3.1 Organic Molecules

Size: px
Start display at page:

Download "3.1 Organic Molecules"

Transcription

1 Essentials of Biology Sylvia S. Mader 3.1 rganic Molecules rganic hemistry hemistry of living world rganic molecules contain carbon and hydrogen. Inorganic molecules do not ( 2 ) hapter 3 Lecture utline opyright The McGraw-ill ompanies, Inc. ermission required for reproduction or display. Figure 3.1 rganic molecules as structural material opyright The McGraw-ill ompanies, Inc. ermission required for reproduction or display. Figure 3.2 ydrocarbons are highly versatile opyright The McGraw-ill ompanies, Inc. ermission required for reproduction or display. arbon chains can vary in length, and/or have double bonds, and/or be branched. c. 38,000 a. b. a: Lary Lefever/Grant eilman hotography; b: hotodisc/getty F; c:. ol/i SL/hoto esearchers, Inc. arbon chains can form rings of different sizes and have double bonds. arbon atom Total of six electrons 4 in outer shell Almost always shares electrons with S to complete outer shell an bond with as many as 4 other elements Most often shares electrons with other carbon atoms ydrocarbons chains of carbon atoms bonded only to hydrogen atoms Isomers same number and kinds of atoms in a variety of arrangements May have different properties rganic molecules differ in 1. Size and shape of carbon skeleton or backbone 2. Functional group specific combination of bonded atoms that always has the same chemical properties and always reacts the same way eactivity of organic molecule largely dependent on attached functional groups ften use to stand for the rest of the molecule 1

2 Functional Groups Groups ydroxyl arboxyl Amino Sulfhydryl Structure Found In Alcohols, sugars Amino acids, fatty acids Amino acids, proteins S Amino acids cysteine, proteins Figure 3.3 Functional groups 3.2 The Biological Molecules of ells 4 categories arbohydrates Lipids roteins nucleic acids hosphate AT nucleic acids = remainder of molecule Figure 3.4 arbohydrates Figure 3.5 Lipid foods opyright The McGraw-ill ompanies, Inc. ermission required for reproduction or display. opyright The McGraw-ill ompanies, Inc. ermission required for reproduction or display. Bread heese otato orn Ice cream il Lard ice Butter asta Figures 3.6 rotein foods opyright The McGraw-ill ompanies, Inc. ermission required for reproduction or display. Meat Eggs Milk Monomers build polymers! Monomers subunits olymer monomers joined Dehydration reaction Joins monomers to form polymers Equivalent of removing water molecule Tofu Beans uts The McGraw-ill ompanies, Inc./John Thoeming, photographer 2

3 monomer Figure 3.7 Synthesis of a polymer monomer monomer ydrolysis eaction Breaks polymers apart into monomers (digestion) Water is used to break the bond. dehydration reaction polymer a.) Dehydration synthesis reaction Figure 3.7b Digestion of a polymer polymer 2 2 hydrolysis reaction monomer monomer monomer arbohydrates Almost universally used as immediate energy source in living things lay structural roles in cells olymers of monomers called saccharide or sugars Monosaccharide, disaccharide, polysaccharide b.) ydrolysis reaction Monosaccharides Single sugar molecule Simple sugars 3-7 carbon backbone Glucose isomers fructose and galactose Figure 3.8 Glucose ells use glucose as energy source of choice a. b. ibose and deoxyribose found in A and DA ibose: Deoxyribose: c. d. 3

4 Disaccharides 2 monosaccharides bonded together Maltose yeast breaks down maltose in beer for energy and produces ethyl alcohol. Fermentation Sucrose table sugar Lactose milk sugar Figure 3.9 Breakdown of maltose, a disaccharide ole of Maltase? maltose ydrolysis 2 yeast glucose Fermentation olysaccharides olymers of monosaccharides Some function as energy storage molecules. lants store glucose as starch. Animals store glucose as glycogen. Some function as structural components. ellulose plant cell walls Most abundant of all organic molecules Digested only by some microbes hitin crab, lobster, insect exoskeletons Figure 3.10 Starch and glycogen structure and function starch granule in potato cell nonbranched branched 57 a. Starch structure Figure 3.10 continued Figure 3.10 continued glycogen granules in liver cell cellulose fibers in plant cell wall bond 20 c. ellulose structure highly branched 59,400 b. Glycogen structure 4

