A Versatile Tool to Study Immune Checkpoint Therapeutics: Syngeneic Tumor Mouse Models in vivo

Size: px
Start display at page:

Download "A Versatile Tool to Study Immune Checkpoint Therapeutics: Syngeneic Tumor Mouse Models in vivo"

Transcription

1 The Solution Provider for Drug Discovery in Oncology A Versatile Tool to Study Immune Checkpoint Therapeutics: Syngeneic Tumor Mouse Models in vivo Holger Weber - 1 -

2 Drug discovery platform for oncology at ProQinase Recombinant Protein Production Biochemical Kinase Assay Services Cellular Assay Services In Vivo Testing Services - 2 -

3 In vivo testing today/ past A C B D Human xenografts B role of immune system neglected - 3 -

4 In vivo testing Human xenografts B future/ now A C B D Syngeneic models C testing of immunmodulatory activity obligatory - 4 -

5 Syngeneic models revival of old tumor models matched cytokine network labeled cell lines functional immune system orthotopic tumor tissue = host cells metastasis reduced cost reliable rapid - 5 -

6 ProQinase s syngeneic tumor model platform Cell line Entity Validated syngeneic models subcutaneous orthotopic metastasis 4T1 Breast B16.F1 Skin Clone M-3 Skin - - Ct26wt Colon - LL/2 Lung - - MC38-CEA Colon - - RENCA Kidney

7 Tumor infiltrating leukocytes Tumor regression CD8 + M1 CD8 + CTL Macrophage CTL CD8 + CTL M1 CD8 + Macrophage CTL Tumor promotion CD4 + CD4 tumor + cell M2 T reg CD4 + T reg MDSC Macrophage T reg MDSC MDSC MDSC MDSC M2 CD4 + Macrophage T CD4 + reg T reg M2 Macrophage MDSC - 7 -

8 Frequency of immune cell populations in syngeneic tumors Ct26wt B16. F1 4T1 RENCA - 8 -

9 Frequency of immune cell populations in syngeneic tumors M2 Macrophages M-MDSC Ct26wt CD8+ Tcell B16. F1 CD8+ Tcell PMN-MDSC MDSC M2 Macrophages MDSC M1 Macrophages 4T1 RENCA M1 Macrophages CD8+ Tcell CD8+ Tcell - 9 -

10 Testing the immune checkpoint inhibitor α PD-L1 Implantation: 4T1, B16.F1, Ct26wt, RENCA Treatment: α-pd-l1, biw Analysis: tumor growth flow cytometry Nguyen & Ohashi, Nature Reviews Immunology, 15,

11 tumor volume (mm 3 ) +/- SEM tumor volume (mm 3 ) +/- SEM tumor volume (mm 3 ) +/- SEM tumor volume (mm 3 ) +/- SEM Effect of α PD-L1 treatment on tumor growth 6 4T1 15 B16.F day after tumor implantation Ct26wt day after tumor implantation 8 RENCA day after tumor implantation day after tumor implantation Ct26wt is inhibited by treating with α-pd-l1 Group 1: vehicle Group 2: α PD-L1 antibody

12 tumor volume [mm³] Long lasting treatment effect Implantation: Ct26wt s, s.c. Treatment: α-pd-l1 antibody 2 15 Re-challenge with Ct26wt s day after tumor implantation

13 CD4 CD25 N of cells/ 1 mio. leukocytes SS SS T cell analysis in Ct26wt tumor tissue leukocytes 5 vehicle α-pd-l1 CD45 T cells CD CD4 T cells 1 CD4 T cells CD8 T cells T reg T reg CD8 FoxP3-13 -

14 SS Ly6G N of cells/ 1 mio. leukocytes SS MDSC analysis in Ct26wt tumor tissue vehicle α-pd-l1 leukocytes CD45 myeloid cells neutrophils 5 PMN- MDSCs Neutrophils M- MDSCs PMN- MDSCs M- MDSCs CD11b Ly6C

15 CD11b CD26 (MMR) tumor volume [mm³] N of cells/ 1 mio. leukocytes SS Macrophage analysis in Ct26wt tumor tissue vehicle α-pd-l1 leukocytes CD45 macrophages Ct26wt vehicle tumor ratio M2 3 2 M2 M1 ratio M2/M1 F4/8 MHC II M1 1 r 2 =, M2/M1 macrophage ratio

16 CD4 CD4 Ly6G Ly6G Summary 4T1 tumor B16.F1 tumor not inhibited by α- PD-L1 treatment high number of PMN- MDSCs PMN- MDSCs not inhibited by α- PD-L1 treatment high number of M- MDSCs M- MDSCs Ly6C Ly6C Ct26wt tumor RENCA tumor inhibited by α-pd-l1 treatment high number of Macrophages marginally affected by α-pd-l1 treatment low number of T cells high number of T cells CD8 CD8 Assistance in selecting the best model for your target

17 In Vivo Tumor Models ProQinase Thank you taken from Wikipedia In Vivo Veritas

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): In the manuscript Rational Combination of CXCL11-Expressing Oncolytic Virus and PD-L1 Blockade Works Synergistically to Enhance Therapeutic Efficacy

