max energy (MeV/n) Dose Dose rate Exposure 1 H to 58 Ni ~10,000 Low ( msv in LEO, up to 1 Sv for Mars) 1 H, 12 C ~400 High (60-80 Gyeq. to the tumor) Low (about 1 msv/day) High - fractionated (about 2 Gyeq./day) Wholebody Partialbody

20 Common research topics Individual radiosensitivity Mixed radiation fields Shielding Radioprotectors Biomarkers of sensitivity and risk CNS damage Bystander/abscopal effects Adaptive response Late effects of heavy ions (cancer and noncancer)

21 Risk of heavy-ion carcinogenesis The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-let radiation and (b) values of the appropriate radiation weighting factors, WR, for the high-let radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. Additional laboratory studies could reduce the uncertainties in WR and thus produce a more confident estimate of the overall risk of galactic cosmic rays. SINCLAIR,W. K., 1994, Adv. Space Res. 14, Durante & Cucinotta, 2008, Nat. Rev. Cancer 8,

22 The Gold Standard: A-bomb Survivors 5-10% Cancer Risk Low Dose Extrapolation Bystander effect High Doses Courtesy of Eric J. Hall Dose (Sv)

23 Durante & Cucinotta, Nature Rev. Cancer (2008)

24 Secondary Malignant Neoplasms (SMN) in particle therapy Radiation Absorbed Dose Risk of SMN Incidence Comparison of relative radiation dose distribution with the corresponding relative risk distribution for radiogenic second cancer incidence and mortality. This 9-year old girl received craniospinal irradiation for medulloblastoma using passively scattered proton beams. The color scale illustrates the difference for absorbed dose, incidence and mortality cancer risk in different organs. Risk of SMN Mortality Courtesy of W.D. Newhauser

25 Organ doses in therapy and space: MATROSHKA Standard RANDO phantom of property of DLR (German Aerospace center) 850 mm high divided into 34 slices Holders for detectors in several slices Currently used for space radiation dosimetry inside the ISS In collaboration with G. Reitz, T. Berger et al. (DLR)

26

27 Secondary neutrons Courtesy of C. La Tessa

28 Early biomarker of late effects: chromosomal aberrations in blood lymphocytes damage in exposed cells damage in survivors cell killing late effects

29 Biodosimetry in astronauts Dicentrics per 1000 lymphocytes Taxi-flights Long-term flights ** Pre-flight Post-flight Pre-flight Post-flight Data for 23 cosmonauts involved in Mir missions. From: Durante et al., Cytogenet. Genome Res. 103 (2003) 40. Biodosimetry can be used to test current models of radiation risk in space (high uncertainties). A significant increase in aberrations has been reported after long-term LEO missions (large NASA JSC study) Taken together, the results indicate a reasonable agreement between chromosome aberration dosimetry and physical dosimetry, assuming a Q = 2.4 in LEO

30 Time-course of dicentrics in cosmonauts involved in multiple missions on Mir/ISS Durante et al., Cytogenet. Genome Res Dicentrics in 1000 lymphocytes Dicentrics in 1000 lymphocytes Dicentrics in 1000 lymphocytes Cosmonaut Cosmonaut Cosmonaut Time after the first blood draw (days) 3000 Time after the first blood draw (days)

31 In vivo: cancer patients X-rays C-ions FISH analysis (chromosomes 2 and 4) of PBL from patients treated for uterus cancer by 10 MV X-rays or 290 MeV/n C-ions at NIRS (Japan) Durante et al., Int. J. Radiat. Oncol. Biol. Phys. 2000

32 Prostate cancer patients treated with C ion boost (mfish( mfish) 20 patients, adenocarcinoma, intermediate risk, mean age 66 years, Carbon ion boost (6 x 3 GyE) followed by 30 x 2 Gy IMRT ( Carbon + IMRT ) or IMRT 38 x 2 Gy ( IMRT ) IMRT, larger planning target volume PTV (including pelvic lymph nodes) 38 x 2 Gy ( IMRT* ) (C.Hartel et al., Radiother. Oncol. 2010)

33 Courtesy of A. Nikoghosyan and J. Debus, University of Heidelberg

34 What is the fate of human cells after a single heavy-ion traversal? If a single α-particle from a radioactive isotope, such as 226 Ra or 239 Pu, has a high probability to kill a cell, then it is difficult to understand how cells whose nuclei have been traversed by α-particles can survive to become malignant SINCLAIR,W. K., 1974, Physical Mechanisms in Radiation Biology, Conf p Survival of V79 hamster cells as a funtion of the number of nuclear α-particle tarversals counted by LR-115 solid state nuclear track deetctors (Pugliese et al., Int. J. Radiat. Biol. 1997)

35 Single heavy ion microbeam Courtesy of B. Fisher

36 Microbeam - Irradiation of single cells Target positions Biological response visualized by immuno-staining C 5x5 M. Heiß et al. Radiat. Res. (2006) 10 μm C 5x5 ions γh2ax