5 Lipids All are insoluble in water. Due to long nonpolar hydrocarbon chains few hydrophilic functional groups Very diverse structures and functions Fats and oils used for long term energy storage and insulation il may help waterproof skin, hair, and feathers. Figure 3.11 reening in birds Fats and oils Triglyceride composed of 1 glycerol and 3 fatty acids Figure 3.12 Synthesis and breakdown of fat Glycerol dehydration reaction Fatty acids hydrolysis reaction Fat (triglyceride) 3 waters Fatty acids are either Saturated no double bonds between carbon atoms Butter is solid at room temperature. Unsaturated one or more double bonds between carbon atoms ils liquid at room temperature Trans fatty acids have been artificially hydrogenated to make them more solid. Figure 3.13 Fatty acids canola oil carboxyl group bend caused by double bond a. leic acid, a monounsaturated fatty acid (one double bond) found in canola oil. 5

6 Figure 3.13 continued Figure 3.13 continued butter donut carboxyl group b. Stearic acid, a saturated fatty acid (no double bonds) found in butter. carboxyl group c. Elaidic acid, a trans fatty acid (one double bond) found in many snack foods. hospholipids Form bulk of plasma membrane ne end of molecule water-soluble olar phosphate head ther end of molecule not water-soluble onpolar fatty acid tails polar head nonpolar tails phosphate group glycerol fatty acids Figure 3.14 hospholipids from membranes a. hospholipid structure inside of cell outside of cell b. lasma membrane of a cell Steroids Lipids made of four fused rings o fatty acids but are insoluble in water Derived from cholesterol Differ only in functional groups Steroids Lipids made of four fused rings o fatty acids but are insoluble in water Derived from cholesterol Differ only in functional groups Figure 3.15 Steroid diversity a. holesterol 3 3 b. Testosterone 3 c. Estrogen 6

7 Anabolic Steroids Synthetic anabolic steroids are controversial. They are variants of testosterone. Some athletes use anabolic steroids to build up their muscles quickly. pose serious health risks Figure 3.16 Types of proteins Structural proteins roteins Many functions: support, metabolism (enzymes), transport, defense, regulation, and motion Transport proteins ontractile proteins roteins composed of amino acid monomers entral carbon bonded to hydrogen atom, amino group, carboxyl group, and a side chain, or group 20 different amino acids Differ according to group Figure 3.17 Amino acids a. amino group group Amino acid carboxyl group valine (Val) (nonpolar) glutamate (Glu) (ionized) 2 2 tryptophan (Trp) (nonpolar) 2 2 S cysteine (ys) (nonpolar) b. eptides eptide bond formed by dehydration reaction between 2 amino acid monomers eptide 2 or more amino acids covalently linked olypeptide chain of many amino acids joined by peptide bonds Amino acid sequence determines final three-dimensional shape of protein. rotein shape determines its? Figure 3.18 Synthesis and degradation of peptide dehydration reaction hydrolysis reaction Amino acid Amino acid Dipeptide peptide bond eptides eptide bond formed by dehydration reaction between 2 amino acid monomers eptide 2 or more amino acids covalently linked olypeptide chain of many amino acids joined by peptide bonds rotein chain of more than 100 amino acids Structure determines function Amino acid sequence determines the three-dimensional shape of protein. rotein shape determines its? 2 Water 7

