Intracranial arteriovenous malformations (iavms) are responsible

Size: px
Start display at page:

Download "Intracranial arteriovenous malformations (iavms) are responsible"

Transcription

1 4D Radial Acquisition Contrast-Enhanced MR Angiography and Intracranial Arteriovenous Malformations Quickly Approaching Digital Subtraction Angiography Christopher S. Eddleman, MD, PhD; Hyun J. Jeong, MS; Michael C. Hurley, MD; Sven Zuehlsdorff, PhD; Guilherme Dabus, MD; Christopher G. Getch, MD; H. Hunt Batjer, MD; Bernard R. Bendok, MD; Timothy J. Carroll, PhD Background and Purpose The current gold standard for imaging intracranial AVMs involves catheter-based techniques, namely cerebral digital subtraction angiography (DSA). However, DSA presents some procedural risks to the patient. Unfortunately, AVM patients usually undergo multiple DSA exams throughout their diagnostic and therapeutic course, significantly increasing their procedural risk exposure. As such, high-quality noninvasive imaging is desired. We hypothesize that 4D radial acquisition contrast-enhanced MRA approximates the vascular architecture and hemodynamics of AVMs compared to conventional angiography. Methods Thirteen consecutive AVM patients were assessed by 4D radial acquisition contrast-enhanced MRA and DSA. The 4D rce-mra images were independently assessed regarding the location, nidal size, Spetzler Martin grade, and identification of arterial feeders, drainage pattern, and any other vascular anomalies. Results 4D rce-mra correctly depicted the size, venous drainage pattern, and prominent arterial feeders in all cases. Spetzler Martin grade was correctly determined between reviewers and between the different imaging modalities in all cases except 1. The nidus size was in good correlation between the reviewers, where r 0.99, P There was very good agreement between reviewers regarding the individual scans ( 0.63 to 1), whereas the agreement between the DSA and 4D rce-mra images was also good ( 0.61 to 0.85). Conclusions We have developed a 4D radial acquisition contrast-enhanced MRA sequence capable of imaging intracranial AVMs approximating that of DSA. Image analysis demonstrates equivalency in terms of grading AVMs using the Spetzler Martin grading scale. This 4D rce-mra sequence has the potential to avoid some applications of DSA, thus saving patients from potential procedural risks. (Stroke. 2009;40: ) Key Words: arteriovenous malformation vascular imaging MRA DSA angiography Intracranial arteriovenous malformations (iavms) are responsible for the majority of spontaneous intracranial hemorrhages and confer significant morbidity and mortality in young adults. 1,2 Expectant management, eventual therapy, and postprocedural follow-up of iavms require detailed vascular imaging studies. The current gold standard for imaging iavms involves catheter-based techniques, namely cerebral digital subtraction angiography (DSA), mainly because of its high spatial (0.2 mm) and temporal (up to 24 frames/s) resolution capabilities. However, acquiring DSA images presents some procedural risks to the patient (0.5 to 12.2%), 3 5 including the risk of thromboembolic complications, vascular injury, and exposure to radiation and iodinated-contrast dyes. Unfortunately, iavm patients usually undergo multiple DSA exams throughout their diagnostic and therapeutic course, whether it is for preprocedural endovascular embolizations, surgical or radiosurgical planning, or follow-up imaging, which may be negative in many cases. Thus, multiple DSA examinations increase a patient s procedural risk exposure. As such, noninvasive imaging techniques have been desired. Noninvasive imaging of iavms using CT and MR angiography is not a novel concept Historically, the major disadvantages to both techniques have been inadequate spatial resolution and their inability to acquire dynamic information, ie, the adequate separation of arterial, capillary, and venous phases. Although CT angiography has the ability to demonstrate the iavm nidus, inadequate slice thickness and spatial resolution, absence of sufficient dynamic information, as well as exposure to ionizing radiation and iodinated contrast agents makes CT less than desirable. Time-of-flight magnetic resonance angiography (TOF-MRA), which uses the physiological properties of blood flow, was Received December 30, 2008; final revision received March 17, 2009; accepted April 8, From the Departments of Neurological Surgery (C.S.E., M.C.H., G.D., C.G.G., H.H.B., B.R.B.) and Radiology (C.S.E., H.J.J., M.C.H., G.D., B.R.B., T.J.C.), Feinberg School of Medicine, Northwestern University, and Siemens Medical Solutions USA Inc (S.Z.), Chicago, Ill. Correspondence to Christopher S. Eddleman MD, PhD, Department of Neurological Surgery Feinberg School of Medicine, Northwestern University, 676 North St Clair Ste 2210, Chicago, IL Eddleman@md.northwestern.edu 2009 American Heart Association, Inc. Stroke is available at DOI: /STROKEAHA

2 2750 Stroke August 2009 Table 1. AVMs Characteristics of Patients Imaged With Intracranial Patient Age Sex Location Presentation Treatment 1 33 F R medial parietal Hemorrhage GK 2 20 M R cerebellar Incidental Surgery 3 51 M L inferior frontal Vertigo GK 4 63 F L cerebellar L facial numbness GK 5 33 F R TPO Headache GK/surgery 6 56 F R posterior frontal Incidental GK 7 52 F L posterior frontal Hemorrhage GK 8 42 M R medial occipital Seizure GK/surgery 9 31 F L parietal Hemorrhage GK M R posterior frontal L parasthesias GK M R posterior frontal Seizure Embo/surgery M R cerebellar Ataxia Embo/surgery F L mesial temporal Hemorrhage GK TPO indicates tempo-parieto-occipital; GK, gamma knife; embo, embolization. developed to image the intracranial vasculature without the use of contrast agents or radiation. However, this technique lacks sufficient spatial and temporal resolution, requires a long acquisition period, and provides only a static nondynamic image of iavms. Furthermore, as a physiological technique, image quality suffers from spin dephasing that occurs in complex or turbulent flow patterns, very common in iavms, as well as signal saturation in areas of slow flow. 11 To overcome these limitations, with the addition of contrast agents, dynamic contrast-enhanced MRA (dce-mra) relies on the T1 shortening of gadolinium, thus requiring shorter acquisition times per scan as well as boasting a higher signal-to-noise ratio (SNR), thereby improving image quality; but still falls short of the standard set by conventional DSA Recently, however, dce-mra sequences have been developed with higher temporal resolution through increased frame rates and higher spatial resolution using novel signal acquisition sequences, eg, 4D CE-MRA with radial sliding window reconstruction and sliding mask subtraction (4D radial acquisition contrast-enhanced MRA [4D rce-mra]). 16,17 This sequence allows the acquisition of diagnostic quality images at a high enough temporal resolution such that the phases of intracranial circulation are adequately separated. In this report, we describe the imaging of intracranial AVMs using 4D rce-mra at 3T and verified the grading of these AVMs between this sequence and DSA from the same patient. We hypothesize that 4D rce-mra can accurately image the vascular architecture and hemodynamics of iavms. Materials and Methods Consecutive iavm patients who were scheduled to undergo stereotactic radiosurgery as well as patients who presented to the neurovascular clinic with prior DSA imaging were enrolled in a HIPPAcompliant IRB-approved study to undergo a 4D rce-mra scan during a 12-month period. The inclusion criteria for patients were presence of a previously untreated iavm, aged between 12 to 75 years old, and normal (GFR 60) renal function. Patients were only excluded if they did not meet the above criteria or chose not to participate in the study. No in-hospital patients were examined. Table 2. MRA/DSA Comparison Inter-Reviewer Kappa Values Reviewer 1 Reviewer 2 Reviewer 3 Reviewer Reviewer Reviewer Stereotactic DSA imaging was performed on a Neurostar biplane angiography unit (Siemens AG Healthcare Sector) by selective contrast injection of all territories feeding the iavm at 6 frames/s in standard orthogonal anteroposterior, lateral, and oblique projections. 4D rce-mra was performed on a 3T Whole-body MR-scanner (MAGNETOM Trio, Siemens AG Healthcare Sector, Erlangen, Germany) within 2 to 4 weeks of the DSA examination. A single injection of intravenous gadolinium (0.1 mmol/kg, Magnevist, Berlex) for each anatomic (sagittal and coronal) plane was used and injected at a rate of 4 ml/s. Our 4D rce-mra acquisition technique included radial k-space undersampling and pseudorandom view ordering, sliding scale windowing, and a sliding mask subtraction technique. 16,17 We achieved a field of view (FOV) of mm with pixel resolution of 1 mm with the temporal resolution at the equivalent of 6 frames per second by imaging the sagittal and coronal planes separately. A dynamic series of maximum-intensity-projection (MIP) images were generated in the sagittal and coronal planes and stored on a workstation. The 4D rce-mra images were independently assessed by a neuroradiologist, a neurosurgeon, and an interventional radiologist blinded to the patient and clinical information. No image sequences were viewed together, ie, DSA and MRA images from the same patient were viewed 2 to 3 weeks apart. An iavm imaging questionnaire was provided to each physician regarding the location, nidal size, Spetzler Martin (SM) grade, identification of arterial feeders, drainage pattern, and any vascular anomalies, eg, flowrelated aneurysms, venous stenosis, and varices. Each response was assigned a yes (1) or no (0) value except for the nidal size, which was a numeric value in centimeters. Each binary categorical response (eg, presence of deep drainage) was compared between DSA and MRA images as well between the 3 reviewers using a 2 reviewer Kappa analysis. The intra- and interreviewer Kappa analysis was performed using the MiniTab statistics program (Minitab Inc). Results Thirteen consecutive patients were assessed by 4D rce-mra and DSA. The patient demographics are listed in Table 1 (Mean age was with a male to female ratio of 6:7). DSA demonstrated 10 supratentorial and 3 infratentorial (cerebellar hemisphere) iavms. 4D rce-mra correctly depicted the size, venous drainage pattern, and prominent arterial feeders in all cases. SM grade was correctly determined between reviewers and between the different imaging modalities in all cases except one, where the size of the nidus was underestimated resulting in an SM grade that was greater than the grade assigned using DSA images. The nidus size was in good correlation between the reviewers (Supplemental Figure I, available online at stroke.ahajournals.org), where r 0.99, P , and 4D RACE MRA 0.93 DSA 0.14 cm. There was very good agreement between raters regarding the individual scans Table 3. MRA/DSA Comparison Intra-Reviewer Kappa Values Reviewer Reviewer Reviewer

