The human DEK oncogene: metabolic reprogramming of engineered epidermis

Size: px
Start display at page:

Download "The human DEK oncogene: metabolic reprogramming of engineered epidermis"

Transcription

1 The human DEK oncogene: metabolic reprogramming of engineered epidermis Markey Cancer Center, CESB, University of Kentucky 218 Metabolomics Symposium NMR Based Metabolomics Core CESB Co-director, UKY Marion Brusadelli Lindsey Romick- Rosendale Miki Watanabe Sara Vicente Munoz Andrew Lane

2 Human epidermis our first line of defense Outermost layer of human skin and mucosa Physical barrier that separates us from a most hostile environment Regulatory, sensory, metabolic, infectious, mechanical roles Tissue of origin for SCC, composed largely of keratinocytes

3 Wells Lab Interests Biology and engineering of human epidermis Tissue response & susceptibility to exogenous stress Viral infection HPV DNA repair and human disease Cancer development and progression (Human DEK oncogene)

4 A role for the human DEK oncogene in keratinocyte metabolism DEK is a human oncogene nuclear protein supporting a multitude of processes overexpressed in SCC (cervix, head and neck, skin) not an enzyme, not yet targetable drives tumor initiation, promotion and progression

5 Organotypic epithelial rafts mimic early phenotypes in human SCC development Human Keratinocytes DEK overexpression promotes proliferation/hyperplasia in 3D epidermis (but not in cultured cells) In cultured cells, DEK OE stimulates ECAR and OCR Drives metabolic enzyme expression and the accumulation of key metabolites Hypothesis: DEK overexpression reprograms cellular metabolism to promote sustained SCC development. Where?

6 A subcellular fraction of DEK is localized at mitochondria A. B. DEK MT Dendra-2 DAPI Hypothesis: DEK reprograms cellular metabolism as a nuclear or mitochondrial protein. How?

7 Stable Isotope-Resolved Metabolomics (SIRM) approach Workflow of SIRM metabolomic studies by NMR 1 Tracer 1 Rafts/ Media Polar/ Non-polar 6 5 C6-Glc C5, 15 N2-Gln Tracer experiment Sample collection Grinding/ Quenching Metabolite Extraction NMR sample preparation NMR Spectroscopy

8 Experimental Design and Sample Collection R78-NIKs Day Raft generation 1 Day C-Glc or 12 C-Glc Raft collection at 24h C 6 -Glc RAFTS 12 C 6 -Glc DEK-NIKs Metabolite extraction (CH 3 OH:H 2 O:CHCl 3 ) Polar/Lipid phase C 6 -Glc add DSS 12 C 6 -Glc NMR analysis of Polar phase 2x spectra acquired t=h t=2h t=4h t=8h t=12h t=24h MEDIA 5 ul 5 ul 5 ul 5 ul Acetone extraction 5 ul 5 ul add DSS NMR analysis of Polar phase 2x spectra acquired 8

9 NMR Spectroscopy 1) 1D 1 H-PRESAT SPECTRUM - Depicts all non exchangeable 1 H present in molecules - Arrows: C satellites of Lac and Ala 2) 1D 1 H- C-HSQC SPECTRUM - ONLY depicts 1 H atoms attached to C C 6 -Glucose Unlabeled C 6 -Glucose Unlabeled ( C: 1.1% Nat.Abundance) DSS: 17.5 nmoles DSS: 8.75 nmoles 9

10 1 H NMR ASSIGNMENTS IN RAFTS 1D 1 H-PRESAT SPECTRUM 12 C-N2-NAD+ C 12 C-N2-NADP+ 12 C-N6-NAD+ 12 C-N4-NAD+ 12 C-8-ATP 12 C-8-AMP 12 C-8-ADP 12 C-Formate C-2-AXP C-N5-NAD+ 12 C-A2-NAD+ 12 C-3,5-Phe 12 C-6-UXP 12 C-4-Phe 12 C-5-His 12 C-2,6-Phe B 12 C-GSSG 12 C-GSH 12 C-1-βGlucose 12 C-2,6-Tyr 12 C-6-His 12 C-3,5-Tyr C-1- βglucose 12 C-2,3-Fumarate 12 C-2-Lac C-1 -AXP C-N1 -NAD+ 12 C-1 -AXP 12 C-2-MyoIno 12 C-1 -UXP 12 C-P-Creatine 12 C-Creatine 12 C-5-UXP C-1- αglucose C-aGlycogen 12 C-Glycogen C-bGlycogen 12 C-2-Gly 12 C-1,3-MyoIno 12 C-1- αglucose 12 C-NMe-PCholine C-1-αGlucose 12 C-P-Creatine 12 C-Creatine 12 C-Cys-3-GSH A 12 C-3-Asp 12 C-GSH-GSSG-4 12 C-4-Gln 12 C-3-Gln 12 C-4-Glu 12 C-4-Glu+GSH+GSSG 12 C-3-Glu 12 C-2-Acetate C3-1,2,3-Ala 12 C-3-Ala C3-1,2,3-Lac C3-1,2,3-Ala 12 C-3-Thr C3-1,2,3-Lac 12 C-3-Lac 12 C-6-Ile 12 C-5-Ile 12 C-4-Val 12 C-5-Val 1