8 rotein Shape roteins have four levels of structure. rotein Structure Introduction rimary rotein Structure Secondary rotein Structure Tertiary rotein Structure Quaternary rotein Structure opyright 2007 earson Education Inc., publishing as earson Benjamin ummings Shape of proteins Function determined by three-dimensional shape Denature loss of structure and function A change in p or temperature may denature a protein Four Levels of rotein Structure rimary structure amino acid sequence Under genetic control hanges in DA may affect primary structure Secondary structure portions of chain form helices or pleated sheets. Tertiary structure overall three-dimensional shape of interacting secondary structures Quaternary structure more than one polypeptide chain interacting Figure 3.19 Levels of protein organization rimary structure: sequence of amino acids A change in the primary structure of a protein affects its ability to function. hanging one amino acid in hemoglobin causes sickle-cell disease. nly one small change (mutation) in the hemoglobin gene leads to the production of sickle-cell hemoglobin protein Figure 3.19 (cont.) Secondary structure: alpha helix and pleated sheet Figure 3.19 continued alpha helix hydrogen bond (red) pleated sheet globular shape Quaternary structure: more than one polypeptide Tertiary structure: overall 3-D shape 8

9 Four levels of rotein Structure 1. rimary Structure 2. Secondary Structure 3. Tertiary Structure What Determines the rimary Structure of rotein? The order of in a gene determines the primary structure of a protein Gene: segment of DA that codes for the production of a DA is a nucleic acid Let s learn about nucleic acids 4. Quaternary Structure Figure 3.24 ucleic Acids ucleic acids are information storage molecules. They provide the directions for building proteins. The genetic instructions in DA Must be translated from nucleic acid language to protein language. There are two types of nucleic acids: DA, deoxyribonucleic acid A, ribonucleic acid Figure 3.20 DA and A are polymers of ucleotides phosphate 5' 4' S 3' 2' sugar 1' nitrogencontaining base Each DA nucleotide has one of the following bases: Adenine (A) Guanine (G) Thymine (T) ytosine () ucleotide: phosphate sugar itrogen base 9

10 itrogen Bases in DA: A, T, G, ucleotide monomers are linked into long chains. These chains are called polynucleotides, or DA strands. A sugar-phosphate backbone joins them together. DA and A Structure Figure 3.20 DA structure with base pairs: G with and A with T DA Structure Sugar:????? Bases:????? G T A A G T Guanine (G) Adenine (A) ydrogen bond (red) ytosine () 3 Thymine (T) (DA only) Double elix: Two strands of DA join together omplementary base pairing Adenine (A) with ytosine () with Genetic information stored in sequence of _?? DA Structure Sugar: Deoxyribose Bases: A, T, G, Double elix: Two strands of DA join together omplementary base pairing Adenine (A) with thymine (T) ytosine () with guanine (G) Genetic information stored in sequence of bases A Structure ibonucleic Acid Single strand of A nucleotides Sugar: ribose Bases: A, U, G, Uracil (U) instead of thymine (T) A ucleotide 10

11 Figure 3.20 continued elationship between proteins and nucleic acids A structure with bases G, U, A, Sequence of 1 in DA determines sequence of 2 in a protein. G U bases Sequence of 3 determines proteins structure and 4. Sugar hosphate Backbone A Uracil (U) (A only) Small changes in the DA may cause large changes in the 5 the DA codes for. Sickle cell disease Individual s red blood cells are sickle-shaped. ne amino acid difference Inherited disease elationship between proteins and nucleic acids Figure 3.21 Sickle cell disease Sequence of bases (or nucleotides) in DA determines sequence of amino acids in a protein. normal red blood cells Sequence of amino acids determines proteins structure and function. Small changes in the DA may cause large changes in the protein the DA codes for. Sickle cell disease Individual s red blood cells are sickle-shaped. ne amino acid difference 2 Val is Leu Thr ro Glu Glu ormal hemoglobin 2 Val is Leu Thr ro Val Glu Sickle cell hemoglobin sickled red blood cell Inherited disease Eye of Science/hoto esearchers, Inc. Evolution onnection: DA and roteins as Evolutionary Tape Measures Evolutionary relationships between organisms can be assessed. DA and roteins as Evolutionary Tape Measures ompare nucleotide sequences in DA and amino acid sequences in proteins 11