3 Eddleman et al 4D rce-mra Versus Cerebral Angiography of AVMs 2751 Figure 1. Comparison of DSA and 4D rce-mra images in a patient with a deep iavm associated with a verix. White box in 4D rce-mra image shows magnified area represented by insert row. Numbers represent approximate elapsed time between frames in all rows. Arrow in 0.2-s frame demonstrates initial nidal filling. Arrow in 0.4-s frame points to venous verix, arrowhead points to main draining vein. ( 0.63 to 1; Table 2), and the agreement between the DSA and 4D rce-mra images was also good ( 0.61 to 0.85; Table 3). Figures 1 and 2 represent case examples. Figure 3 demonstrates the discovery of an incidental aneurysm on both DSA and 4D rce-mra images. Discussion Imaging We have found that the vascular architecture and hemodynamics of iavms can be determined using 4D rce-mra exams. Intracranial AVMs present a unique challenge for MRA because of the high-flow hemodynamics, ie, AV shunt transit times on the order of 0.5s. As such, conventional dynamic MR signal acquisition techniques, eg, contrastenhanced timing-robust angiography (CENTRA), keyhole and parallel imaging, and sensitivity encoding (SENSE), have improved the temporal resolution of MRA; however, these techniques have been less successful at achieving the necessary temporal resolution required to adequately separate the hemodynamic phases of iavms, ie, separate arterial and venous phases. 6 8,11,14,18 21 Several groups have reported temporal resolutions equivalent to image acquisition speeds as low as 600ms/frame However, acquiring adequate temporal resolution comes at the expense of spatial resolution, which for iavms requires high spatial resolution. Only recently, however, has sufficiently high spatial resolution been achieved using novel acquisition sequences such as rapid radial undersampling techniques. 16,17,26 MR undersampling techniques, although aiding in the improvement of the temporal resolution in recent reports of dce-mra of iavms, have still been ultimately limited by the necessity of enough contrast signal to capture all of the relevant physiological information within the time frame desired. To maintain both an acceptable signal-to-noise ratio along with adequate temporal resolution, we used a combination of several MR techniques, namely radial undersampling, sliding window reconstruction, and sliding mask subtraction. Radial undersampling involves sampling a higher density of the center of k-space, where the concentration of image energy resides, and less of the outer parts. Each radially acquired line of the image contains the center of k-space, in contrast to Cartesian sampling, which does not, and thus allows fewer acquisitions without significant signal loss. Further, this technique has been shown to increase the temporal resolution with minimal degradation of spatial resolution. 26,27 The sliding window reconstruction technique allows multiple frames between 2 consecutive independent acquisitions to be reconstructed by combining data from the 2 acquisitions. As a result, each reconstructed frame has an equal amount of data but involves various combinations of Figure 2. Comparison of DSA and 4D rce-mra images in a patient with a small infratentorial iavm. White box in 4D rce- MRA image shows magnified area represented by insert row. Numbers represent approximate elapsed time between frames in all rows. Arrow in 0.2-s frame demonstrates initial nidal filling. Arrowhead in 0.2-s frame represents en passage vessel identified. Arrowhead in 0.6-s frame points to small draining vein.

4 2752 Stroke August 2009 Figure 3. Demonstration of incidental aneurysm on DSA and 4D rce-mra images. White box shows area magnified in inset row. Arrowhead points to cavernous aneurysm. consecutive acquisitions. 26,27 The sliding mask subtraction technique allows the continuous subtraction of stagnate signal similar to digital subtraction angiography, which allows the dynamic phases of iavm filling to be separately imaged. 15 When these images are put together in a series, the dynamic filling of iavms can be clearly delineated with both high spatial and temporal resolution. Limitations The limitations of this study are several-fold. The current spatial resolution of 4D rce-mra is just on the order of 1 mm, less than that of DSA. Although many intracranial AVMs involve arterial feeders ( 1 mm) that may not be completely resolved using this 4D rce-mra technique, this limitation did not affect the grading of the iavms examined in this study, as arterial feeder size or location are not considered in the classification system. Further, current improvements in contrast agents and signal acquisition techniques continue to increase the visualization of these small arterial feeders. In the cases of iavms which involve the deeper parts of the brain, namely the thalamus, basal ganglia, and brain stem that are notorious for having arterial feeders that are even beyond the spatial resolution of DSA, 4D rce-mra may not be as useful a technique. However, the shape and volume of the nidus, which is what is used for stereotactic radiosurgery planning, could possibly be delineated. Lastly, iavms imaged with 4D rce-mra are shown to fill with contrast simultaneously from all arterial feeders, which could possibly obscure some arterial feeders in the same imaged plane, given that only the MIP images are used. However, this limitation can be overcome by either multiplane or 3D-rotational imaging, which is currently being examined at our institution. Several limitations regarding the future implementation of such an MR technique for imaging iavms exist. Many patients, including those with iavms, cannot undergo routine MR imaging because of the presence of ferromagnetic aneurysm clips, devices, or implants. Furthermore, medical comorbidities, such as severe renal failure, put patients at risk for nephrogenic systemic fibrosis, a serious syndrome involving extensive fibrosis of skin, joints, and internal organs associated with exposure to gadolinium. 28 Therefore, caution must be undertaken with renal patients by either decreasing the amount of contrast used or abandoning the use of contrasted imaging altogether. Fortunately, this syndrome is rare and even rarer in the young patients that often present with iavms. Moreover, contrast agents continue to improve in terms of increased signal (higher relaxivity) at lower doses, thus reducing the patients risks for this rare syndrome. 29 Future Considerations While DSA imaging of iavms will unlikely ever be replaced as long as endovascular options in their treatment exist, several clinical applications of this 4D rce-mra sequence are possible. Some centers continue to use stereotactic DSA in conjunction with MRI to plan radiosurgical treatment of iavms and other vascular lesions, including davfs. 18,30 Given the high correlation of SM grade between the 2 imaging modalities, this would allow radiosurgical planning using these MRA sequences and avoid any DSA procedural risks. Furthermore, DSA is an invasive procedure which requires increased costs compared to the acquisition of these image sequences. These studies are currently underway at our institution. Another important potential clinical application is using the 4D rce-mra sequences for preoperative planning. Localization of specific details of the angio-architecture can be difficult and potentially problematic when working near/ around eloquent areas of the brain. Having the ability to visualize the high-definition angio-architecture overlaid onto either cortical brain images or diffusion-tensor maps could allow the neurosurgeon to avoid unnecessary surgical complications. Furthermore, these sequences can be used in conjunction with stereotactic-guidance such that important aspects of the iavm nidus or corresponding vasculature can be noted throughout the resection. Finally, iavm patients often require multiple follow-up images, where some institutions still perform routine DSA. Although MR has been shown to be a viable option with regard to postradiosurgical treatment of iavms, this imaging modality could potentially improve the detection of residual nidus or early draining veins and minimize the number of DSA procedures required. Summary We have developed a 4D rce-mra sequence capable of imaging intracranial AVMs at sufficiently high spatial resolution and a temporal resolution at the equivalent of a frame rate acquisition of at least 6 frames/s, approximating that of DSA. Image analysis demonstrates equivalency in terms of grading iavms using the SM grading scale. This 4D rce- MRA sequence has the potential to avoid some applications of DSA, thus saving patients from potential procedural risks. Further use of this MRA sequence in different clinical applications is currently underway. Sources of Funding Sources of support include the US National Institutes of Health grants NS and EB005170, and the American Heart Association grant Z.