More information

Immunologic Effects of Clinical Stage FAK & PI3K-Delta/Gamma Inhibitors

Immunologic Effects of Clinical Stage FAK & PI3K-Delta/Gamma Inhibitors 1 Immunologic Effects of Clinical Stage FAK & PI3K-Delta/Gamma Inhibitors Jonathan Pachter, Ph.D - Chief Scientific Officer 3rd Annual Immuno-Oncology Congress, May 24, 2018 Disclosures 2 I am an employee

More information

Supplementary Table 1

Supplementary Table 1 Supplementary Table 1 Flow Cytometry Antibodies Antibody Fluorochrome Clone Vendor CD45 PE-cyanine 7 30-F11 D ioscience CD3 Pacific lue 17A2 iolegend (San Diego, CA) CD11b APC M1/70 iolegend (San Diego,

More information

Identification of novel immune regulators of tumor growth using highthroughput

Identification of novel immune regulators of tumor growth using highthroughput Identification of novel immune regulators of tumor growth using highthroughput screening in vivo Tom Brennan 1 Five Prime s Unique Platform Tests Nearly Every Extracellular Protein to Identify Protein

More information

Syngeneic Models. Progress immunotherapeutic development with CrownBio s panel of over 30 syngeneic models

Syngeneic Models. Progress immunotherapeutic development with CrownBio s panel of over 30 syngeneic models Syngeneic Models Progress immunotherapeutic development with CrownBio s panel of over 3 syngeneic models Discover the benefits of using our fully characterized and checkpoint inhibitor benchmarked syngeneic

More information

Supplementary Figure 1. Double-staining immunofluorescence analysis of invasive colon and breast cancers. Specimens from invasive ductal breast

Supplementary Figure 1. Double-staining immunofluorescence analysis of invasive colon and breast cancers. Specimens from invasive ductal breast Supplementary Figure 1. Double-staining immunofluorescence analysis of invasive colon and breast cancers. Specimens from invasive ductal breast carcinoma (a) and colon adenocarcinoma (b) were staining

More information

Supplemental Materials. Stromal Modulation Reverses Primary Resistance to Immune Checkpoint Blockade in. Pancreatic Cancer.

Supplemental Materials. Stromal Modulation Reverses Primary Resistance to Immune Checkpoint Blockade in. Pancreatic Cancer. Supplemental Materials Stromal Modulation Reverses Primary Resistance to Immune Checkpoint Blockade in Pancreatic Cancer Jun Zhao 1, Zhilan Xiao 2, 3, Tingting Li 1, 4, Huiqin Chen 5, Ying Yuan 5, Alan

More information

Outline. Case studies & Tumor Immunology platform overview. In vitro assay panel. In vivo models. Clinical and pre-clinical sample analyses

Outline. Case studies & Tumor Immunology platform overview. In vitro assay panel. In vivo models. Clinical and pre-clinical sample analyses Immuno-Oncology May, 217 Outline Case studies & Tumor Immunology platform overview In vitro assay panel In vivo models Ex vivo analyses Clinical and pre-clinical sample analyses 2 Case 1: an IS Project

More information

Suppl Video: Tumor cells (green) and monocytes (white) are seeded on a confluent endothelial

Suppl Video: Tumor cells (green) and monocytes (white) are seeded on a confluent endothelial Supplementary Information Häuselmann et al. Monocyte induction of E-selectin-mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade

More information

NKTR-214 plus NKTR-262, a Scientifically-Guided Rational Combination Approach for Immune Oncology

NKTR-214 plus NKTR-262, a Scientifically-Guided Rational Combination Approach for Immune Oncology plus NKTR-262, a Scientifically-Guided Rational Combination Approach for Immune Oncology Jonathan Zalevsky SVP, Biology and Preclinical Development Nektar Therapeutics World Preclinical Congress, 2017

More information

CB-1158 Inhibits the Immuno-oncology Target Arginase and Causes an Immune Mediated Anti-Tumor Response

CB-1158 Inhibits the Immuno-oncology Target Arginase and Causes an Immune Mediated Anti-Tumor Response CB-1158 Inhibits the Immuno-oncology Target Arginase and Causes an Immune Mediated Anti-Tumor Response Francesco Parlati, Ph.D. Calithera Biosciences South San Francisco, CA Arginine Depletion by Arginase

More information

Emerging Concepts of Cancer Immunotherapy

Emerging Concepts of Cancer Immunotherapy Emerging Concepts of Cancer Immunotherapy Jeffrey Schlom, Ph.D. Laboratory of Tumor Immunology and Biology (LTIB) Center for Cancer Research National Cancer Institute, NIH Immune Cell Infiltrate in Primary

More information

A fresh approach to Immuno-oncology: Ex vivo analysis of drug efficacy in fresh patient tumortissue

A fresh approach to Immuno-oncology: Ex vivo analysis of drug efficacy in fresh patient tumortissue A fresh approach to Immuno-oncology: Ex vivo analysis of drug efficacy in fresh patient tumortissue Soner Altiok, MD, PhD Chief Scientific Officer Nilogen Oncosystems Tampa, Florida - Nilogen Oncosystems,

More information

Supplementary Figure 1. Expression of EPO and EPOR during self-limited versus delayed

Supplementary Figure 1. Expression of EPO and EPOR during self-limited versus delayed Supplementary Figure 1. Expression of EPO and EPOR during self-limited versus delayed inflammation resolution. a: Flow cytometry analysis showing the electronic gating strategy used to identify peritoneal