12 5.2 AT: Energy for ells Figure 5.4 The AT cycle Adenosine triphosphate Energy currency for cells ells use AT to carry out nearly all activities 3 phosphate groups makes it unstable Easily loses a phosphate group to become AD (adenosine diphosphate) ontinual cycle of breakdown and regeneration Figure 5.3 AT energy released during cellular respiration opyright The McGraw-ill ompanies, Inc. ermission required for reproduction or display. AD + AT energy for cellular work (e.g., protein synthesis, muscle contraction) AT releases energy quickly Amount of energy released is usually just enough for a biological purpose Breakdown can be easily coupled to an energyrequiring reaction lease note that due to differing operating systems, some animations will not appear until the presentation is viewed in resentation Mode (Slide Show view). You may see blank slides in the ormal or Slide Sorter views. All animations will appear after viewing in resentation Mode and playing each animation. Most animations will require the latest version of the Flash layer, which is available at 12

Identify the characteristics of carbon that allow it to play such an important role in the chemistry of life.

Identify the characteristics of carbon that allow it to play such an important role in the chemistry of life. Module 1D Biochemistry Biochemistry is the chemistry of living organisms. In this module we will focus on the structure, function, and properties of the various organic molecules that make up living organisms.

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

Macromolecules. Honors Biology

Macromolecules. Honors Biology Macromolecules onors Biology 1 The building materials of the body are known as macromolecules because they can be very large There are four types of macromolecules: 1. Proteins 2. Nucleic acids 3. arbohydrates

More information

Unit 1: Level of organization Chemistry (macromolecules)

Unit 1: Level of organization Chemistry (macromolecules) Unit 1: Level of organization hemistry (macromolecules) Levels of organization: Unit 1 Small to large: atoms molecules macromolecules Then larger (microscopic stuff): cells and their parts (organelles)

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

General Biology 1004 Chapter 3 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 3 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 3 The Molecules of Life PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C. Romero Copyright 2004 Pearson

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Biochemistry II Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Metabolism the sum of all biochemical processes 2 Metabolic Processes Anabolism-

More information

Chapter 3 The Molecules of Life

Chapter 3 The Molecules of Life Chapter 3 The Molecules of Life State Standards Standard 1.h. Standard 5.a. Standard 4.e. Organic Molecules A cell is mostly water. The rest of the cell consists mostly of carbon based molecules organic

More information

The Carbon Atom (cont.)

The Carbon Atom (cont.) Organic Molecules Organic Chemistry The chemistry of the living world. Organic Molecule a molecule containing carbon and hydrogen Carbon has 4 electrons in its outer shell and can share electrons with

More information

Biology Chapter 5. Biological macromolecules

Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio. CARBOHYDRATES Produce energy for living things Atoms? Carbon, hydrogen, and oxygen in 1:2:1 ratio Monomer Examples? Sugars, starches MONOSACCHARIDES--- main source of energy for cells Glucose Know formula?

More information

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc.

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc. INTRODUCTION TO ORGANIC COMPOUNDS 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon bonded to other elements

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of Chapter 2 pt 2 Atoms, Molecules, and Life Including the lecture Materials of Gregory Ahearn University of North Florida with amendments and additions by John Crocker Copyright 2009 Pearson Education, Inc..

More information

A. Structure and Function 1. Carbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b.

A. Structure and Function 1. Carbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b. Biochemistry 2 A. Structure and Function 1. arbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b. in three dimensions (3D) Diagrams in 2D may

More information

Macromolecules. copyright cmassengale

Macromolecules. copyright cmassengale Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Carbohydrates, Lipids, Proteins, and Nucleic Acids

Carbohydrates, Lipids, Proteins, and Nucleic Acids Carbohydrates, Lipids, Proteins, and Nucleic Acids Is it made of carbohydrates? Organic compounds composed of carbon, hydrogen, and oxygen in a 1:2:1 ratio. A carbohydrate with 6 carbon atoms would have

More information

Chapter 2 The Chemistry of Life Part 2

Chapter 2 The Chemistry of Life Part 2 Chapter 2 The Chemistry of Life Part 2 Carbohydrates are Polymers of Monosaccharides Three different ways to represent a monosaccharide Carbohydrates Carbohydrates are sugars and starches and provide

More information

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization Chapter 5, Campbell Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization. Polymerization = large compounds are built by joining smaller ones together