5 Eddleman et al 4D rce-mra Versus Cerebral Angiography of AVMs 2753 None. Disclosures References 1. Hernesniemi JA, Dashti R, Juvela S, Vaart K, Niemela M, Laakso A. Natural history of brain arteriovenous malformations: A long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery. 2008;63: ; discussion Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: A 24-year follow-up assessment. J Neurosurg. 1990;73: Burger IM, Murphy KJ, Jordan LC, Tamargo RJ, Gailloud P. Safety of cerebral digital subtraction angiography in children: Complication rate analysis in 241 consecutive diagnostic angiograms. Stroke. 2006;37: Dawkins AA, Evans AL, Wattam J, Romanowski CA, Connolly DJ, Hodgson TJ, Coley SC. Complications of cerebral angiography: A prospective analysis of 2,924 consecutive procedures. Neuroradiology. 2007; 49: Kaufmann TJ, Huston J III, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF. Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology. 2007;243: Duran M, Schoenberg SO, Yuh WT, Knopp MV, van Kaick G, Essig M. Cerebral arteriovenous malformations: Morphologic evaluation by ultrashort 3D gadolinium-enhanced MR angiography. Eur Radiol. 2002; 12: Farb RI, McGregor C, Kim JK, Laliberte M, Derbyshire JA, Willinsky RA, Cooper PW, Westman DG, Cheung G, Schwartz ML, Stainsby JA, Wright GA. Intracranial arteriovenous malformations: Real-time autotriggered elliptic centric-ordered 3D gadolinium-enhanced MR angiography initial assessment. Radiology. 2001;220: Gauvrit JY, Leclerc X, Oppenheim C, Munier T, Trystram D, Rachdi H, Nataf F, Pruvo JP, Meder JF. Three-dimensional dynamic MR digital subtraction angiography using sensitivity encoding for the evaluation of intracranial arteriovenous malformations: A preliminary study. AJNR Am J Neuroradiol. 2005;26: Gupta V, Chugh M, Walia BS, Vaishya S, Jha AN. Use of CT angiography for anatomic localization of arteriovenous malformation nidal components. AJNR Am J Neuroradiol. 2008;29: Hamm KD, Klisch J, Surber G, Kleinert G, Eger C, Aschenbach R Special aspects of diagnostic imaging for radiosurgery of arteriovenous malformations. Neurosurgery. 2008;62:A44 52; discussion A Ozsarlak O, Van Goethem JW, Maes M, Parizel PM. MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology. 2004;46: Zhang H, Maki JH, Prince MR. 3D contrast-enhanced MR angiography. J Magn Reson Imaging. 2007;25: Unlu E, Temizoz O, Albayram S, Genchellac H, Hamamcioglu MK, Kurt I, Demir MK. Contrast-enhanced MR 3D angiography in the assessment of brain AVMS. Eur J Radiol. 2006;60: Tsuchiya K, Katase S, Yoshino A, Hachiya J. MR digital subtraction angiography of cerebral arteriovenous malformations. AJNR Am J Neuroradiol. 2000;21: Cashen TA, Carr JC, Shin W, Walker MT, Futterer SF, Shaibani A, McCarthy RM, Carroll TJ. Intracranial time-resolved contrast-enhanced MR angiography at 3t. AJNR Am J Neuroradiol. 2006;27: Cashen TA, Jeong H, Shah MK, Bhatt HM, Shin W, Carr JC, Walker MT, Batjer HH, Carroll TJ. 4D radial contrast-enhanced MR angiography with sliding subtraction. Magn Reson Med. 2007;58: Jeong HJ, Cashen TA, Hurley MC, Eddleman CS, Getch CG, Batjer HH, Carroll TJ. Radial sliding window magnetic resonance angiography (MRA) with highly-constrained projection reconstruction (HYPR). Magn Reson Med. 2009;61: Gauvrit JY, Oppenheim C, Nataf F, Naggara O, Trystram D, Munier T, Fredy D, Pruvo JP, Roux FX, Leclerc X, Meder JF. Three-dimensional dynamic magnetic resonance angiography for the evaluation of radiosurgically treated cerebral arteriovenous malformations. Eur Radiol. 2006; 16: Summers PE, Kollias SS, Valavanis A. Resolution improvement in thick-slab magnetic resonance digital subtraction angiography using sense at 3t. J Magn Reson Imaging. 2004;20: Taschner CA, Gieseke J, Le Thuc V, Rachdi H, Reyns N, Gauvrit JY, Leclerc X. Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and K-space sampling techniques at 1.5 t. Radiology. 2008;246: Tsuchiya K, Aoki C, Fujikawa A, Hachiya J. Three-dimensional MR digital subtraction angiography using parallel imaging and keyhole data sampling in cerebrovascular diseases: Initial experience. Eur Radiol. 2004;14: Hadizadeh DR, von Falkenhausen M, Gieseke J, Meyer B, Urbach H, Hoogeveen R, Schild HH, Willinek WA. Cerebral arteriovenous malformation: Spetzler-martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at dsa. Radiology. 2008;246: Reinacher P, Reinges MH, Simon VA, Hans FJ, Krings T. Dynamic 3-D contrast-enhanced angiography of cerebral tumours and vascular malformations. Eur Radiol. 2007;17 Suppl 6:F52 F Reinacher PC, Stracke P, Reinges MH, Hans FJ, Krings T. Contrastenhanced time-resolved 3-D MRA: Applications in neurosurgery and interventional neuroradiology. Neuroradiology. 2007;49 Suppl 1:S3 S Saleh RS, Lohan DG, Villablanca JP, Duckwiler G, Kee ST, Finn JP. Assessment of craniospinal arteriovenous malformations at 3t with highly temporally and highly spatially resolved contrast-enhanced MR angiography. AJNR Am J Neuroradiol. 2008;29: Kumashiro M, Murase K, Oda K, Fukushige M, Ito O, Nagayama M, Watanabe Y. Assessment of time-resolved, dynamic, contrast-enhanced MRDSA using radial sliding-window reconstruction. Magn Reson Med Sci. 2008;7: d Arcy JA, Collins DJ, Rowland IJ, Padhani AR, Leach MO. Applications of sliding window reconstruction with Cartesian sampling for dynamic contrast enhanced MRI. NMR Biomed. 2002;15: Perez-Rodriguez J, Lai S, Ehst BD, Fine DM, Bluemke DA. Nephrogenic systemic fibrosis: incidence, associations, and effect of risk factor assessment report of 33 cases. Radiology. 2009;250: Juluru K, Vogel-Claussen J, Macura KJ, Kamel IR, Steever A, Bluemke DA. Mr imaging in patients at risk for developing nephrogenic systemic fibrosis: Protocols, practices, and imaging techniques to maximize patient safety. Radiographics. 2009;29: St George EJ, Butler P, Plowman PN. Can magnetic resonance imaging alone accurately define the arteriovenous nidus for gamma knife radiosurgery? J Neurosurg. 2002;97:

Dynamic 3D MR Angiography of Intra- and Extracranial Vascular Malformations at 3T: A Technical Note

Dynamic 3D MR Angiography of Intra- and Extracranial Vascular Malformations at 3T: A Technical Note AJNR Am J Neuroradiol 26:630 634, March 2005 Technical Note Dynamic 3D MR Angiography of Intra- and Extracranial Vascular Malformations at 3T: A Technical Note S. Ziyeh, R. Strecker, A. Berlis, J. Weber,

More information

Supratentorial cerebral arteriovenous malformations : a clinical analysis

Supratentorial cerebral arteriovenous malformations : a clinical analysis Original article: Supratentorial cerebral arteriovenous malformations : a clinical analysis Dr. Rajneesh Gour 1, Dr. S. N. Ghosh 2, Dr. Sumit Deb 3 1Dept.Of Surgery,Chirayu Medical College & Research Centre,

More information

Non-Invasive Follow-up Evaluation of Post-Embolized AVM with Time-Resolved MRA: A Case Report

Non-Invasive Follow-up Evaluation of Post-Embolized AVM with Time-Resolved MRA: A Case Report Non-Invasive Follow-up Evaluation of Post-Embolized AVM with Time-Resolved MRA: A Case Report Yong Woon Shim, MD 1 Tae-Sub Chung, MD 1 Won-Suk Kang, MD 1 Jin-Yang Joo, MD 2 Ralph Strecker, MD 3 Juergen

More information

AJNR Am J Neuroradiol 26: , June/July 2005

AJNR Am J Neuroradiol 26: , June/July 2005 AJNR Am J Neuroradiol 26:1525 1531, June/July 2005 Three-Dimensional Dynamic MR Digital Subtraction Angiography Using Sensitivity Encoding for the Evaluation of Intracranial Arteriovenous Malformations:

More information

Radiosurgery is an established technique for the treatment

Radiosurgery is an established technique for the treatment ORIGINAL RESEARCH D.R. Buis J.C.J. Bot F. Barkhof D.L. Knol F.J. Lagerwaard B.J. Slotman W.P. Vandertop R. van den Berg The Predictive Value of 3D Time-of-Flight MR Angiography in Assessment of Brain Arteriovenous

More information

1Pulse sequences for non CE MRA

1Pulse sequences for non CE MRA MRI: Principles and Applications, Friday, 8.30 9.20 am Pulse sequences for non CE MRA S. I. Gonçalves, PhD Radiology Department University Hospital Coimbra Autumn Semester, 2011 1 Magnetic resonance angiography

More information

Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage

Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage Cronicon OPEN ACCESS EC PAEDIATRICS Case Report Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage Dimitrios Panagopoulos* Neurosurgical Department, University

More information

Radiographic and statistical analysis of Brain Arteriovenous Malformations.

Radiographic and statistical analysis of Brain Arteriovenous Malformations. Radiographic and statistical analysis of Brain Arteriovenous Malformations. Poster No.: C-0996 Congress: ECR 2017 Type: Educational Exhibit Authors: C. E. Rodriguez 1, A. Lopez Moreno 1, D. Sánchez Paré

More information

MR Advance Techniques. Vascular Imaging. Class II

MR Advance Techniques. Vascular Imaging. Class II MR Advance Techniques Vascular Imaging Class II 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

Vascular Malformations of the Brain: A Review of Imaging Features and Risks

Vascular Malformations of the Brain: A Review of Imaging Features and Risks Vascular Malformations of the Brain: A Review of Imaging Features and Risks Comprehensive Neuroradiology: Best Practices October 27-30, 2016 Sudhakar R. Satti, MD Associate Director Neurointerventional

More information

Role of Three-Dimensional Rotational Angiography in the Treatment of Spinal Dural Arteriovenous Fistulas

Role of Three-Dimensional Rotational Angiography in the Treatment of Spinal Dural Arteriovenous Fistulas Open Access Case Report DOI: 10.7759/cureus.1932 Role of Three-Dimensional Rotational Angiography in the Treatment of Spinal Dural Arteriovenous Fistulas Yigit Ozpeynirci 1, Bernd Schmitz 2, Melanie Schick

More information

Evaluation of Intracranial Vasculatures in Healthy Subjects with Arterial-Spin-Labeling-Based 4D-MR Angiography at 3T

Evaluation of Intracranial Vasculatures in Healthy Subjects with Arterial-Spin-Labeling-Based 4D-MR Angiography at 3T Magn Reson Med Sci, Vol. 15, No. 3, pp. 335 339, 2016 doi:10.2463/mrms.tn.2015-0081 TECHNICAL NOTE Evaluation of Intracranial Vasculatures in Healthy Subjects with Arterial-Spin-Labeling-Based 4D-MR Angiography

More information

Postoperative Assessment of Extracranial Intracranial Bypass by Time- Resolved 3D Contrast-Enhanced MR Angiography Using Parallel Imaging

Postoperative Assessment of Extracranial Intracranial Bypass by Time- Resolved 3D Contrast-Enhanced MR Angiography Using Parallel Imaging AJNR Am J Neuroradiol 26:2243 2247, October 2005 Postoperative Assessment of Extracranial Intracranial Bypass by Time- Resolved 3D Contrast-Enhanced MR Angiography Using Parallel Imaging Kazuhiro Tsuchiya,

More information

ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS

ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS Dr. Maitri P Gandhi 1, Dr. Chandni P Shah 2 1 Junior resident, Gujarat Cancer & Research

More information

CT angiography and its role in the investigation of intracranial haemorrhage

CT angiography and its role in the investigation of intracranial haemorrhage CT angiography and its role in the investigation of intracranial haemorrhage RD Magazine, 39, 458, 29-30 Dr M Igra Radiology SPR Leeds General Infirmary Dr I Djoukhadar Research fellow Wolfson Molecular

More information

Methods. Treatment options for intracranial arteriovenous malformations

Methods. Treatment options for intracranial arteriovenous malformations AJNR Am J Neuroradiol 25:1139 1143, August 2004 Complete Obliteration of Intracranial Arteriovenous Malformation with Endovascular Cyanoacrylate Embolization: Initial Success and Rate of Permanent Cure

More information

Magnetic Resonance Angiography

Magnetic Resonance Angiography Magnetic Resonance Angiography 1 Magnetic Resonance Angiography exploits flow enhancement of GR sequences saturation of venous flow allows arterial visualization saturation of arterial flow allows venous

More information

TR-3D-CE-MRA, a multiphase acquisition technique, enables

TR-3D-CE-MRA, a multiphase acquisition technique, enables ORIGINAL RESEARCH H. Raoult J.-C. Ferré X. Morandi B. Carsin-Nicol M. Carsin M. Cuggia M. Law J.-Y. Gauvrit Quality-Evaluation Scheme for Cerebral Time-Resolved 3D Contrast-Enhanced MR Angiography Techniques

More information

Brain Arteriovenous Malformations Endovascular Therapy and Associated Therapeutic Protocols Jorge Guedes Cabral de Campos

Brain Arteriovenous Malformations Endovascular Therapy and Associated Therapeutic Protocols Jorge Guedes Cabral de Campos Endovascular Therapy and Associated Therapeutic Protocols Jorge Guedes Cabral de Campos Neuroradiology Department Hospital de Santa Maria University of Lisbon CEREBRAL AVM CLINICAL / EPIDEMIOLOGY Brain

More information

What Is an Arteriovenous malformation (AVM)?