More information

SUPPLEMENTARY METHODS

SUPPLEMENTARY METHODS SUPPLEMENTARY METHODS Histological analysis. Colonic tissues were collected from 5 parts of the middle colon on day 7 after the start of DSS treatment, and then were cut into segments, fixed with 4% paraformaldehyde,

More information

NKTR-255: Accessing The Immunotherapeutic Potential Of IL-15 for NK Cell Therapies

NKTR-255: Accessing The Immunotherapeutic Potential Of IL-15 for NK Cell Therapies NKTR-255: Accessing The Immunotherapeutic Potential Of IL-15 for NK Cell Therapies Saul Kivimäe Senior Scientist, Research Biology Nektar Therapeutics NK Cell-Based Cancer Immunotherapy, September 26-27,

More information

Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was

Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was sorted by FACS. Surface markers for sorting were CD11c +

More information

ANTI-C5AR ACQUISITION

ANTI-C5AR ACQUISITION KIR2DL1,2,3 NKG2A NKP46 KIR3DL2 MICA/B CD73 CD39 ANTIC5AR ACQUISITION JUNE 2017 NOVEL CHECKPOINTS IN IMMUNOONCOLOGY Page 2 FORWARD LOOKING STATEMENT This document has been prepared by Innate Pharma S.A.

More information

Bezzi et al., Supplementary Figure 1 *** Nature Medicine: doi: /nm Pten pc-/- ;Zbtb7a pc-/- Pten pc-/- ;Pml pc-/- Pten pc-/- ;Trp53 pc-/-

Bezzi et al., Supplementary Figure 1 *** Nature Medicine: doi: /nm Pten pc-/- ;Zbtb7a pc-/- Pten pc-/- ;Pml pc-/- Pten pc-/- ;Trp53 pc-/- Gr-1 Gr-1 Gr-1 Bezzi et al., Supplementary Figure 1 a Gr1-CD11b 3 months Spleen T cells 3 months Spleen B cells 3 months Spleen Macrophages 3 months Spleen 15 4 8 6 c CD11b+/Gr1+ cells [%] 1 5 b T cells

More information

Manipulating the Tumor Environment

Manipulating the Tumor Environment Manipulating the Tumor Environment Vincenzo Bronte Verona University Hospital vincenzo.bronte@univr.it Escape from immune control can be viewed as one of the «Hallmarks of Cancer» D. Hanahan and R. A.

More information

The Promise of Adjuvant Epigenetic Therapy in Early Stage Esophageal Cancer. Zhihao Lu M.D. Peking University Cancer Hospital

The Promise of Adjuvant Epigenetic Therapy in Early Stage Esophageal Cancer. Zhihao Lu M.D. Peking University Cancer Hospital The Promise of Adjuvant Epigenetic Therapy in Early Stage Esophageal Cancer Zhihao Lu M.D. Peking University Cancer Hospital Current Treatment Strategies for Early Stage Esophageal Cancer Rate Prognosis

More information

NKTR-255: Accessing IL-15 Therapeutic Potential through Robust and Sustained Engagement of Innate and Adaptive Immunity

NKTR-255: Accessing IL-15 Therapeutic Potential through Robust and Sustained Engagement of Innate and Adaptive Immunity NKTR-255: Accessing IL-15 Therapeutic Potential through Robust and Sustained Engagement of Innate and Adaptive Immunity Peiwen Kuo Scientist, Research Biology Nektar Therapeutics August 31 st, 2018 Emerging

More information

Cytokine Arrays Reveal Black Ops Tactics of Tumor-induced Immunosuppression

Cytokine Arrays Reveal Black Ops Tactics of Tumor-induced Immunosuppression Cytokine Arrays Reveal Black Ops Tactics of Tumor-induced Immunosuppression Jarad J Wilson, Ph.D. Technical Support & Marketing Specialist Ruo-Pan Huang, MD, Ph.D. Founder and CEO What are Antibody Arrays?

More information

Beverly A. Teicher, PhD DCTD/NCI. The content reflects my professional opinions, not an NCI policy statement.

Beverly A. Teicher, PhD DCTD/NCI. The content reflects my professional opinions, not an NCI policy statement. Beverly A. Teicher, PhD DCTD/NCI The content reflects my professional opinions, not an NCI policy statement. Outline 1. Transplantable Syngeneic Tumors 2. Human Tumor Xenografts 3. Disseminated Disease

More information

Diseases of Immunity 2017 CL Davis General Pathology. Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc.

Diseases of Immunity 2017 CL Davis General Pathology. Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc. Diseases of Immunity 2017 CL Davis General Pathology Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc. Autoimmunity Reflects a loss of immunologic tolerance Mechanisms Auto-antibodies

More information

Bases for Immunotherapy in Multiple Myeloma

Bases for Immunotherapy in Multiple Myeloma Bases for Immunotherapy in Multiple Myeloma Paola Neri, MD, PhD Associate Professor of Medicine University of Calgary, Arnie Charbonneau Cancer Institute Disclosures Paola Neri MD, PhD Grants/research

More information

Supporting Information

Supporting Information Supporting Information Aldridge et al. 10.1073/pnas.0900655106 Fig. S1. Flow diagram of sublethal (a) and lethal (b) influenza virus infections. (a) Infection of lung epithelial cells by influenza virus