37 Courtesy of G. Taucher-Scholz Sub-cellular targeting with the heavy- ion microbeam

38 Courtesy of C. Fournier & S. Ritter Chromosomal rearrangements in normal human fibroblasts exposed to a single 12 C-ion traversal

39 Courtesy of C. Fournier & S. Ritter Clonal survivors LET=290 kev/μm No evidence of genomic instability (pre-senescence) Persistence of transmissible radiationinduced aberrations No significant changes in expression of cell-cycle regulating proteins (p53, p21 )

40

41 Brookhaven National Laboratory Aerial View NASA Space Radiation Lab (NSRL) $33.9 M facility to simulate space radiation NSRL F.A. Cucinotta 39

42 High-energy accelerator facilities where heavy-ion radiobiology studies are currently under way 10 5 Energy, MeV/n LLU JINR-Dubna LNS NSRL (BNL) FAIR HIMAC GANIL GSI 10 HIRFL Atomic number, Z

43 From GSI to FAIR Future Beams: Intensity: primary HI HI 100-fold secondary RIB RIB fold Species: Z = (anti-protons to to uranium) Energies: ions ions up up to to GeV/u antiprotons GeV/c Precision: full full beam cooling

44 Cancer risk Noncancer risk Acute effects Countermeasures Risk estimates Shielding design Genetic screening Countermeasures Risk assessment for exploration Effective countermeasures Basic research Knowledge Applied research Ground and flight experiments Spinoff Hadrontherapy ESA-NASA collaboration

45 Conclusions Heavy ions are different in many facets from X-rays and other genotoxic agents Their special radiobiological properties make them very effective in radiotherapy, but potentially dangerous for late effects, and therefore a major hazard in human space exploration The RBE depends on many different factors, and can drastically change for different endpoints. Notwithstanding many years of research in the field, the uncertainty is still high Accelerator-based research in radiobiology is essential for improving radiotherapy and ensure protection in space: it should be increased, and can serve both medical and space research communities

46 Thank you very much

Medical physics is beautiful

Medical physics is beautiful Translational research in particle therapy Marco Durante Medical physics is beautiful Pisa, 31.10.2014 Relative dose 1. 2 1. 0 Tumor Durante & Loeffler, Nature Rev Clin Oncol 2010 0. 8 Normal tissue 0.

More information

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS Prof. Marco Durante Risk from neutrons Risk from exposure to fission spectrum neutrons has been extensively studied in the 60 s at nuclear reactors using animal

More information

Hypofractionation in particle therapy. Marco Durante

Hypofractionation in particle therapy. Marco Durante Hypofractionation in particle therapy Marco Durante 29.04.2014 Radiosurgery (SBRT): the new frontier in stereotactic imageguided radiotherapy Stage I (T1N0M0) NSCLC Oligometastases Hepatocellular carcinoma

More information

Radiobiology for particle therapy

Radiobiology for particle therapy Radiobiology for particle therapy Marco Durante CNAO-NIRS meeting, Pavia 21.03.2010 INFN Workshop, Napoli, 4.4.2014 2 The radiobiological adavantages of particle therapy Jakob et al., PNAS 2009 PIDE database

More information

Space Radiation Risks for Long. Duration Missions Edward Semones

Space Radiation Risks for Long. Duration Missions Edward Semones Space Radiation Risks for Long Duration Missions Edward Semones Radiation Health Officer Space Life Sciences Directorate Johnson Space Center Presented to the American Astronautical Society November 16,

More information

Radiation -- A Cosmic Hazard to Human Habitation in Space

Radiation -- A Cosmic Hazard to Human Habitation in Space Radiation -- A Cosmic Hazard to Human Habitation in Space presentation to: Council on Ionizing Radiation Measurements and Standards (CIRMS) National Institute of Standards and Technology (NIST) March 2017

More information

RADIOBIOLOGY FOR SPACE RESEARCH

RADIOBIOLOGY FOR SPACE RESEARCH NUPECC Testard and Sabatier p.- 1 - RADIOBIOLOGY FOR SPACE RESEARCH Isabelle Testard 1, Laure Sabatier 2, Sylvia Ritter 3, Marco Durante 4 and Gerhard Kraft 1 CIRIL, rue Claude Bloch, BP 5133, F-14070

More information

Nuclear Data for Radiation Therapy

Nuclear Data for Radiation Therapy Symposium on Nuclear Data 2004 Nov. 12, 2004 @ JAERI, Tokai Nuclear Data for Radiation Therapy ~from macroscopic to microscopic~ Naruhiro Matsufuji, Yuki Kase and Tatsuaki Kanai National Institute of Radiological

More information

Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact. Stephen F. Kry, Ph.D., D.ABR.

Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact. Stephen F. Kry, Ph.D., D.ABR. Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact Stephen F. Kry, Ph.D., D.ABR. Goals Compare out-of-field doses from various techniques Methods to reduce out-of-field doses Impact of

More information

LET, RBE and Damage to DNA

LET, RBE and Damage to DNA LET, RBE and Damage to DNA Linear Energy Transfer (LET) When is stopping power not equal to LET? Stopping power (-de/dx) gives the energy lost by a charged particle in a medium. LET gives the energy absorbed

More information

Radiation Effects in Life Sciences

Radiation Effects in Life Sciences Radiation Effects in Life Sciences oocyte eggs in uterus spermatheca gonad Quality of Radiation Biological Effects Applications of SSD in Life sciences Nanodosimetry Particle Microscope (pct) vulva Radiation

More information

Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC

Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC Radiation qualities in carbon-ion radiotherapy at NIRS/ Shunsuke YONAI Radiological Protection Section Research Center for Charged Particle Therapy National Institute of Radiological Sciences (NIRS) E-mail:

More information

Radiation Carcinogenesis

Radiation Carcinogenesis Radiation Carcinogenesis November 11, 2014 Dhyan Chandra, Ph.D. Pharmacology and Therapeutics Roswell Park Cancer Institute Email: dhyan.chandra@roswellpark.org Overview - History of radiation and radiation-induced

More information

Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar and Mars Missions with Space Radiation Measurements

Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar and Mars Missions with Space Radiation Measurements Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar and Mars Missions with Space Radiation Measurements Myung-Hee Y. Kim Wyle Laboratories, Houston, Texas, 77058 and Francis A. Cucinotta

More information

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE I. Petrovi a, A. Risti -Fira a, L. Kori anac a, J. Požega a, F. Di Rosa b, P. Cirrone b and G. Cuttone

More information

Interazioni iniziali Radiaz. indirett. ionizzanti (raggi X, raggi γ)

Interazioni iniziali Radiaz. indirett. ionizzanti (raggi X, raggi γ) Radiobiologia delle particelle pesanti Angelica Facoetti Fondazione CNAO Corso teorico-pratico sull adroterapia: l alta tecnologia applicata alla clinica CNAO, Pavia, 17-1818 Maggio 2013 Radiobiologia

More information

Health Effects from Space Radiation. Zarana S. Patel, PhD Space Radiation Element NASA Human Research Program KBRwyle April 2, 2018

Health Effects from Space Radiation. Zarana S. Patel, PhD Space Radiation Element NASA Human Research Program KBRwyle April 2, 2018 Health Effects from Space Radiation Zarana S. Patel, PhD Space Radiation Element NASA Human Research Program KBRwyle April 2, 2018 Human Research Program The goal of HRP is to provide human health and

More information

The In-flux of Nuclear Science to Radiobiology

The In-flux of Nuclear Science to Radiobiology The In-flux of Nuclear Science to Radiobiology G. Taucher-Scholz, G. Kraft (GSI) 1 B. Michael (Gray Lab) 2 M. Belli (INFN) 3 1 GSI, Biophysik, Planckstr. 1, 64291 Darmstadt, Germany 2 Gray Lab.,Cancer

More information

Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy

Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy Wayne Newhauser, PhD Eurados Winter School, Milan, 2016 Introduction About 1 in 2 men and women born today will be diagnosed with some form

More information

The impact of different radiation qualities on cancer cells

The impact of different radiation qualities on cancer cells The impact of different radiation qualities on cancer cells Marjan Moreels, PhD Radiobiology Unit,, Belgium XXth Colloque GANIL Session 10, Amboise, France Oct 19, 2017 1 The Belgian Nuclear Research Center

More information

Outline. Outline 3/30/12. Second Cancers from. Radiotherapy Procedures. Stephen F. Kry, Ph.D., D.ABR.

Outline. Outline 3/30/12. Second Cancers from. Radiotherapy Procedures. Stephen F. Kry, Ph.D., D.ABR. Second Cancers from Radiotherapy Procedures Stephen F. Kry, Ph.D., D.ABR. Outline Radiation and cancer induction Medically exposed people Estimating risk of second cancers Minimizing the risk Outline Radiation

More information

Hadrons on Malignant Cells: Recent Activities within Collaboration between LNS INFN and Vinca Institute of Nuclear Sciences

Hadrons on Malignant Cells: Recent Activities within Collaboration between LNS INFN and Vinca Institute of Nuclear Sciences ENSAR2 Midterm Meeting of Networking Activity 5: MediNet March 12 th 14 th, 218 Vinča Institute of Nuclear sciences, University of Belgrade Hadrons on Malignant Cells: Recent Activities within Collaboration

More information

International Open Laboratory at NIRS (Second Term)

International Open Laboratory at NIRS (Second Term) Ryuichi Okayasu, Ph.D. Scientific Secretary E-mail: rokayasu@nirs.go.jp The second term NIRS International Open Laboratory (IOL) was started in April 2011 with four new units and its term was completed

More information

Modelling the induction of cell death and chromosome damage by therapeutic protons