What Is an Arteriovenous malformation (AVM)? American Society of Neuroradiology What Is an Arteriovenous malformation (AVM)? From the Cerebrovascular Imaging and Intervention Committee of the American Heart Association Cardiovascular Council Randall

More information

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA 99. MRA Principles and Carotid MRA As described in Chapter 12, time of flight (TOF) magnetic resonance angiography (MRA) is commonly utilized in the evaluation of the circle of Willis. TOF MRA allows depiction

More information

There is good evidence for the use of color in tasks that. Parametric Color Coding of Digital Subtraction Angiography ORIGINAL RESEARCH

There is good evidence for the use of color in tasks that. Parametric Color Coding of Digital Subtraction Angiography ORIGINAL RESEARCH ORIGINAL RESEARCH C.M. Strother F. Bender Y. Deuerling-Zheng K. Royalty K.A. Pulfer J. Baumgart M. Zellerhoff B. Aagaard-Kienitz D.B. Niemann M.L. Lindstrom Parametric Color Coding of Digital Subtraction

More information

Assessment of Cardio- & Neurovascular Hemodynamics in the Human Circulatory System using 4D flow MRI

Assessment of Cardio- & Neurovascular Hemodynamics in the Human Circulatory System using 4D flow MRI Assessment of Cardio- & Neurovascular Hemodynamics in the Human Circulatory System using 4D flow MRI Michael Markl, Ph.D. Departments of Radiology & Biomedical Engineering Northwestern University, Chicago,

More information

EMBOLIZATION OF ARTERIOVENOUS FISTULA AFTER RADIOSURGERY FOR MULTIPLE CEREBRAL ARTERIOVENOUS MALFORMATIONS

EMBOLIZATION OF ARTERIOVENOUS FISTULA AFTER RADIOSURGERY FOR MULTIPLE CEREBRAL ARTERIOVENOUS MALFORMATIONS Arteriovenous fistula after radiosurgery for multiple CAVM EMBOLIZATION OF ARTERIOVENOUS FISTULA AFTER RADIOSURGERY FOR MULTIPLE CEREBRAL ARTERIOVENOUS MALFORMATIONS Chao-Bao Luo, Wan-Yuo Guo, Michael

More information

Neurosurgical decision making in structural lesions causing stroke. Dr Rakesh Ranjan MS, MCh, Dip NB (Neurosurgery)

Neurosurgical decision making in structural lesions causing stroke. Dr Rakesh Ranjan MS, MCh, Dip NB (Neurosurgery) Neurosurgical decision making in structural lesions causing stroke Dr Rakesh Ranjan MS, MCh, Dip NB (Neurosurgery) Subarachnoid Hemorrhage Every year, an estimated 30,000 people in the United States experience

More information

Neuroradiology MR Protocols

Neuroradiology MR Protocols Neuroradiology MR Protocols Brain protocols N 1: Brain MRI without contrast N 2: Pre- and post-contrast brain MRI N 3 is deleted N 4: Brain MRI without or pre-/post-contrast (seizure protocol) N 5: Pre-

More information

Life after ARUBA: Management of Unruptured Brain Arteriovenous Malformations (AVMs)

Life after ARUBA: Management of Unruptured Brain Arteriovenous Malformations (AVMs) Life after ARUBA: Management of Unruptured Brain Arteriovenous Malformations (AVMs) Eric L. Zager, MD University of Pennsylvania Department of Neurosurgery No Disclosures Brain AVMs Incidence ~1 in 100,000

More information

Diagnosis and Management of AVM in the Pregnant Patient

Diagnosis and Management of AVM in the Pregnant Patient Diagnosis and Management of AVM in the Pregnant Patient Wade Cooper, D.O. University of Michigan Assistant Professor Departments of Neurology & Anesthesiology Disclosures Wade Cooper - None Developmental

More information

Endovascular treatment of intracranial aneurysms with detachable

Endovascular treatment of intracranial aneurysms with detachable ORIGINAL RESEARCH L. Pierot C. Delcourt F. Bouquigny D. Breidt B. Feuillet O. Lanoix S. Gallas Follow-Up of Intracranial Aneurysms Selectively Treated with Coils: Prospective Evaluation of Contrast-Enhanced

More information

Contrast material enhanced threedimensional

Contrast material enhanced threedimensional Winfried A. Willinek, MD Jürgen Gieseke, PhD Rudolf Conrad, MD Holger Strunk, MD Romhild Hoogeveen, PhD Marcus von Falkenhausen, MD Ewald Keller, MD Horst Urbach, MD Christiane K. Kuhl, MD Hans H. Schild,

More information

Methods. Yahya Paksoy, Bülent Oğuz Genç, and Emine Genç. AJNR Am J Neuroradiol 24: , August 2003

Methods. Yahya Paksoy, Bülent Oğuz Genç, and Emine Genç. AJNR Am J Neuroradiol 24: , August 2003 AJNR Am J Neuroradiol 24:1364 1368, August 2003 Retrograde Flow in the Left Inferior Petrosal Sinus and Blood Steal of the Cavernous Sinus Associated with Central Vein Stenosis: MR Angiographic Findings

More information

Cerebral MR Venography: Normal Anatomy and Potential Diagnostic Pitfalls

Cerebral MR Venography: Normal Anatomy and Potential Diagnostic Pitfalls AJNR Am J Neuroradiol 21:74 78, January 2000 Cerebral MR Venography: Normal Anatomy and Potential Diagnostic Pitfalls R. H. Ayanzen, C. R. Bird, P. J. Keller, F. J. McCully, M. R. Theobald, and J. E. Heiserman

More information

NIH Public Access Author Manuscript J Am Coll Radiol. Author manuscript; available in PMC 2013 June 24.

NIH Public Access Author Manuscript J Am Coll Radiol. Author manuscript; available in PMC 2013 June 24. NIH Public Access Author Manuscript Published in final edited form as: J Am Coll Radiol. 2010 January ; 7(1): 73 76. doi:10.1016/j.jacr.2009.06.015. Cerebral Aneurysms Janet C. Miller, DPhil, Joshua A.

More information

Clinical Commissioning Policy: Arteriovenous Malformations. December Reference : NHSCB/D5/4

Clinical Commissioning Policy: Arteriovenous Malformations. December Reference : NHSCB/D5/4 Clinical Commissioning Policy: Arteriovenous Malformations December 2012 Reference : NHSCB/D5/4 NHS Commissioning Board Clinical Commissioning Policy: Arteriovenous Malformations First published: December

More information

NEURORADIOLOGY Part I

NEURORADIOLOGY Part I NEURORADIOLOGY Part I Vörös Erika University of Szeged Department of Radiology SZEGED BRAIN IMAGING METHODS Plain film radiography Ultrasonography (US) Computer tomography (CT) Magnetic resonance imaging

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Gregg NM, Kim AE, Gurol ME, et al. Incidental cerebral microbleeds and cerebral blood flow in elderly individuals. JAMA Neurol. Published online July 13, 2015. doi:10.1001/jamaneurol.2015.1359.

More information

DAVFs and AVMs are cerebral vascular malformations

DAVFs and AVMs are cerebral vascular malformations ORIGINAL RESEARCH T.T. Le N.J. Fischbein J.B. André C. Wijman J. Rosenberg G. Zaharchuk Identification of Venous Signal on Arterial Spin Labeling Improves Diagnosis of Dural Arteriovenous Fistulas and

More information

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal Magnetic Resonance Imaging Protons aligned with B0 magnetic filed Longitudinal magnetization - T1 relaxation Transverse magnetization - T2 relaxation Signal measured in the transverse plane Basics of MRI

More information

Surface Appearance of the Vertebrobasilar Artery Revealed on Basiparallel Anatomic Scanning (BPAS) MR Imaging: Its Role for Brain MR Examination

Surface Appearance of the Vertebrobasilar Artery Revealed on Basiparallel Anatomic Scanning (BPAS) MR Imaging: Its Role for Brain MR Examination AJNR Am J Neuroradiol 26:2508 2513, November/December 2005 Surface Appearance of the Vertebrobasilar Artery Revealed on Basiparallel Anatomic Scanning (BPAS) MR Imaging: Its Role for Brain MR Examination

More information

Anatomic Evaluation of the Circle of Willis: MR Angiography versus Intraarterial Digital Subtraction Angiography

Anatomic Evaluation of the Circle of Willis: MR Angiography versus Intraarterial Digital Subtraction Angiography Anatomic Evaluation of the Circle of Willis: MR Angiography versus Intraarterial Digital Subtraction Angiography K. W. Stock, S. Wetzel, E. Kirsch, G. Bongartz, W. Steinbrich, and E. W. Radue PURPOSE:

More information

Advanced Vascular Imaging: Pulsatile Tinnitus. Disclosures. Pulsatile Tinnitus: Differential Diagnosis. Pulsatile Tinnitus

Advanced Vascular Imaging: Pulsatile Tinnitus. Disclosures. Pulsatile Tinnitus: Differential Diagnosis. Pulsatile Tinnitus Advanced Vascular Imaging: Pulsatile Tinnitus Patrick Turski MD, Zach Clark MD, Tabby Kennedy MD The Objectives of this presentation are to: Review the differential diagnosis of pulsatile tinnitus Discuss

More information

Department of Radiology University of California San Diego. MR Angiography. Techniques & Applications. John R. Hesselink, M.D.