More information

Supplemental Information. Gut Microbiota Promotes Hematopoiesis to Control Bacterial Infection. Cell Host & Microbe, Volume 15

Supplemental Information. Gut Microbiota Promotes Hematopoiesis to Control Bacterial Infection. Cell Host & Microbe, Volume 15 Cell Host & Microbe, Volume 15 Supplemental Information Gut Microbiota Promotes Hematopoiesis to Control Bacterial Infection Arya Khosravi, Alberto Yáñez, Jeremy G. Price, Andrew Chow, Miriam Merad, Helen

More information

Supplementary Materials for

Supplementary Materials for www.sciencetranslationalmedicine.org/cgi/content/full/8/352/352ra110/dc1 Supplementary Materials for Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy

More information

Immuno-Modulatory Drug and Biomarker Discovery Using Onco-Hu Mice

Immuno-Modulatory Drug and Biomarker Discovery Using Onco-Hu Mice Immuno-Modulatory Drug and Biomarker Discovery Using Onco-Hu Mice Brian W. Soper, PhD Senior Technical Information Scientist Manager, Technical Information Services Dec, 2017 Presentation Overview 12-16

More information

L1 on PyMT tumor cells but Py117 cells are more responsive to IFN-γ. (A) Flow

L1 on PyMT tumor cells but Py117 cells are more responsive to IFN-γ. (A) Flow A MHCI B PD-L1 Fold expression 8 6 4 2 Fold expression 3 2 1 No tx 1Gy 2Gy IFN Py117 Py117 Supplementary Figure 1. Radiation and IFN-γ enhance MHCI expression and PD- L1 on PyMT tumor cells but Py117 cells

More information

Supplementary figure 1. Systemic delivery of anti-cd47 antibody controls tumor growth in

Supplementary figure 1. Systemic delivery of anti-cd47 antibody controls tumor growth in T u m o r v o lu m e (m m 3 ) P e rc e n t s u rv iv a l P e rc e n t s u rv iv a l Supplementary data a 1 8 6 4 2 5 1 1 5 2 2 5 3 3 5 4 T im e a fte r tu m o r in o c u la tio n (d ) b c 1 5 1 1 5 * *

More information

Exploring TIM-3 biology: from bench to biomarkers

Exploring TIM-3 biology: from bench to biomarkers NIBR EIO/ Oncology Translational Research Exploring TIM-3 biology: from bench to biomarkers Jennifer Mataraza Translational Immuno-Oncology Novartis Institutes for BioMedical Research World CDx, Boston,

More information

Targeting tumour associated macrophages in anti-cancer therapies. Annamaria Gal Seminar Series on Drug Discovery Budapest 5 January 2018

Targeting tumour associated macrophages in anti-cancer therapies. Annamaria Gal Seminar Series on Drug Discovery Budapest 5 January 2018 Targeting tumour associated macrophages in anti-cancer therapies Annamaria Gal Seminar Series on Drug Discovery Budapest 5 January 2018 Macrophages: Professional phagocytes of the myeloid lineage APC,

More information

PD-L1 Expression and Signaling by Tumors and Macrophages: Comparative Studies in Mice and Dogs

PD-L1 Expression and Signaling by Tumors and Macrophages: Comparative Studies in Mice and Dogs PD-L1 Expression and Signaling by Tumors and Macrophages: Comparative Studies in Mice and Dogs Steven Dow, DVM, PhD Department of Clinical Sciences, Animal Cancer Center Colorado State University Consortium

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

Posters and Presentations

Posters and Presentations Posters and Presentations June 2017: American Society of Clinical Oncology (ASCO) Annual - Preliminary Correlative Analysis of PD-L1 expression from the SUNRISE Study. View April 2017: American Association

More information

5% of patients with genetic immunodeficiency develop a cancer during their lifetime (200x)

5% of patients with genetic immunodeficiency develop a cancer during their lifetime (200x) Immune surveillance 5% of patients with genetic immunodeficiency develop a cancer during their lifetime (200x) Transplanted patients following an immunosuppressor therapy are 80 times more likely to develop

More information

Enhanced Cancer Vaccine Effectiveness with NKTR-214, a CD122-Biased Cytokine

Enhanced Cancer Vaccine Effectiveness with NKTR-214, a CD122-Biased Cytokine Enhanced Cancer Vaccine Effectiveness with NKTR-214, a CD122-Biased Cytokine Jonathan Zalevsky SVP, Biology and Preclinical Development Nektar Therapeutics SMI Cancer Vaccines, September 2017 Nektar Therapeutics

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. NKT ligand-loaded tumour antigen-presenting B cell- and monocyte-based vaccine induces NKT, NK and CD8 T cell responses. (A) The cytokine profiles of liver

More information

1. Background and Significance Currently there are no efficacious therapies for renal cell carcinoma (RCC). Despite recent

1. Background and Significance Currently there are no efficacious therapies for renal cell carcinoma (RCC). Despite recent 1. Background and Significance Currently there are no efficacious therapies for renal cell carcinoma (RCC). Despite recent advances in development of protective immune-based therapies for RCC, the prognosis

More information

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 Tumor Immunology M. Nagarkatti Teaching Objectives: Introduction to Cancer Immunology Know the antigens expressed by cancer cells Understand

More information

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model.