More information

Macromolecules. Molecules of Life

Macromolecules. Molecules of Life Macromolecules Molecules of Life Learning Objectives know the difference between a dehydration synthesis reaction and a hydrolysis reaction know the different types of biological macromolecules be able

More information

Organic Molecules. 8/27/2004 Mr. Davenport 1

Organic Molecules. 8/27/2004 Mr. Davenport 1 Organic Molecules 8/27/2004 Mr. Davenport 1 Carbohydrates Commonly called sugars and starches Consist of C, H, O with H:O ration 2:1 Usually classified as to sugar units Monosaccharide are single sugar

More information

Chapter 3- Organic Molecules

Chapter 3- Organic Molecules Chapter 3- Organic Molecules CHNOPS Six of the most abundant elements of life (make up 95% of the weight of all living things)! What are they used for? Structures, enzymes, energy, hormones, DNA How do

More information

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism: Macromolecule Macro molecule = molecule that is built up from smaller units The smaller single subunits that make up macromolecules are known as Joining two or more single units together form a M is all

More information

The Building blocks of life. Macromolecules

The Building blocks of life. Macromolecules The Building blocks of life Macromolecules 1 copyright cmassengale 2 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 3 LIFE ON EARTH IS CARBON-BASED

More information

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry 1 2 3 4 Bio 1101 Lecture 3 Chapter 3: Molecules of Life Organic Molecules Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called

More information

Chapter 3 The Molecules of Life Biology and Society: Got Lactose?

Chapter 3 The Molecules of Life Biology and Society: Got Lactose? Chapter 3 The Molecules of Life Biology and Society: Got Lactose? Lactose is the main sugar found in milk. Lactose intolerance is the inability to properly digest lactose. Instead of lactose being broken

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

Bio 12 Important Organic Compounds: Biological Molecules NOTES Name:

Bio 12 Important Organic Compounds: Biological Molecules NOTES Name: Bio 12 Important Organic Compounds: Biological Molecules NOTES Name: Many molecules of life are.(means many molecules joined together) Monomers: that exist individually Polymers: Large organic molecules

More information

Unit #2: Biochemistry

Unit #2: Biochemistry Unit #2: Biochemistry STRUCTURE & FUNCTION OF FOUR MACROMOLECULES What are the four main biomolecules? How is each biomolecule structured? What are their roles in life? Where do we find them in our body?

More information

Organic Compounds. (Carbon Compounds) Carbohydrates Lipids Proteins Nucleic Acids

Organic Compounds. (Carbon Compounds) Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds (Carbon Compounds) Carbohydrates Lipids Proteins Nucleic Acids Carbon s Bonding Behavior Outer shell of carbon has 4 electrons; can hold 8 Each carbon atom can form covalent bonds with

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Carbon s Bonding Pattern

Carbon s Bonding Pattern Organic Compounds It used to be thought that only living things could synthesize the complicated carbon compounds found in cells German chemists in the 1800 s learned how to do this in the lab, showing

More information

CHAPTER 3. Carbon & the Molecular Diversity of Life

CHAPTER 3. Carbon & the Molecular Diversity of Life CHAPTER 3 Carbon & the Molecular Diversity of Life Carbon: The Organic Element Compounds that are synthesized by cells and contain carbon are organic So what is inorganic? Why are carbon compounds so prevalent?

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes)

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes) Macromolecules The Atoms of Life The most frequently found atoms in the body are Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes) What are other elements would you expect to be on this list?

More information

Organic Chemistry. Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl.

Organic Chemistry. Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl. Organic Chemistry Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl. Organic Compounds - have carbon bonded to other atoms and determine structure/function

More information

Organic molecules are molecules that contain carbon and hydrogen.