Department of Radiology University of California San Diego. MR Angiography. Techniques & Applications. John R. Hesselink, M.D. Department of Radiology University of California San Diego MR Angiography Techniques & Applications John R. Hesselink, M.D. Vascular Imaging Arterial flow void Flow enhancement Gadolinium enhancement Vascular

More information

Endovascular Treatment of Cerebral Arteriovenous Malformations. Bs. Nguyễn Ngọc Pi Doanh- Bs Đặng Ngọc Dũng Khoa Ngoại Thần Kinh

Endovascular Treatment of Cerebral Arteriovenous Malformations. Bs. Nguyễn Ngọc Pi Doanh- Bs Đặng Ngọc Dũng Khoa Ngoại Thần Kinh Endovascular Treatment of Cerebral Arteriovenous Malformations Bs. Nguyễn Ngọc Pi Doanh- Bs Đặng Ngọc Dũng Khoa Ngoại Thần Kinh Stroke Vascular Malformations of the Brain Epidemiology: - Incidence: 0.1%,

More information

Time-resolved Magnetic Resonance Angiography for assessment of recanalization after coil embolization of visceral artery aneurysms

Time-resolved Magnetic Resonance Angiography for assessment of recanalization after coil embolization of visceral artery aneurysms Signature: Pol J Radiol, 2013; 78(1): 64-68 DOI: 10.12659/PJR.883769 CASE REPORT Received: 2012.09.29 Accepted: 2013.01.15 Time-resolved Magnetic Resonance Angiography for assessment of recanalization

More information

Vascular Malformations

Vascular Malformations Vascular Malformations LTC Robert Shih Chief of Neuroradiology Walter Reed Medical Center Special thanks to LTC Alice Smith (retired) Disclosures: None. This presentation reflects the personal views of

More information

Published November 13, 2014 as /ajnr.A4164

Published November 13, 2014 as /ajnr.A4164 Published November 13, 2014 as 10.3174/ajnr.A4164 ORIGINAL RESEARCH SPINE Time-Resolved Contrast-Enhanced MR Angiography of Spinal Vascular Malformations M. Amarouche, J.L. Hart, A. Siddiqui, T. Hampton,

More information

Dural Arteriovenous Malformations and Fistulae (DAVM S DAVF S)

Dural Arteriovenous Malformations and Fistulae (DAVM S DAVF S) Jorge Guedes Campos NEUROIMAGING DEPARTMENT HOSPITAL SANTA MARIA UNIVERSITY OF LISBON PORTUGAL DEFINITION region of arteriovenous shunting confined to a leaflet of packymeninges often adjacent to a major

More information

Making the difference with Live Image Guidance

Making the difference with Live Image Guidance AneurysmFlow Interventional X-ray Making the difference with Live Image Guidance Enhance insight into cerebral aneurysm flow Key benefits Visualizes blood flow patterns in the parent vessel and aneurysm

More information

3D DCE-MRA of pedal arteries in patients with diabetes mellitus

3D DCE-MRA of pedal arteries in patients with diabetes mellitus Journal of Physics: Conference Series PAPER OPEN ACCESS 3D DCE-MRA of pedal arteries in patients with diabetes mellitus To cite this article: M Zamyshevskaya et al 2016 J. Phys.: Conf. Ser. 677 012010

More information

Blunt Carotid Injury- CT Angiography is Adequate For Screening. Kelly Knudson, M.D. UCHSC April 3, 2006

Blunt Carotid Injury- CT Angiography is Adequate For Screening. Kelly Knudson, M.D. UCHSC April 3, 2006 Blunt Carotid Injury- CT Angiography is Adequate For Screening Kelly Knudson, M.D. UCHSC April 3, 2006 CT Angiography vs Digital Subtraction Angiography Blunt carotid injury screening is one of the very

More information

Arteriovenous (AV) shunts of the spinal cord and its meninges

Arteriovenous (AV) shunts of the spinal cord and its meninges ORIGINAL RESEARCH M. Mull R.J. Nijenhuis W.H. Backes T. Krings J.T. Wilmink A. Thron Value and Limitations of Contrast-Enhanced MR Angiography in Spinal Arteriovenous Malformations and Dural Arteriovenous

More information

Hemodynamic patterns of status epilepticus detected by susceptibility weighted imaging (SWI)

Hemodynamic patterns of status epilepticus detected by susceptibility weighted imaging (SWI) Hemodynamic patterns of status epilepticus detected by susceptibility weighted imaging (SWI) Poster No.: C-1086 Congress: ECR 014 Type: Scientific Exhibit Authors: J. AELLEN, E. Abela, R. Kottke, E. Springer,

More information

Making the difference with Live Image Guidance

Making the difference with Live Image Guidance AneurysmFlow Interventional X-ray Making the difference with Live Image Guidance Enhance insight into cerebral aneurysm flow Key benefits Visualizes blood flow patterns in the parent vessel and aneurysm

More information

Lecture Outline: 1/5/14

Lecture Outline: 1/5/14 John P. Karis, MD Lecture Outline: Provide a clinical overview of stroke: Risk Prevention Diagnosis Intervention Illustrate how MRI is used in the diagnosis and management of stroke. Illustrate how competing

More information

Cerebral arteriovenous malformations are associated with an

Cerebral arteriovenous malformations are associated with an ORIGINAL RESEARCH INTERVENTIONAL Evaluation of 4D Vascular Flow and Tissue Perfusion in Cerebral Arteriovenous Malformations: Influence of Spetzler-Martin Grade, Clinical Presentation, and AVM Risk Factors

More information

Field Strength. Regional Perfusion Imaging (RPI) matches cerebral arteries to flow territories

Field Strength. Regional Perfusion Imaging (RPI) matches cerebral arteries to flow territories Field Strength Changing how the world looks at MR. Regional Perfusion Imaging (RPI) matches cerebral arteries to flow territories Research groups in Utrecht, Baltimore and Singapore collaborate on this

More information

Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke

Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke Original Contribution Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke Abstract Introduction: Acute carotid artery occlusion carries

More information

The diagnosis of a cranial dural arteriovenous fistula

The diagnosis of a cranial dural arteriovenous fistula ORIGINAL RESEARCH R.I. Farb R. Agid R.A. Willinsky D.M. Johnstone K.G. terbrugge Cranial Dural Arteriovenous Fistula: Diagnosis and Classification with Time-Resolved MR Angiography at 3T BACKGROUND AND

More information

Three-Dimensional Rotational Angiography of Neurovascular Lesions in Pediatric Patients

Three-Dimensional Rotational Angiography of Neurovascular Lesions in Pediatric Patients ngiography of Neurovascular Lesions in Pediatric Patients Pediatric Imaging Pictorial Essay M E E N T U R I L I M G I N G JR 2006; 186:75 84 0361 803X/06/1861 75 merican Roentgen Ray Society Y O John M.