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model. A B16F1 s.c. Lung LN Distant lymph nodes Colon B B16F1 s.c. Supplementary Figure 1. Deletion of Smad3 prevents B16F1 melanoma invasion and metastasis in a mouse s.c. tumor model. Highly invasive growth

More information

Interpreting Therapeutic Response on Immune Cell Number and Spatial Distribution within the Tumor Microenvironment. Lorcan Sherry, CSO OracleBio

Interpreting Therapeutic Response on Immune Cell Number and Spatial Distribution within the Tumor Microenvironment. Lorcan Sherry, CSO OracleBio Interpreting Therapeutic Response on Immune Cell Number and Spatial Distribution within the Tumor Microenvironment Lorcan Sherry, CSO OracleBio Company Overview OracleBio is a specialised CRO providing

More information

IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia

IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia Supplementary Figures IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia Yaming Wang, Kristy J. Szretter, William Vermi, Susan Gilfillan, Cristina

More information

Human TNFα Transgenic Mouse Model of Spontaneous Arthritis

Human TNFα Transgenic Mouse Model of Spontaneous Arthritis Human TNFα Transgenic Mouse Model of Spontaneous Arthritis HEIDELBERG PHARMA AT A GLANCE CRO situated in Ladenburg, near Heidelberg, Germany 45 employees, 2000 m 2 of lab space Core competence: pre-clinical

More information

Evaluation of immunomodulatory agents in syngeneic models and immune cell phenotyping of humanized mouse models carrying patient-derived tumors

Evaluation of immunomodulatory agents in syngeneic models and immune cell phenotyping of humanized mouse models carrying patient-derived tumors Evaluation of immunomodulatory agents in syngeneic models and immune cell phenotyping of humanized mouse models carrying patient-derived tumors Philippe Slos 2 nd Annual ICI March 15-17, 2016 Boston Introduction

More information

Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis

Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis Research article Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis Jeremy D. Waight, 1 Colleen Netherby, 1 Mary L. Hensen, 1 Austin Miller, 2 Qiang Hu, 2 Song Liu, 2 Paul N.

More information

Fisher et al. Supplemental Figure 1

Fisher et al. Supplemental Figure 1 Supplemental Figure 1 A TNF IL-1 IL-6 CCL2 CCL5 CXCL10 pg/mg total protein 50 30 10 4,000 3,000 2,000 1,000 n.d. 1 1 14,000 12,000 10,000 8,000 6,000 4,000 2,000 6,000,000 CT26 5,000 16,000 B16 4,000 12,000

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Examples of staining for each antibody used for the mass cytometry analysis.

Nature Immunology: doi: /ni Supplementary Figure 1. Examples of staining for each antibody used for the mass cytometry analysis. Supplementary Figure 1 Examples of staining for each antibody used for the mass cytometry analysis. To illustrate the functionality of each antibody probe, representative plots illustrating the expected

More information

Examples of questions for Cellular Immunology/Cellular Biology and Immunology

Examples of questions for Cellular Immunology/Cellular Biology and Immunology Examples of questions for Cellular Immunology/Cellular Biology and Immunology Each student gets a set of 6 questions, so that each set contains different types of questions and that the set of questions

More information

ONLINE SUPPLEMENT MATERIAL. CD70 limits atherosclerosis and promotes macrophage function.

ONLINE SUPPLEMENT MATERIAL. CD70 limits atherosclerosis and promotes macrophage function. ONLINE SUPPLEMENT MATERIAL CD7 limits atherosclerosis and promotes macrophage function. Holger Winkels* 1,2, Svenja Meiler* 1,2, Esther Smeets* 2, Dirk Lievens 1, David Engel 3, Charlotte Spitz 1, Christina

More information

EDUCATIONAL SEMINAR. Humanized Mouse Models in Pre- Clinical Efficacy Studies in Oncology. BIOCOM CRO Event January 23, 2018

EDUCATIONAL SEMINAR. Humanized Mouse Models in Pre- Clinical Efficacy Studies in Oncology. BIOCOM CRO Event January 23, 2018 EDUCATIONAL SEMINAR Humanized Mouse Models in Pre- Clinical Efficacy Studies in Oncology BIOCOM CRO Event January 23, 2018 Agenda 8.00 8.30 Registration and networking 8.30 8.45 Introduction, by Jussi

More information

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant Tumor Immunology Wirsma Arif Harahap Surgical Oncology Consultant 1) Immune responses that develop to cancer cells 2) Escape of cancer cells 3) Therapies: clinical and experimental Cancer cells can be

More information

Figure S1 Genetic or pharmacologic COX-2 inhibition led to increased kidney

Figure S1 Genetic or pharmacologic COX-2 inhibition led to increased kidney SUPPLEMENTAL FIGURE LEGENDS Figure S1 Genetic or pharmacologic COX-2 inhibition led to increased kidney macrophage infiltration. Wild type or COX-2 -/- mice (2 months old, C57/Bl6 background) were treated

More information

Depletion of FAP + cells reduces immunosuppressive cells and improves metabolism and functions CD8 + T cells within tumors

Depletion of FAP + cells reduces immunosuppressive cells and improves metabolism and functions CD8 + T cells within tumors /, Vol. 7, No. 17 Depletion of FAP + cells reduces immunosuppressive cells and improves metabolism and functions CD8 + T cells within tumors Ying Zhang 1,2, Hildegund C.J. Ertl 2 1 Gene Therapy and Vaccines