Organic molecules are molecules that contain carbon and hydrogen. Organic Chemistry, Biochemistry Introduction Organic molecules are molecules that contain carbon and hydrogen. All living things contain these organic molecules: carbohydrates, lipids, proteins, and nucleic

More information

Chapter 3: Macromolecules. 1. Carbohydrates. Polysaccharides. Maltose is a disaccharide. Macromolecules (in general) Most macromolecules are polymers

Chapter 3: Macromolecules. 1. Carbohydrates. Polysaccharides. Maltose is a disaccharide. Macromolecules (in general) Most macromolecules are polymers Chapter 3: Macromolecules Macromolecules is just a fancy word for: Giant Molecules Made From Smaller Building Blocks Carbohydrates Lipids Proteins Nucleic acids Macromolecules (in general) Most macromolecules

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Chapter 3. The Molecules of Life

Chapter 3. The Molecules of Life Chapter 3 The Molecules of Life Biology and Society: Got Lactose? Lactose is the main sugar found in milk. Lactose intolerance is the inability to properly digest lactose. Instead of lactose being broken

More information

Chapter 3. The Molecules of Life. Lectures by Edward J. Zalisko

Chapter 3. The Molecules of Life. Lectures by Edward J. Zalisko Chapter 3 The Molecules of Life PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic compounds

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Biochemistry notes BI ch3

Biochemistry notes BI ch3 Biology Junction Everything you need in Biology Biochemistry notes BI ch3 Biochemistry All Materials Cmassengale I. Cells Contain Organic Molecules A. Most Common Elements 1. Most common elements in living

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

Outline. Biology 105: Biological Molecules. Carbon Review. Organic Compounds. Carbon 1/28/2016. Biological Molecules Functional Groups

Outline. Biology 105: Biological Molecules. Carbon Review. Organic Compounds. Carbon 1/28/2016. Biological Molecules Functional Groups Outline Biology 105: Biological Molecules Lecture 3 Reading: Chapter 2, Pages 29-40 Organic Compounds Functional Groups Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides and

More information

3.1 Carbon is Central to the Living World

3.1 Carbon is Central to the Living World BIOL 100 Ch. 3 1 3.1 Carbon is Central to the Living World Carbon Central element to life Most biological molecules are built on a carbon framework. Organic molecules Humans 18.5% Carbon Why is Carbon

More information

Chp 2 (cont.) Organic Molecules. Spider s web and close up of capture strand - spider silk protein

Chp 2 (cont.) Organic Molecules. Spider s web and close up of capture strand - spider silk protein Chp 2 (cont.) Organic Molecules Spider s web and close up of capture strand - spider silk protein 1! Molecular Diversity is Based on Carbon An organic molecule contains both carbon and hydrogen. Ex: Methane

More information

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds.

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. BIOLOGY 12 BIOLOGICAL MOLECULES NAME: Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. ORGANIC MOLECULES: Organic molecules

More information

Biological Molecules Ch 2: Chemistry Comes to Life

Biological Molecules Ch 2: Chemistry Comes to Life Outline Biological Molecules Ch 2: Chemistry Comes to Life Biol 105 Lecture 3 Reading Chapter 2 (pages 31 39) Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides and Nucleic

More information

Molecules of Life. Carbohydrates Lipids Proteins Nucleic Acids

Molecules of Life. Carbohydrates Lipids Proteins Nucleic Acids Molecules of Life Carbohydrates Lipids Proteins Nucleic Acids Molecules of Life All living things are composed of the following basic elements: Carbon Hydrogen Oxygen Nitrogen Phosphorous Sulfur Remember

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Unit 3: Chemistry of Life Mr. Nagel Meade High School

Unit 3: Chemistry of Life Mr. Nagel Meade High School Unit 3: Chemistry of Life Mr. Nagel Meade High School IB Syllabus Statements 3.2.1 Distinguish between organic and inorganic compounds. 3.2.2 Identify amino acids, glucose, ribose and fatty acids from

More information

Chapter 3. The Molecules of Cells. Lecture by Richard L. Myers

Chapter 3. The Molecules of Cells. Lecture by Richard L. Myers Chapter 3 The Molecules of Cells PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Richard

More information

INTRODUCTION TO ORGANIC COMPOUNDS. Introduction: Got Lactose? The Molecules of Cells. Most of the world s population cannot digest milkbased