Modelling the induction of cell death and chromosome damage by therapeutic protons Modelling the induction of cell death and chromosome damage by therapeutic protons M.P. Carante 1,2 and F. Ballarini 1,2, * 1 University of Pavia, Physics Department, Pavia, Italy 2 INFN, Sezione di Pavia,

More information

Proton and heavy ion radiotherapy: Effect of LET

Proton and heavy ion radiotherapy: Effect of LET Proton and heavy ion radiotherapy: Effect of LET As a low LET particle traverses a DNA molecule, ionizations are far apart and double strand breaks are rare With high LET particles, ionizations are closer

More information

Managing Lunar and Mars Mission Radiation Risks Part I: Cancer Risks, Uncertainties, and Shielding Effectiveness

Managing Lunar and Mars Mission Radiation Risks Part I: Cancer Risks, Uncertainties, and Shielding Effectiveness NASA/TP-2005-213164 Managing Lunar and Mars Mission Radiation Risks Part I: Cancer Risks, Uncertainties, and Shielding Effectiveness Francis A. Cucinotta NASA Lyndon B. Johnson Space Center Houston, Texas

More information

Out-of-field dosimetry in radiotherapy for input to epidemiological studies. Roger Harrison

Out-of-field dosimetry in radiotherapy for input to epidemiological studies. Roger Harrison MELODI 7th Workshop, 9 11 November 2015 Helmholtz Zentrum München Next Generation Radiation Protection Research Out-of-field dosimetry in radiotherapy for input to epidemiological studies Roger Harrison

More information

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction Neutrons Neutrons act like photons in the sense that they are attenuated as I = I 0 e μx where Unlike photons, neutrons interact via the strong interaction μ = The cross sections are much smaller than

More information

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation.

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation. Radiation Therapy Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation. One person in three will develop some form of cancer in their lifetime.

More information

arxiv: v4 [physics.med-ph] 17 Feb 2018

arxiv: v4 [physics.med-ph] 17 Feb 2018 Limitations in Predicting the Space Radiation Health Risk for Exploration Astronauts arxiv:1710.07311v4 [physics.med-ph] 17 Feb 2018 Jeffery C. Chancellor, 1 Rebecca S. Blue, 2 Keith A. Cengel, 3 Serena

More information

Limitations in predicting the space radiation health risk for exploration astronauts

Limitations in predicting the space radiation health risk for exploration astronauts www.nature.com/npjmgrav REVIEW ARTICLE OPEN for exploration astronauts Jeffery C. Chancellor 1, Rebecca S. Blue 2, Keith A. Cengel 3, Serena M. Auñón-Chancellor 4,5, Kathleen H. Rubins 4, Helmut G. Katzgraber

More information

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015)

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) Course Description: This course is an introduction to physics in medicine and is intended to introduce

More information

TFY4315 STRÅLINGSBIOFYSIKK

TFY4315 STRÅLINGSBIOFYSIKK Norges teknisk-naturvitenskaplige universitet Institutt for fysikk EKSAMENSOPPGÅVER med løysingsforslag Examination papers with solution proposals TFY4315 STRÅLINGSBIOFYSIKK Biophysics of Ionizing Radiation

More information

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam University of Chicago CDH Proton Center LET study C. Reft 1, H. Ramirez 2 and M. Pankuch

More information

Accelerated heavy ions as a tool for solving problems in fundamental and space radiobiology

Accelerated heavy ions as a tool for solving problems in fundamental and space radiobiology Accelerated heavy ions as a tool for solving problems in fundamental and space radiobiology E. Krasavin Round Table 2 Italy-Russia@Dubna on SPACE PHISICS and BIOLOGY On Earth - accelerators of heavy charged

More information

Radiation Related Second Cancers. Stephen F. Kry, Ph.D., D.ABR.

Radiation Related Second Cancers. Stephen F. Kry, Ph.D., D.ABR. Radiation Related Second Cancers Stephen F. Kry, Ph.D., D.ABR. Objectives Radiation is a well known carcinogen Atomic bomb survivors Accidental exposure Occupational exposure Medically exposed Radiotherapy

More information

Genomic Instability Induced by Ionizing Radiation

Genomic Instability Induced by Ionizing Radiation Genomic Instability Induced by Ionizing Radiation Christian Streffer Universitätsklinikum Essen, 45122 Essen, Germany INTRODUCTION In contrast to general assumptions it has frequently been shown that DNA

More information

Radiation Oncology. Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology

Radiation Oncology. Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology Radiation Oncology Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology This exam tests your knowledge of the principles of cancer and radiation biology

More information

Follow up Questions on Space

Follow up Questions on Space Follow up Questions on Space Radiation Risks Presented to IOM Committee on Ethics Principles and Guidelines for Health Standards for Long Duration and Exploration Spaceflights FrancisA A. Cucinotta, PhD

More information

A mechanistic framework to assess the efficacy of aspirin and other radioprotectors to reduce carcinogenesis by space radiations