More information

Imaging of Cerebrovascular Disease

Imaging of Cerebrovascular Disease Imaging of Cerebrovascular Disease A Practical Guide Val M. Runge, MD Editor-in-Chief of Investigative Radiology Institute for Diagnostic, Interventional, and Pediatric Radiology Inselspital, University

More information

Intracranial dural arteriovenous fistulas (DAVFs) with retrograde

Intracranial dural arteriovenous fistulas (DAVFs) with retrograde ORIGINAL RESEARCH W.J. van Rooij M. Sluzewski G.N. Beute Dural Arteriovenous Fistulas with Cortical Venous Drainage: Incidence, Clinical Presentation, and Treatment BACKGROUND AND PURPOSE: Our purpose

More information

Objectives and Outline

Objectives and Outline Development and Clinical Applications of Time- Resolved Magnetic Resonance Angiography Thomas M. Grist, MD, FACR ICRU Gray Symposium AAPM 2017 Denver, CO Objectives and Outline Objectives: Share some key

More information

The standard examination to evaluate for a source of subarachnoid

The standard examination to evaluate for a source of subarachnoid Published April 11, 2013 as 10.3174/ajnr.A3478 ORIGINAL RESEARCH INTERVENTIONAL Use of CT Angiography and Digital Subtraction Angiography in Patients with Ruptured Cerebral Aneurysm: Evaluation of a Large

More information

Explaining All of the Options for AVM: Cerebral Arteriovenous Malformation

Explaining All of the Options for AVM: Cerebral Arteriovenous Malformation Explaining All of the Options for AVM: Cerebral Arteriovenous Malformation Recorded on: November 19, 2012 Bernard Bendok, M.D. Director of the Neurointerventional Program Northwestern Memorial Hospital

More information

Specialised Services Policy: CP22. Stereotactic Radiosurgery

Specialised Services Policy: CP22. Stereotactic Radiosurgery Specialised Services Policy: CP22 Document Author: Assistant Director of Planning Executive Lead: Director of Planning ad Performance Approved by: Management Group Issue Date: 01 July 2015 Review Date:

More information

Application of susceptibility weighted imaging (SWI) for evaluation of draining. veins of arteriovenous malformation: Utility of magnitude images.

Application of susceptibility weighted imaging (SWI) for evaluation of draining. veins of arteriovenous malformation: Utility of magnitude images. Application of susceptibility weighted imaging (SWI) for evaluation of draining veins of arteriovenous malformation: Utility of magnitude images. Toshiteru Miyasaka 1, Toshiaki Taoka 1, Hiroyuki Nakagawa

More information

CT perfusion in Moyamoya disease

CT perfusion in Moyamoya disease CT perfusion in Moyamoya disease Poster No.: C-1726 Congress: ECR 2015 Type: Scientific Exhibit Authors: K. C. Lam, C. P. Tsang, K. K. Wong, R. LEE ; HK, Hong Kong/HK Keywords: Hemodynamics / Flow dynamics,

More information

MR Angiography in the evaluation of Lower Extremity Arterial Disease

MR Angiography in the evaluation of Lower Extremity Arterial Disease March 2001 MR Angiography in the evaluation of Lower Extremity Arterial Disease Ted Mau, Harvard Medical School Year III Objectives We will cover: Indications for Magnetic Resonance Angiography (MRA) Basic

More information

Clinical Safety & Effectiveness Cohort 4-UTHSCSA. MRI Contrast Mis-administrations. May 21, 2010

Clinical Safety & Effectiveness Cohort 4-UTHSCSA. MRI Contrast Mis-administrations. May 21, 2010 Clinical Safety & Effectiveness Cohort 4-UTHSCSA MRI Contrast Mis-administrations May 21, 2010 1 2 UTHSCSA/UHS The Team Ken Kist, MD (cohort member) Gilbert Cortez (cohort member) Kristi Hill-Herrera (cohort

More information

3D time-of-flight (3D TOF) MR angiography (MRA)

3D time-of-flight (3D TOF) MR angiography (MRA) ORIGINAL RESEARCH H.A. Deutschmann M. Augustin J. Simbrunner B. Unger H. Schoellnast G.A. Fritz G.E. Klein Diagnostic Accuracy of 3D Time-of-Flight MR Angiography Compared with Digital Subtraction Angiography

More information

Staged-Volume Radiosurgery of Large AVMs

Staged-Volume Radiosurgery of Large AVMs Case Study Staged-Volume Radiosurgery of Large AVMs Using Gamma Knife Technology Institution New York University Langone Medical Center Location New York City, NY Patient 18 patients Diagnosis Each patient

More information

Spontaneous Obliteration of Pial Arteriovenous Malformations: A Review of 27 Cases

Spontaneous Obliteration of Pial Arteriovenous Malformations: A Review of 27 Cases AJNR Am J Neuroradiol :, March 00 Spontaneous Obliteration of Pial Arteriovenous Malformations: A Review of ases Maneesh. Patel, Timothy J. Hodgson, Andras A. Kemeny, and David M. Forster BAKGROUND AND

More information

A New Trend in Vascular Imaging: the Arterial Spin Labeling (ASL) Sequence

A New Trend in Vascular Imaging: the Arterial Spin Labeling (ASL) Sequence A New Trend in Vascular Imaging: the Arterial Spin Labeling (ASL) Sequence Poster No.: C-1347 Congress: ECR 2013 Type: Educational Exhibit Authors: J. Hodel, A. GUILLONNET, M. Rodallec, S. GERBER, R. 1

More information

CLEAR III TRIAL : UPDATE ON SURGICAL MATTERS THAT MATTER

CLEAR III TRIAL : UPDATE ON SURGICAL MATTERS THAT MATTER CLEAR III TRIAL : UPDATE ON SURGICAL MATTERS THAT MATTER CLEAR Surgical Center Team July 2011 Trial Enrollment Status Updates Insert latest enrollment update chart from most recent CLEAR newsletter Imaging

More information

Visualization strategies for major white matter tracts identified by diffusion tensor imaging for intraoperative use

Visualization strategies for major white matter tracts identified by diffusion tensor imaging for intraoperative use International Congress Series 1281 (2005) 793 797 www.ics-elsevier.com Visualization strategies for major white matter tracts identified by diffusion tensor imaging for intraoperative use Ch. Nimsky a,b,

More information

Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT

Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT Val M. Runge, MD Wendy R. K. Smoker, MD Anton Valavanis, MD Control # 823 Purpose The focus of this educational

More information

Posterior Cerebral Artery Aneurysms with Common Carotid Artery Occlusion: A Report of Two Cases

Posterior Cerebral Artery Aneurysms with Common Carotid Artery Occlusion: A Report of Two Cases Journal of Neuroendovascular Therapy 2017; 11: 371 375 Online March 3, 2017 DOI: 10.5797/jnet.cr.2016-0114 Posterior Cerebral Artery Aneurysms with Common Carotid Artery Occlusion: A Report of Two Cases

More information

Spinal dural arteriovenous fistulas (SDAVF) are the most commonly

Spinal dural arteriovenous fistulas (SDAVF) are the most commonly ORIGINAL RESEARCH SPINE Comparison of Dynamic Contrast-Enhanced 3T MR and 64-Row Multidetector CT Angiography for the Localization of Spinal Dural Arteriovenous Fistulas S. Oda, D. Utsunomiya, T. Hirai,

More information

Brain Edema after Repeat Gamma Knife Radiosurgery for a Large Arteriovenous Malformation: A Case Report

Brain Edema after Repeat Gamma Knife Radiosurgery for a Large Arteriovenous Malformation: A Case Report Posted online 2016 Jul. 19 Exp Neurobiol. 2016 Aug;25(4) pissn 1226-2560 eissn 2093-8144 Case Report Brain Edema after Repeat Gamma Knife Radiosurgery for a Large Arteriovenous Malformation: A Case Report

More information

Optimized phase contrast MRV technique outperforms timeof-flight in the diagnosis of cerebral venous thrombosis

Optimized phase contrast MRV technique outperforms timeof-flight in the diagnosis of cerebral venous thrombosis Optimized phase contrast MRV technique outperforms timeof-flight in the diagnosis of cerebral venous thrombosis Poster No.: C-3377 Congress: ECR 2010 Type: Topic: Authors: Keywords: DOI: Scientific Exhibit

More information

Subtraction CT Angiography with Controlled- Orbit Helical Scanning for Detection of Intracranial Aneurysms