INTRODUCTION TO ORGANIC COMPOUNDS. Introduction: Got Lactose? The Molecules of Cells. Most of the world s population cannot digest milkbased Chapter 3 The Molecules of Cells Introduction: Got Lactose? Most of the world s population cannot digest milkbased foods They are lactose intolerant, because they lack the enzyme lactase This illustrates

More information

Biology. Chapter 3. Molecules of Life. Concepts and Applications 9e Starr Evers Starr

Biology. Chapter 3. Molecules of Life. Concepts and Applications 9e Starr Evers Starr Biology Concepts and Applications 9e Starr Evers Starr Chapter 3 Molecules of Life 2015 3.1 What Are the Molecules of Life? The molecules of life contain a high proportion of carbon atoms: Complex carbohydrates

More information

The Amazing Molecule: Water

The Amazing Molecule: Water The Amazing Molecule: Water All living things are made of chemicals. Understanding life requires an understanding of chemistry. Biochemistry- the chemistry of life helps us understand todays biological

More information

Biological Chemistry. Is biochemistry fun? - Find it out!

Biological Chemistry. Is biochemistry fun? - Find it out! Biological Chemistry Is biochemistry fun? - Find it out! 1. Key concepts Outline 2. Condensation and Hydrolysis Reactions 3. Carbohydrates 4. Lipids 5. Proteins 6. Nucleic Acids Key Concepts: 1. Organic

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules BIOLOGY 111 CHAPTER 2: The Chemistry of Life Biological Molecules The Chemistry of Life : Learning Outcomes 2.4) Describe the significance of carbon in forming the basis of the four classes of biological

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1.

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. Macromolecules The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. CARBOHYDRATES 1. LIPIDS 1. NUCLEIC ACIDS Carbon Compounds All compounds

More information

Agenda. Chapter 3: Macromolecules. 1. Carbohydrates. Macromolecules (in general) What are organic compounds?

Agenda. Chapter 3: Macromolecules. 1. Carbohydrates. Macromolecules (in general) What are organic compounds? Agenda Chapter 3 The molecules of life Macromolecules --Detour into Healthy Pig Land 4. Nucelic acids Chapter 3: Macromolecules Macromolecules is just a fancy word for: Giant Molecules Made From Smaller

More information

Learning Objectives. Learning Objectives (cont.) Chapter 3: Organic Chemistry 1. Lectures by Tariq Alalwan, Ph.D.

Learning Objectives. Learning Objectives (cont.) Chapter 3: Organic Chemistry 1. Lectures by Tariq Alalwan, Ph.D. Biology, 10e Sylvia Mader Lectures by Tariq Alalwan, Ph.D. Learning Objectives List the features of carbon that result in the diversity of organic molecules. Describe how macromolecules are assembled and

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 1 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Chapter 3 The Molecules of Cells

Chapter 3 The Molecules of Cells Chapter 3 The Molecules of Cells PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction Most of the

More information

Activity: Biologically Important Molecules

Activity: Biologically Important Molecules Activity: Biologically Important Molecules AP Biology Introduction We have already seen in our study of biochemistry that the molecules that comprise living things are carbon-based, and that they are thought

More information

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon Ach Chemistry of Carbon All living things rely on one particular type of molecule: carbon Carbon atom with an outer shell of four electrons can form covalent bonds with four atoms. In organic molecules,

More information

5.2 Lipids 5.21 Triglycerides 5.22 Phospholipids 5.23 Wax 5.24 Steroids. 5.3 Proteins 5.4 Nucleic Acids

5.2 Lipids 5.21 Triglycerides 5.22 Phospholipids 5.23 Wax 5.24 Steroids. 5.3 Proteins 5.4 Nucleic Acids BIOCHEMISTRY Class Notes Summary Table of Contents 1.0 Inorganic and Organic Compounds 2.0 Monomers and Polymers 3.0 Dehydration (Condensation) Synthesis 4.0 Hydrolysis Reaction 5.0 Organic Compounds 5.1

More information

Bio 12 Chapter 2 Test Review

Bio 12 Chapter 2 Test Review Bio 12 Chapter 2 Test Review 1.Know the difference between ionic and covalent bonds In order to complete outer shells in electrons bonds can be Ionic; one atom donates or receives electrons Covalent; atoms

More information

The Structure and Function of Large Biological Molecules. Chapter 5

The Structure and Function of Large Biological Molecules. Chapter 5 The Structure and Function of Large Biological Molecules Chapter 5 The Molecules of Life Living things made up of 4 classes of large biological molecules (macromolecules) : 1. Carbohydrates 2. Lipids 3.