A mechanistic framework to assess the efficacy of aspirin and other radioprotectors to reduce carcinogenesis by space radiations A mechanistic framework to assess the efficacy of aspirin and other radioprotectors to reduce carcinogenesis by space radiations Micaela Cunha David Brenner, Igor Shuryak Center for Radiological Research

More information

Biological Effects of Radiation

Biological Effects of Radiation Radiation and Radioisotope Applications EPFL Doctoral Course PY-031 Biological Effects of Radiation Lecture 09 Rafael Macian 23.11.06 EPFL Doctoral Course PY-031: Radioisotope and Radiation Applications

More information

Cancer situation as presented by (EC 1991)

Cancer situation as presented by (EC 1991) 3.1 Proton and Heavy Ion Beam Therapy G. Kraft, GSI, Biophysik, Darmstadt and J. Debus, DKFZ, Heidelberg Motivation Cancer is the second most frequent cause for disease in the developed countries. Every

More information

Assistant Professor Department of Therapeutic Radiology Yale University School of Medicine

Assistant Professor Department of Therapeutic Radiology Yale University School of Medicine A Mechanism-Based Approach to Predict Relative Biological i Effectiveness and the Effects of Tumor Hypoxia in Charged Particle Radiotherapy David J. Carlson, Ph.D. Assistant Professor Department of Therapeutic

More information

Extending LEIR to provide ion-beams for bio-medical experiments

Extending LEIR to provide ion-beams for bio-medical experiments Extending LEIR to provide ion-beams for bio-medical experiments ICTR-PHE 2012 Daniel Abler CERN danielabler@cernch 27022012 Daniel Abler (CERN) Biomedical Facility at LEIR 27022012 1 / 17 Background: Action

More information

UNC-Duke Biology Course for Residents Fall

UNC-Duke Biology Course for Residents Fall UNC-Duke Biology Course for Residents Fall 2018 1 UNC-Duke Biology Course for Residents Fall 2018 2 UNC-Duke Biology Course for Residents Fall 2018 3 UNC-Duke Biology Course for Residents Fall 2018 4 UNC-Duke

More information

Ion Beam Therapy should we prioritise research on helium beams?

Ion Beam Therapy should we prioritise research on helium beams? Ion Beam Therapy should we prioritise research on helium beams? Stuart Green Medical Physics University Hospital Birmingham NHS Trust Follow-up from the EUCARD2 workshop, ION Beam Therapy: Clinical, Scientific

More information

Out-of-field Radiation Risks in Paediatric Proton Therapy

Out-of-field Radiation Risks in Paediatric Proton Therapy Out-of-field Radiation Risks in Paediatric Proton Therapy Charlot Vandevoorde NRF ithemba LABS Contact: cvandevoorde@tlabs.ac.za Seventh NCS Lustrum Proton Therapy Amsterdam Charlot Vandevoorde 27 October

More information

What is radiation quality?

What is radiation quality? What is radiation quality? Dudley T Goodhead Medical Research Council, UK DoReMi Radiation Quality workshop Brussels. 9-10 July 2013 What is radiation quality? Let s start at the very beginning. A very

More information

Biological Optimization of Hadrontherapy. Uwe Oelfke

Biological Optimization of Hadrontherapy. Uwe Oelfke 4/2/2012 page 1 Biological Optimization of Hadrontherapy Uwe Oelfke DKFZ Heidelberg (E040) Im Neuenheimer Feld 280 69120 Heidelberg, Germany u.oelfke@dkfz.de 4/2/2012 page 2 Contents Introduction and General

More information

Radiobiologcal Research at the JINR Accelerators

Radiobiologcal Research at the JINR Accelerators Radiobiologcal Research at the JINR Accelerators Е. А. Krasavin Laboratory of Radiation Biology Академик Н.М.Сисакян Академик В.В.Парин Академик О.Г.Газенко β What fundamental problems were solved by the

More information

LUNAR MISSION ONE. Introduction

LUNAR MISSION ONE. Introduction LUNAR MISSION ONE Introduction Lunar Mission One is a public-funded project, with more than 7,000 backers from more than 70 countries and over $1m raised to date. It has wide-ranging objectives including

More information

The Impact of Bystander Effects and Adaptive Responses in the Health Risks of Low Dose Ionizing Radiation

The Impact of Bystander Effects and Adaptive Responses in the Health Risks of Low Dose Ionizing Radiation The Impact of Bystander Effects and Adaptive Responses in the Health Risks of Low Dose Ionizing Radiation Edouard Azzam New Jersey Medical School Newark, USA Two phenomena have been recently implicated

More information

The ANDANTE project: a multidisciplinary approach to neutron RBE

The ANDANTE project: a multidisciplinary approach to neutron RBE The ANDANTE project: a multidisciplinary approach to neutron RBE Andrea Ottolenghi, Klaus Trott, Giorgio Baiocco, Vere Smyth Università degli Studi di Pavia, Italy On behalf of the ANDANTE project MELODI