More information

Lucitanib Program Overview. August 2018

Lucitanib Program Overview. August 2018 Lucitanib Program Overview August 2018 Lucitanib Background and Partnership Update Oral, potent inhibitor of the tyrosine kinase activity of vascular endothelial growth factor receptors 1 through 3 (VEGFR1-3),

More information

Glioblastoma and CNS tumors

Glioblastoma and CNS tumors Glioblastoma and CNS tumors PRECEPTORSHIP PROGRAMME IMMUNO-ONCOLOGY Amsterdam, 1 October 2016 Patrick Roth Department of Neurology and Brain Tumor Center University Hospital Zurich Immunology in the CNS

More information

Immune Checkpoints. PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich

Immune Checkpoints. PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich Immune Checkpoints PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich Activation of T cells requires co-stimulation Science 3

More information

Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer

Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer Supplementary Information Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer Gi-Hoon Nam, Eun-Jung Lee, Yoon Kyoung Kim, Yeonsun Hong, Yoonjeong Choi,

More information

MHC Tetramers and Monomers for Immuno-Oncology and Autoimmunity Drug Discovery

MHC Tetramers and Monomers for Immuno-Oncology and Autoimmunity Drug Discovery MHC Tetramers and Monomers for Immuno-Oncology and Autoimmunity Drug Discovery Your Partner in Drug Discovery and Research MHC Tetramer Background T-Cell Receptors recognize and bind to complexes composed

More information

Supplemental Table 1. Primer sequences for transcript analysis

Supplemental Table 1. Primer sequences for transcript analysis Supplemental Table 1. Primer sequences for transcript analysis Primer Sequence (5 3 ) Primer Sequence (5 3 ) Mmp2 Forward CCCGTGTGGCCCTC Mmp15 Forward CGGGGCTGGCT Reverse GCTCTCCCGGTTTC Reverse CCTGGTGTGCCTGCTC

More information

Ly6C lo monocytes drive immunosuppression and confer resistance to anti-vegfr2 cancer therapy

Ly6C lo monocytes drive immunosuppression and confer resistance to anti-vegfr2 cancer therapy Ly6C lo monocytes drive immunosuppression and confer resistance to anti-vegfr2 cancer therapy Keehoon Jung,, Rakesh K. Jain, Dai Fukumura J Clin Invest. 2017;127(8):3039-3051. https://doi.org/10.1172/jci93182.

More information

Immunity and Cancer. Doriana Fruci. Lab di Immuno-Oncologia

Immunity and Cancer. Doriana Fruci. Lab di Immuno-Oncologia Immunity and Cancer Doriana Fruci Lab di Immuno-Oncologia Immune System is a network of cells, tissues and organs that work together to defend the body against attacks of foreign invaders (pathogens, cancer

More information

Radio-immunotherapy: Immunotherapeuticsand radiotherapy. Inge Verbrugge The Netherlands Cancer Institute

Radio-immunotherapy: Immunotherapeuticsand radiotherapy. Inge Verbrugge The Netherlands Cancer Institute Radio-immunotherapy: Immunotherapeuticsand radiotherapy Inge Verbrugge The Netherlands Cancer Institute i.verbrugge@nki.nl Radiotherapy One of three main treatment modalities Used in ~50% of cancer patients

More information

Tumor Microenvironment and Immune Suppression

Tumor Microenvironment and Immune Suppression Tumor Microenvironment and Immune Suppression Hassane M. Zarour,, MD Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh Cancer Institute Hallmarks of Cancer: The Next Generation

More information

ONCO-HU TM MICE FOR IMMUNOTHERAPEUTIC DRUG DISCOVERY. Brian W. Soper, Ph.D. Senior Technical Information Scientist

ONCO-HU TM MICE FOR IMMUNOTHERAPEUTIC DRUG DISCOVERY. Brian W. Soper, Ph.D. Senior Technical Information Scientist ONCO-HU TM MICE FOR IMMUNOTHERAPEUTIC DRUG DISCOVERY Brian W. Soper, Ph.D. Senior Technical Information Scientist Presentation Outline Capabilities Humanization Hu-NSG TM versus Hu-NSG TM -SGM3 Immuno-oncology

More information

Juyoun Jin, D.V.M., Ph.D. Institute for Refractory Cancer Research, Samsung Medical Center

Juyoun Jin, D.V.M., Ph.D. Institute for Refractory Cancer Research, Samsung Medical Center Juyoun Jin, D.V.M., Ph.D. Institute for Refractory Cancer Research, Samsung Medical Center Overview of Anticancer Drug Development Discovery Non-clinical development Clinical Trial Target Identification

More information

Immunology and Immunotherapy 101 for the Non-Immunologist

Immunology and Immunotherapy 101 for the Non-Immunologist Immunology and Immunotherapy 101 for the Non-Immunologist Stephen P. Schoenberger, Ph.D La Jolla Institute for Allergy and Immunology & UCSD Moores Cancer Center Disclosures Human Longevity Inc: Salary

More information

VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses. Li Wang. Dartmouth Medical School

VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses. Li Wang. Dartmouth Medical School VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses Li Wang Dartmouth Medical School The B7 Immunoglobulin Super-Family immune regulators APC T cell Co-stimulatory:

More information

Supplementary Materials. for Garmy-Susini, et al, Integrin 4 1 signaling is required for lymphangiogenesis and tumor metastasis

Supplementary Materials. for Garmy-Susini, et al, Integrin 4 1 signaling is required for lymphangiogenesis and tumor metastasis Supplementary Materials for Garmy-Susini, et al, Integrin 4 1 signaling is required for lymphangiogenesis and tumor metastasis 1 Supplementary Figure Legends Supplementary Figure 1: Integrin expression

More information

Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival

Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival Geoffrey J. Markowitz, 1,2,3 Lauren S. Havel, 1,2,3 Michael J.P. Crowley, 3,4 Yi Ban, 1,2,3 Sharrell B. Lee, 1,3 Jennifer

More information

Personalized Cancer Neoantigen Vaccines

Personalized Cancer Neoantigen Vaccines Personalized Cancer Neoantigen Vaccines Turning the Immune System Against Your own Unique Tumour-Specific Antigens 3 rd Annual Advances in Immuno-Oncology Congress London, May 24, 2018 Agnete Fredriksen,

More information

Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured

Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured under Th0, Th1, Th2, Th17, and Treg conditions. mrna

More information

Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD.

Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD. Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD. Chapter 19: Tolerance, Autoimmunity, and Autoinflammation Prepared

More information

Supplementary Figure 1. Immune profiles of untreated and PD-1 blockade resistant EGFR and Kras mouse lung tumors (a) Total lung weight of untreated

Supplementary Figure 1. Immune profiles of untreated and PD-1 blockade resistant EGFR and Kras mouse lung tumors (a) Total lung weight of untreated 1 Supplementary Figure 1. Immune profiles of untreated and PD-1 blockade resistant EGFR and Kras mouse lung tumors (a) Total lung weight of untreated (U) EGFR TL mice (n=7), Kras mice (n=7), PD-1 blockade

More information

Advances in Cancer Immunotherapy

Advances in Cancer Immunotherapy Advances in Cancer Immunotherapy Immunology 101 for the Non-Immunologist Arnold H. Zea, PhD azea@lsuhsc.edu Disclosures No relevant financial relationships to disclose This presentation does not contain

More information

Immunotherapy: The Newest Treatment Route

Immunotherapy: The Newest Treatment Route Immunotherapy: The Newest Treatment Route IWMF Patient Forum, Phoenix, AZ Madhav Dhodapkar, MD Professor of Medicine and Immunobiology Chief, Section of Hematology Yale University or the Oldest William

More information

I farmaci immunoterapici. Stefano Fogli UO Farmacologia Clinica e Farmacogenetica Dipartimento di Medicina Clinica e Sperimentale Università di Pisa

I farmaci immunoterapici. Stefano Fogli UO Farmacologia Clinica e Farmacogenetica Dipartimento di Medicina Clinica e Sperimentale Università di Pisa I farmaci immunoterapici Stefano Fogli UO Farmacologia Clinica e Farmacogenetica Dipartimento di Medicina Clinica e Sperimentale Università di Pisa History of Cancer Immunotherapy Discovery of dendritic

More information

Supplemental Table I.

Supplemental Table I. Supplemental Table I Male / Mean ± SEM n Mean ± SEM n Body weight, g 29.2±0.4 17 29.7±0.5 17 Total cholesterol, mg/dl 534.0±30.8 17 561.6±26.1 17 HDL-cholesterol, mg/dl 9.6±0.8 17 10.1±0.7 17 Triglycerides,

More information

Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy

Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy RESEARCH ARTICLE Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy David G. DeNardo1, Donal J. Brennan2, Elton Rexhepaj2, Brian Ruffell1, Stephen

More information

Supporting Information

Supporting Information Supporting Information Desnues et al. 10.1073/pnas.1314121111 SI Materials and Methods Mice. Toll-like receptor (TLR)8 / and TLR9 / mice were generated as described previously (1, 2). TLR9 / mice were

More information

BASIC MECHANISM OF TUMOR IMMUNE SUPPRESSION

BASIC MECHANISM OF TUMOR IMMUNE SUPPRESSION BASIC MECHANISM OF TUMOR IMMUNE SUPPRESSION Zihai Li, M.D., Ph.D. Leader, Cancer Immunology Program Hollings Cancer Center Medical University of South Carolina (MUSC) DISCLOSURE GOALS Understand that immune

More information

Optimized administration sequence and timing of active dendritic cell immunotherapy with a PD1 checkpoint inhibitor (CPI) resulted in strong synergy

Optimized administration sequence and timing of active dendritic cell immunotherapy with a PD1 checkpoint inhibitor (CPI) resulted in strong synergy 1 Optimized administration sequence and timing of active dendritic cell immunotherapy with a PD1 checkpoint inhibitor (CPI) resulted in strong synergy in a mouse model of renal cell carcinoma Mouse analog

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Cellularity of leukocytes and their progenitors in naive wild-type and Spp1 / mice.