More information

Chapter 3 The Molecules of Cells

Chapter 3 The Molecules of Cells Chapter 3 The Molecules of Cells PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Lecture by Edward J. Zalisko Introduction Most of the world

More information

Essential Components of Food

Essential Components of Food Essential Components of Food The elements of life living things are mostly (98%) made of 6 elements: C carbon H hydrogen O oxygen P phosphorus N nitrogen S sulphur -each element makes a specific number

More information

Organic Molecules. Contain C

Organic Molecules. Contain C Contain C Organic Molecules Can form 4 strong covalent bonds Ergo can form many complex, stable molecules Chemistry of life is complex, and requires complex molecules However, several kinds of molecules

More information

2.3 Carbon-Based Molecules. KEY CONCEPT Carbon-based molecules are the foundation of life.

2.3 Carbon-Based Molecules. KEY CONCEPT Carbon-based molecules are the foundation of life. KEY CONCEPT Carbon-based molecules are the foundation of life. Carbon atoms have unique bonding properties. Carbon forms covalent bonds with up to four other atoms, including other carbon atoms. Carbon-based

More information

ORgo! ORganic Chemistry - an introduction to Macromolcules

ORgo! ORganic Chemistry - an introduction to Macromolcules ORgo! ORganic Chemistry - an introduction to Macromolcules Macromolecule - an organic molecule (containing carbon atoms) made of a very large number of atoms (big). 1 4 main types of macromolecules: 1)

More information

Carbon. Carbon. Carbon Skeleton 8/25/2016. The Chemical Building Blocks of Life

Carbon. Carbon. Carbon Skeleton 8/25/2016. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Life as we know it is carbon-based. Biological molecules are built on a carbon skeleton. Small atom with a valence of 4. Carbon Can form up to 4 covalent bonds.

More information

Chapter 2. Chemical Composition of the Body

Chapter 2. Chemical Composition of the Body Chapter 2 Chemical Composition of the Body Carbohydrates Organic molecules that contain carbon, hydrogen and oxygen General formula C n H 2n O n -ose denotes a sugar molecule Supply energy Glucose Complex

More information

Macromolecules. Macromolecules. What are the macromolecules? Organic molecules. The human body uses complex organic molecules known as macromolecules.

Macromolecules. Macromolecules. What are the macromolecules? Organic molecules. The human body uses complex organic molecules known as macromolecules. Macromolecules Macromolecules Biochemistry The human body uses complex organic molecules known as macromolecules. Macro - long or large It is a large molecule that is made up of smaller units joined together.

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

The Structure and Function of Macromolecules (Chapter Five)

The Structure and Function of Macromolecules (Chapter Five) 1 Most Macromolecules are Polymers The Structure and Function of Macromolecules (Chapter Five) POLYMER PRINCIPLES The four main classes of macromolecules are carbohydrates, lipids, proteins and nucleic

More information

In any solution, a scientist can talk about the concentration of the atoms that are dissolved in the solvent.

In any solution, a scientist can talk about the concentration of the atoms that are dissolved in the solvent. Acids and Bases Acids and Bases In any solution, a scientist can talk about the concentration of the atoms that are dissolved in the solvent. i.e. Salt water is an example of Na + and Cl - in a solution

More information

Biological molecules

Biological molecules Biological molecules 04-04-16 Announcements Your lab report 1 is due now Quiz 1 is on Wednesday at the beginning of class, so don t be late Review Macromolecues are large molecules necessary for life made

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules I. Polymers What is a polymer? Poly = many; mer = part. A polymer is a large molecule consisting of many smaller sub-units bonded together. What is a monomer?

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules NAME DATE Chapter 5 - The Structure and Function of Large Biological Molecules Guided Reading Concept 5.1: Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information