More information

LYMHOCYTE CHROMOSOMAL ABERRATION ASSAY IN RADIATION BIODOSIMETRY

LYMHOCYTE CHROMOSOMAL ABERRATION ASSAY IN RADIATION BIODOSIMETRY LYMHOCYTE CHROMOSOMAL ABERRATION ASSAY IN RADIATION BIODOSIMETRY Dr. Birutė Gricienė 1,2 1 Radiation Protection Centre 2 Vilnius University Introduction Ionising radiation is a well-known mutagenic and

More information

Treatment Planning (Protons vs. Photons)

Treatment Planning (Protons vs. Photons) Treatment Planning Treatment Planning (Protons vs. Photons) Acquisition of imaging data Delineation of regions of interest Selection of beam directions Dose calculation Optimization of the plan Hounsfield

More information

Radiation Physiology and Effects

Radiation Physiology and Effects Sources and types of space radiation Effects of radiation Shielding approaches 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu The Electromagnetic Spectrum Ref: Alan C. Tribble,

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 2 & 3 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy radiation

More information

Review of Heavy Ion Accelerators for Hadrontherapy

Review of Heavy Ion Accelerators for Hadrontherapy Review of Heavy Ion Accelerators for Hadrontherapy Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences 11 th Int l Conf. on Heavy Ion Accelerator Technology,

More information

Importance of Radiation Dosimetry standards in preclinical radiobiology studies

Importance of Radiation Dosimetry standards in preclinical radiobiology studies Importance of Radiation Dosimetry standards in preclinical radiobiology studies Ceferino Obcemea Radiation Research Program National Cancer Institute, Bethesda, MD, USA CIRMS 2018 No financial conflict

More information

Review of Hadron machines for cancer therapy

Review of Hadron machines for cancer therapy Review of Hadron machines for cancer therapy M. Kanazawa NIRS cancer therapy with hadron (p, C) Clinical studies at New ideas of accelerators Compact facilities (p, C) Depth dose distribution Carbon, proton

More information

RADIOLOGY AN DIAGNOSTIC IMAGING

RADIOLOGY AN DIAGNOSTIC IMAGING Day 2 p. 1 RADIOLOGY AN DIAGNOSTIC IMAGING Dr hab. Zbigniew Serafin, MD, PhD serafin@cm.umk.pl and Radiation Protection mainly based on: C. Scott Pease, MD, Allen R. Goode, MS, J. Kevin McGraw, MD, Don

More information

Calculated LET spectrum from antiproton beams stopping in water

Calculated LET spectrum from antiproton beams stopping in water Acta Oncologica, 2009; 48: 223226 ORIGINAL ARTICLE Calculated LET spectrum from antiproton beams stopping in water NIELS BASSLER 1,2 & MICHAEL HOLZSCHEITER 3 1 Department of Experimental Clinical Oncology,

More information

Multi-Ion Analysis of RBE using the Microdosimetric Kinetic Model

Multi-Ion Analysis of RBE using the Microdosimetric Kinetic Model Multi-Ion Analysis of RBE using the Microdosimetric Kinetic Model Council of Ionizing Radiation Measurements and Standards (CIRMS) March 28 th, 2017 Michael P. Butkus 1,2 Todd S. Palmer 2 1 Yale School

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 3, 4 & 5 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy

More information

New Treatment Research Facility Project at HIMAC

New Treatment Research Facility Project at HIMAC New Treatment Research Facility Project at Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences IPAC10, Kyoto, JAPAN, 25th May, 2010 Contents 1. Introduction

More information

III. Proton-therapytherapy. Rome SB - 5/5 1

III. Proton-therapytherapy. Rome SB - 5/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

Nuclear 3D organization and radiosensitivity

Nuclear 3D organization and radiosensitivity Journal of Physics: Conference Series PAPER OPEN ACCESS Nuclear 3D organization and radiosensitivity To cite this article: Y A Eidelman et al 2017 J. Phys.: Conf. Ser. 784 012009 View the article online

More information

Overview of Clinical and Research Activities at Georgetown University Hospital

Overview of Clinical and Research Activities at Georgetown University Hospital Overview of Clinical and Research Activities at Georgetown University Hospital Dalong Pang, Ph.D. Department of Radiation Medicine Georgetown University Hospital Clinical Operation Two Varian linear accelerators

More information

PROGRESS IN HADRONTHERAPY

PROGRESS IN HADRONTHERAPY PROGRESS IN HADRONTHERAPY Saverio Braccini TERA Foundation for Oncological Hadrontherapy IPRD06 - Siena - 01.10.06 - SB 1 Outline Introduction Radiation therapy with X rays and hadrontherapy Hadrontherapy

More information

C-Beam Induces More Chromosomal Damage In Chemo-Radio-Resistant Cells Than. O-Beam

C-Beam Induces More Chromosomal Damage In Chemo-Radio-Resistant Cells Than. O-Beam 1 C-Beam Induces More Chromosomal Damage In Chemo-Radio-Resistant Cells Than 16 O-Beam Utpal Ghosh 1, Regina Lichti Binz, Ratan Sadhukhan, Asitikantha Sarma 3, Subrata Kumar Dey 4,Martin Hauer-Jensen,

More information

FISH and PNA-FISH. FISH and PNA-FISH. Stochastic effect. Radiation and cancer. 1) chromosome 2) FISH 3) PNA-FISH. Chromosome translocations.