Subtraction CT Angiography with Controlled- Orbit Helical Scanning for Detection of Intracranial Aneurysms AJNR Am J Neuroradiol 19:291 295, February 1998 Subtraction CT Angiography with Controlled- Orbit Helical Scanning for Detection of Intracranial Aneurysms Satoshi Imakita, Yoshitaka Onishi, Tokihiro Hashimoto,

More information

Pediatric Head and Neck Lesions: Assessment of Vascularity by MR Digital Subtraction Angiography

Pediatric Head and Neck Lesions: Assessment of Vascularity by MR Digital Subtraction Angiography AJNR Am J Neuroradiol 25:1251 1255, August 2004 Pediatric Head and Neck Lesions: Assessment of Vascularity by MR Digital Subtraction Angiography Weng Kong Chooi, Neil Woodhouse, Stuart C. Coley, and Paul

More information

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE In Practice RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE By Atsuya Watanabe, MD, PhD, Director, Advanced Diagnostic Imaging Center and Associate Professor, Department of Orthopedic Surgery, Teikyo

More information

Diagnosis of Vertebral Artery Ostial Stenosis on Contrast-Enhanced MR Angiography: Usefulness of a Thin-Slab MIP Technique

Diagnosis of Vertebral Artery Ostial Stenosis on Contrast-Enhanced MR Angiography: Usefulness of a Thin-Slab MIP Technique Diagnosis of Vertebral Artery Ostial Stenosis on Contrast-Enhanced MR Angiography: Usefulness of a Thin-Slab MIP Technique Sun Mi Kim 1, Deok Hee Lee 2 Jin Woo Choi 3, Byung Se Choi 4, Hyun Sin In 5 It

More information

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine Non Contrast MRA Mayil Krishnam Director, Cardiovascular and Thoracic Imaging University of California, Irvine No disclosures Non contrast MRA-Why? Limitations of CTA Radiation exposure Iodinated contrast

More information

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING:

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING: National Imaging Associates, Inc. Clinical guidelines SINUS MRI Original Date: November 2007 Page 1 of 5 CPT Codes: 70540, 70542, 70543 Last Review Date: July 2014 NCD 220.2 MRI Last Effective Date: July

More information

DECISION MAKING IN AVM TREATMENT STRATEGY TREATMENT BOARD SYSTEM AT TOHOKU UNIVERSITY

DECISION MAKING IN AVM TREATMENT STRATEGY TREATMENT BOARD SYSTEM AT TOHOKU UNIVERSITY Kitakanto Med. J. (S1) : 79-84, 1998 79 DECISION MAKING IN AVM TREATMENT STRATEGY TREATMENT BOARD SYSTEM AT TOHOKU UNIVERSITY Takashi Yoshimoto, Hidefumi Jokura Department of Neurosurgery, Tohoku University

More information

S. Inagawa, N. Yoshimura, Y. Ito; Niigata/JP spinal sacral areteriovenous fistulae, CTA, MRA /ecr2010/C-2581

S. Inagawa, N. Yoshimura, Y. Ito; Niigata/JP spinal sacral areteriovenous fistulae, CTA, MRA /ecr2010/C-2581 Localization of sacral spinal arteriovenous fistulae in reference to the dural structure with CTA and MRA of high spatial resolution: A pictorial essay Poster No.: C-2581 Congress: ECR 2010 Type: Educational

More information

Modern treatment of brain arteriovenous malformation

Modern treatment of brain arteriovenous malformation ORIGINAL RESEARCH W.J. van Rooij M. Sluzewski G.N. Beute Brain AVM Embolization with Onyx BACKGROUND AND PURPOSE: To report the initial experience by using a new liquid embolic agent (Onyx) for embolization

More information

Visualization of the normal cerebral venous system using a contrastenhanced three-dimensional magnetic resonance angiography technique

Visualization of the normal cerebral venous system using a contrastenhanced three-dimensional magnetic resonance angiography technique Eur J Anat, 11 (3): 149-154 (2007) Visualization of the normal cerebral venous system using a contrastenhanced three-dimensional magnetic resonance angiography technique A. Haroun 1, W. Mahafza 1, M. Abo-El

More information

Angioarchitecture of Brain Arteriovenous Malformations and the Risk of Bleeding: An Analysis of Patients in Northeastern Malaysia

Angioarchitecture of Brain Arteriovenous Malformations and the Risk of Bleeding: An Analysis of Patients in Northeastern Malaysia Brief Communication Angioarchitecture of Brain Arteriovenous Malformations and the Risk of Bleeding: An Analysis of Patients in Northeastern Malaysia Shibani KanDai 1, Mohd Shafie abdullah 1, Nyi Nyi naing

More information

MR imaging at 3.0 tesla of glossopharyngeal neuralgia by neurovascular compression

MR imaging at 3.0 tesla of glossopharyngeal neuralgia by neurovascular compression MR imaging at 3.0 tesla of glossopharyngeal neuralgia by neurovascular compression Poster No.: C-1281 Congress: ECR 2011 Type: Scientific Exhibit Authors: M. Nishihara 1, T. Noguchi 1, H. Irie 1, K. Sasaguri

More information

Speed, Comfort and Quality with NeuroDrive

Speed, Comfort and Quality with NeuroDrive Speed, Comfort and Quality with NeuroDrive Echelon Oval provides a broad range of capabilities supporting fast, accurate diagnosis of brain conditions and injuries. From anatomical depiction to vascular

More information

VASCULAR MALFORMATIONS. Owen Samuels, MD Adam Webb, MD Emory University

VASCULAR MALFORMATIONS. Owen Samuels, MD Adam Webb, MD Emory University VASCULAR MALFORMATIONS Owen Samuels, MD Adam Webb, MD Emory University Introduction Brain and spinal cord vascular malformations can be separated into five main categories: 1) Arteriovenous malformation,

More information

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II 14. Ischemia and Infarction II Lacunar infarcts are small deep parenchymal lesions involving the basal ganglia, internal capsule, thalamus, and brainstem. The vascular supply of these areas includes the

More information

Subtraction Helical CT Angiography of Intra- and Extracranial Vessels: Technical Considerations and Preliminary Experience

Subtraction Helical CT Angiography of Intra- and Extracranial Vessels: Technical Considerations and Preliminary Experience AJNR Am J Neuroradiol 24:451 455, March 2003 Subtraction Helical CT Angiography of Intra- and Extracranial Vessels: Technical Considerations and Preliminary Experience Vijayam K. Jayakrishnan, Philip M.

More information

Cerebral haemorrhage from a remote varix in the venous outflow of an arteriovenous malformation treated successfully by embolisation

Cerebral haemorrhage from a remote varix in the venous outflow of an arteriovenous malformation treated successfully by embolisation The British Journal of Radiology, 83 (2010), e129 e134 CASE REPORT Cerebral haemorrhage from a remote varix in the venous outflow of an arteriovenous malformation treated successfully by embolisation 1

More information

The ejournal of the European Society of Minimally Invasive Neurological Therapy

The ejournal of the European Society of Minimally Invasive Neurological Therapy The ejournal of the European Society of Minimally Invasive Neurological Therapy Diagnostic performance of contrast enhanced magnetic resonance presenting with subarachnoid haemorrhage Willem van Zwam,

More information

Detectability of unruptured intracranial aneurysms on thinslice non-contrast-enhanced CT

Detectability of unruptured intracranial aneurysms on thinslice non-contrast-enhanced CT Detectability of unruptured intracranial aneurysms on thinslice non-contrast-enhanced CT Poster No.: C-9 Congress: ECR 5 Type: Scientific Exhibit Authors: M. Nakadate, Y. Iwasa, M. Kishino, U. Tateishi;

More information

The treatment of brain arteriovenous malformations. Neurologic Complications of Arteriovenous Malformation Embolization Using Liquid Embolic Agents

The treatment of brain arteriovenous malformations. Neurologic Complications of Arteriovenous Malformation Embolization Using Liquid Embolic Agents ORIGINAL RESEARCH M.V. Jayaraman M.L. Marcellus S. Hamilton H.M. Do D. Campbell S.D. Chang G.K. Steinberg M.P. Marks Neurologic Complications of Arteriovenous Malformation Embolization Using Liquid Embolic

More information