Nature Immunology: doi: /ni Supplementary Figure 1. Cellularity of leukocytes and their progenitors in naive wild-type and Spp1 / mice. Supplementary Figure 1 Cellularity of leukocytes and their progenitors in naive wild-type and Spp1 / mice. (a, b) Gating strategies for differentiated cells including PMN (CD11b + Ly6G hi and CD11b + Ly6G

More information

Immune response to infection

Immune response to infection Immune response to infection Dr. Sandra Nitsche (Sandra.Nitsche@rub.de ) 20.06.2018 1 Course of acute infection Typical acute infection that is cleared by an adaptive immune reaction 1. invasion of pathogen

More information

Supplemental Information. Checkpoint Blockade Immunotherapy. Induces Dynamic Changes. in PD-1 CD8 + Tumor-Infiltrating T Cells

Supplemental Information. Checkpoint Blockade Immunotherapy. Induces Dynamic Changes. in PD-1 CD8 + Tumor-Infiltrating T Cells Immunity, Volume 50 Supplemental Information Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1 CD8 + Tumor-Infiltrating T Cells Sema Kurtulus, Asaf Madi, Giulia Escobar, Max Klapholz, Jackson

More information

Supplementary Figure 1 Chemokine and chemokine receptor expression during muscle regeneration (a) Analysis of CR3CR1 mrna expression by real time-pcr

Supplementary Figure 1 Chemokine and chemokine receptor expression during muscle regeneration (a) Analysis of CR3CR1 mrna expression by real time-pcr Supplementary Figure 1 Chemokine and chemokine receptor expression during muscle regeneration (a) Analysis of CR3CR1 mrna expression by real time-pcr at day 0, 1, 4, 10 and 21 post- muscle injury. (b)

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): This manuscript builds on the recently published observation by the same investigators that TNBC tumors with Ras/MAPK activation have decreased

More information

Innate immune regulation of T-helper (Th) cell homeostasis in the intestine

Innate immune regulation of T-helper (Th) cell homeostasis in the intestine Innate immune regulation of T-helper (Th) cell homeostasis in the intestine Masayuki Fukata, MD, Ph.D. Research Scientist II Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation,

More information

Professor Mark Bower Chelsea and Westminster Hospital, London

Professor Mark Bower Chelsea and Westminster Hospital, London Professor Mark Bower Chelsea and Westminster Hospital, London Cancer immunotherapy & HIV Disclosures: None Lessons for oncology from HIV Awareness and advocacy Activism Rational drug design Prescribing

More information

Keynote Lecture 2 Targeting the Tumor Microenvironment in Pancreatic Cancer

Keynote Lecture 2 Targeting the Tumor Microenvironment in Pancreatic Cancer Keynote Lecture 2 Targeting the Tumor Microenvironment in Pancreatic Cancer E. Gabriela Chiorean, MD University of Washington Fred Hutchinson Cancer Research Center Seattle, Washington, United States Learning

More information

Durham NC PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland Distribution Unlimited

Durham NC PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland Distribution Unlimited AWARD NUMBER: W81XWH-13-1-0423 TITLE: Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy PRINCIPAL INVESTIGATOR: Smita Nair, PhD CONTRACTING ORGANIZATION: Duke University Medical

More information

Tim-3 as a target for tumor immunotherapy

Tim-3 as a target for tumor immunotherapy Tim-3 as a target for tumor immunotherapy Ana Carrizosa Anderson Brigham and Women s Hospital Harvard Medical School Disclosures A portion of the work has been performed as part of a sponsored research

More information

Harnessing the Immune System to Prevent Cancer: Basic Immunologic Mechanisms

Harnessing the Immune System to Prevent Cancer: Basic Immunologic Mechanisms Harnessing the Immune System to Prevent Cancer: Basic Immunologic Mechanisms (the language of immunology) Barbara K. Dunn NCI/Division of Cancer Prevention October 23, 2017 Harnessing the Immune System

More information

LTX-315 is an immunotherapy in Phase I/IIa

LTX-315 is an immunotherapy in Phase I/IIa Tromsø...improving nature s own defence mechanisms Norwegian nonlisted company Oslo Develops novel therapeutics within oncology LTX-315 is an immunotherapy in Phase I/IIa LTX-315 is an intratumoral cancer

More information

Radiation Therapy as an Immunomodulator

Radiation Therapy as an Immunomodulator Radiation Therapy as an Immunomodulator Yvonne Mowery, MD, PhD February 20, 2017 Tumor/Immune System Balance Kalbasi, JCI 2013 UNC-Duke-NC State-Wake Forest Spring 2017 2 RT Can Shift Balance Toward Elimination

More information

2/16/2018. The Immune System and Cancer. Fatal Melanoma Transferred in a Donated Kidney 16 years after Melanoma Surgery

2/16/2018. The Immune System and Cancer. Fatal Melanoma Transferred in a Donated Kidney 16 years after Melanoma Surgery C007: Immunology of Melanoma: Mechanisms of Immune Therapies Delphine J. Lee, MD, PhD Chief and Program Director, Dermatology, Harbor UCLA Medical Center Principal Investigator, Los Angeles Biomedical

More information

An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy

An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy CORRECTION NOTICE Nat. Med. 9, 111 113 (13) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy Alicia S Chung, Xiumin Wu, Guanglei Zhuang, Hai Ngu, Ian Kasman,

More information

Glioblastoma and CNS tumors

Glioblastoma and CNS tumors Glioblastoma and CNS tumors PRECEPTORSHIP PROGRAMME IMMUNO-ONCOLOGY Amsterdam, 27 May 2017 Patrick Roth Department of Neurology and Brain Tumor Center University Hospital Zurich Challenges in immunooncology

More information