FISH and PNA-FISH. FISH and PNA-FISH. Stochastic effect. Radiation and cancer. 1) chromosome 2) FISH 3) PNA-FISH. Chromosome translocations. BIODOSIMETRY IN THE 21 st CENTURY Training Meeting HICARE in collaboration with the International Atomic Energy Agency Hiroshima, Japan, June 10-14, 2013. FISH and FISH and Satoshi Tashiro Research Institute

More information

Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry

Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry M. Caresana a, A. Sashala Naik a,c, S. Rollet b, M. Ferrarini a,d a Polytechnic

More information

LOW DOSES OF RADIATION REDUCE RISK IN VIVO

LOW DOSES OF RADIATION REDUCE RISK IN VIVO Dose-Response: An International Journal Volume 5 Issue 1 ADAPTIVE BIOLOGICAL RESPONSES FOLLOWING EXPOSURES TO IONIZING RADIATION Article 4 3-2007 LOW DOSES OF RADIATION REDUCE RISK IN VIVO REJ Mitchel

More information

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER Bro. Dr. Collie Miller IARC/WHO Based on trends in the incidence of cancer, the International Agency for Research on Cancer (IARC) and WHO

More information

Tumor Therapy with Heavy Ions at GSI Darmstadt

Tumor Therapy with Heavy Ions at GSI Darmstadt Tumor Therapy with Heavy Ions at GSI Darmstadt D. Schardt 1) for the Heavy Ion Therapy Collaboration 2) 1) Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany 2) GSI Darmstadt / Radiologische

More information

Genome Stability Department of Physiology

Genome Stability Department of Physiology Cytogenetic biomarkers of ionising radiation exposure: a multiparametric approach M. Prakash HANDE, Ph.D., M.P.H. Genome Stability Laboratory Department of Physiology Yong Loo Lin School of Medicine National

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology The role of intercellular communication and DNA double-strand breaks in the induction of bystander effects (INTERSTANDER) Contract N o FIGH-CT2002-00218

More information

Neutron dose evaluation in radiotherapy

Neutron dose evaluation in radiotherapy Neutron dose evaluation in radiotherapy Francesco d Errico University of Pisa, Italy Yale University, USA Radiation therapy with a linear accelerator (LINAC) Photoneutron production in accelerator head

More information

Nature of Radiation and DNA damage

Nature of Radiation and DNA damage Nature of Radiation and DNA damage Index 1. What is radiation? 2. Ionizing Radiation 3. Interaction of Gamma-radiation with Matter 4. Radiobiology 5. Direct and Indirect action of radiation 6. Steps of

More information

Neutron-Energy-Dependent Cell Survival and Oncogenic Transformation

Neutron-Energy-Dependent Cell Survival and Oncogenic Transformation J. RADIAT. RES., 40: SUPPL., 53 59 (1999) Neutron-Energy-Dependent Cell Survival and Oncogenic Transformation RICHARD C. MILLER 1 *, STEPHEN A. MARINO 1, STEWART G. MARTlN 2, KENSHI KOMATSU 3, CHARLES

More information

The Potential Impact of Bystander Effects on Radiation Risks in a Mars Mission

The Potential Impact of Bystander Effects on Radiation Risks in a Mars Mission RADIATION RESEARCH 156, 612 617 (2001) 0033-7587/01 $5.00 2001 by Radiation Research Society. All rights of reproduction in any form reserved. The Potential Impact of Bystander Effects on Radiation Risks

More information

ACR TXIT TM EXAM OUTLINE

ACR TXIT TM EXAM OUTLINE ACR TXIT TM EXAM OUTLINE Major Domain Sub-Domain 1 Statistics 1.1 Study design 1.2 Definitions of statistical terms 1.3 General interpretation & analysis 1.4 Survival curves 1.5 Specificity/sensitivity

More information

Impact of variable proton relative biological effectiveness on estimates of secondary cancer risk in paediatric cancer patients Vilde Grandemo

Impact of variable proton relative biological effectiveness on estimates of secondary cancer risk in paediatric cancer patients Vilde Grandemo Impact of variable proton relative biological effectiveness on estimates of secondary cancer risk in paediatric cancer patients Vilde Grandemo Supervisors: Kristian Smeland Ytre-Hauge and Camilla Hanquist

More information

Genome Instability is Breathtaking

Genome Instability is Breathtaking Genome Instability is Breathtaking Effects of Alpha Radiation exposure on DNA at a molecular level and consequences to cell health Dr. Aaron Goodarzi A.Goodarzi@ucalgary.ca Radiation what do you think

More information

Biological Effects of Radiation KJ350.

Biological Effects of Radiation KJ350. Biological Effects of Radiation KJ350 deborah.oughton@nmbu.no 2111 2005 Radiation Biology Interaction of radiation with biological material Doses (Gy, Sv) and effects Scientific Controversy Radiation Protection

More information

Study on Microdosimetry for Boron Neutron Capture Therapy

Study on Microdosimetry for Boron Neutron Capture Therapy Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.242-246 (2011) ARTICLE Study on Microdosimetry for Boron Neutron Capture Therapy Tetsuya MUKAWA 1,*, Tetsuo MATSUMOTO 1 and Koji NIITA 2 1 Tokyo City

More information

by Vered Anzenberg Author... Department of Nuclear Engineering August 8, 2005

by Vered Anzenberg Author... Department of Nuclear Engineering August 8, 2005 Do Heavy Ions Induce the Bystander Effect? Study to determine the induction of the bystander effect from Fe ion beam compared to x-rays in human keratinocytes by Vered Anzenberg Submitted to the Department

More information

PRINCIPLES and PRACTICE of RADIATION ONCOLOGY. Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology

PRINCIPLES and PRACTICE of RADIATION ONCOLOGY. Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology PRINCIPLES and PRACTICE of RADIATION ONCOLOGY Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology OUTLINE Physical basis Biological basis History of radiation therapy Treatment planning Technology

More information

William F. Morgan. Ph.D., D.Sc.

William F. Morgan. Ph.D., D.Sc. Biological Responses at Low Radiation Doses: Advances in Radiation Biology and Potential ti Implications for Radiation Exposure Regulations. William F. Morgan. Ph.D., D.Sc. Pacific Northwest National Laboratory

More information

Clinical Results of Carbon Ion Radiotherapy: The Heidelberg Experience

Clinical Results of Carbon Ion Radiotherapy: The Heidelberg Experience Clinical Results of Carbon Ion Radiotherapy: The Heidelberg Experience Stephanie E. Combs, MD Department of Radiation Oncology University of Heidelberg, Germany Carbon ion RT at GSI Active beam delivery

More information

Advances in biological dosimetry

Advances in biological dosimetry Advances in biological dosimetry A Ivashkevich 1,2, T Ohnesorg 3, C E Sparbier 1, H Elsaleh 1,4 1 Radiation Oncology, Canberra Hospital, Garran, ACT, 2605, Australia 2 Australian National University, Canberra

More information

Radiation Health Effects

Radiation Health Effects Radiation Health Effects Elena Buglova Incident and Emergency Centre Department of Nuclear Safety and Security Content Historical background Primary target for cell damage Deterministic effects Stochastic

More information

Scaling Human Cancer Risks from Low LET to High LET when Dose-Effect Relationships are Complex

Scaling Human Cancer Risks from Low LET to High LET when Dose-Effect Relationships are Complex Scaling Human Cancer Risks from Low LET to High LET when Dose-Effect Relationships are Complex Author(s): Igor Shuryak, Albert J. Fornace Jr., Kamal Datta, Shubhankar Suman, Santosh Kumar, Rainer K. Sachs

More information

Fukushima: What We All Should Know about Radiation

Fukushima: What We All Should Know about Radiation Fukushima: What We All Should Know about Radiation Peter N. Saeta, Harvey Mudd College Physics, 25 March 2011 Outline Radioactivity: what is it, what causes it, and what s a half life? How does ionizing

More information

U.S. Low Dose Radiation Research Program

U.S. Low Dose Radiation Research Program U.S. Low Dose Radiation Research Program Update November 2010 ISCORS NF Metting, ScD, Program Manager Office of Science Office of Biological and Environmental Research The Department of Energy Office of

More information

The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center

The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center Thomas Haberer, Scientific Technical Director, Heidelberg Ion Therapy Center Situation / Indications 2/3 patients suffer

More information

Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings

Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings ancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings Francis A ucinotta, Marco Durante Space programmes are shifting toward planetary exploration, and in

More information

Radiation Protection

Radiation Protection 2007 CERN Accelerator School (The bases of) Radiation Protection Marco Silari CERN, Geneva, Switzerland M. Silari Radiation Protection 21.09.2007 1 Introduction To tell you in one hour all about radiation

More information

Neutron Radiotherapy: Past, Present, and Future Directions

Neutron Radiotherapy: Past, Present, and Future Directions Neutron Radiotherapy: Past, Present, and Future Directions Theodore L. Phillips Lecture -- 2014 George E. Laramore Ph.D., M.D. NONE Conflicts of Interest Peter Wootton Professor of Radiation Oncology University

More information

Health Physics and the Linear No-Threshold Model

Health Physics and the Linear No-Threshold Model Health Physics and the Linear No-Threshold Model Understanding Radiation and Its Effects John Baunach Vanderbilt University Nashville, TN What is health physics? Outline What organizational bodies govern

More information