11 1 H ATTACHED TO C NMR ASSIGNMENTS IN RAFTS 1D 1 H- C-HSQC SPECTRUM C-N2-NAD+ B C-8-ADP C-Formate C-2-AXP C-6-UXP C-Fumarate C-A1 -AXP C-N1 -NAD+ C-A1 -NAD+ C-1-UXP C-1-GTP C-3-Glu + Gln + GSH + GSSG C-2-Gly C-4-Glu + GSH + GSSG C-4-Glu C-4-Gln C-3-Gln C-3-Ala C-3-Glu C-3-Lac A C-UDP-Glucose C-UDP-Glalactose C-Glycogen C-1-αGlucose C-GSSG C-1-βGlucose C-GSH C-2-Lac C-3-Asp

12 1 H-NMR spectra of media reveal Glc consumption and Lac production Media: t=h, t=2h, t=4h, t=8h, t=12h, t=24h C-α-Glc 12 C-α-Glc C-α-Glc C3 -Lac 12 C-3-Lac C3 -Lac 1 CHO 2 HCOH 3 HOCH 4 HCOH 5 HCOH 6 CH 2 OH C 6 -Glc 1 CHO 2 HCOH 3 HOCH 4 HCOH 5 HCOH 6 CH 2 OH C 6 -Glc Glycolysis Rafts (R78/DEK) 2 CO 3 CH 3 C 3 -Pyr LDHA 2 COH 3 CH 3 C 3 -Lac C 3 -Lactate in media therefore represents lactate newly synthesized from the added C 6 -Glucose 1 COO- 1COO- 1 COO- 2 COH 3 CH 3 C 3 -Lac

13 DEK-NIKs vs R78-NIKs rafts: Lactate RAFTS [U- C]-Glucose MEDIA t24-t 1D 1 H-PRESAT SPECTRUM nmoles in polar R78rNIKs DEKrNIKs G6P F6P DHAP GAP Pyruvate Lactate nmoles in polar R78rNIKs C-bGlc (A) t= t=2 t=4 t=8 t=12 t=24 DEKrNIKs 12C-bGlc C-bGlc (B) t= t=2 t=4 t=8 t=12 t=24

14 DEK-NIKs vs R78-NIKs rafts: Alanine [U- C]-Glucose RAFTS R78rNIKs DEKrNIKs GLYCOLYSIS Glucose G6P F6P GAP DHAP nmoles in polar C3-Ala (A) 12C-3-Ala C3-Ala (B) Succinate-2, Fumarate- 2,3 1D 1 H-PRESAT SPECTRUM 3PG ALT Ala PEP Pyruvate PC PDH AcCoA Pyruvate LDH Malate OAA TCA Citrate αkg GLUTAMINOLYSIS Glu Gln Cytosol Lactate Fumarate Succinate

15 DEK-NIKs vs R78-NIKs rafts: Glu/Gln metabolism and redox status GLYCOLYSIS GAP Pyruvate LDH 3PG PEP Lactate [U- C]-Glucose Glucose G6P F6P DHAP nmoles in polar Malate RAFTS Glu-3 Pyruvate PC ALT Fumarate Gln-4 OAA R78rNIKs PDH TCA Ala Succinate DEKrNIKs GSH+GSSG-3 GSH-8 GSSG-24 AcCoA Citrate αkg GLUTAMINOLYSIS Glu GSH Gln GSSG 1D 1 H-PRESAT SPECTRUM Cytosol nmoles in polar MEDIA T24-T R78rNIKs Glu-3 DEKrNIKs Gln-4 1D 1 H-PRESAT SPECTRUM 1D 1 H- C-HSQC SPECTRUM

16 [U- C]-Glucose DEK-NIKs vs R78-NIKs - Glycine RAFTS Glycine Ser Gly MEDIA Intracellular t= t=2 t=4 t=8 t=12 t=24 t= t=2 t=4 t=8 t=12 t=24 GLYCOLYSIS 3 3 3PG Ser Gly Ser biosynthesis Ser Gly Adapted from: Nat Genet. 215 Dec;47(12): D 1 H-PRESAT SPECTRUM 12 C-2-Gly nmoles in polar C-2-Gly 1D 1 H- C-HSQC SPECTRUM C-2-Gly nmoles in polar C-2-Gly 12C-Gly_R78rNIKs 12C-Gly_DEKrNIKs t24-t R78rNIKs DEKrNIKs C-Gly

17 SIRM is feasible for studies of engineered 3D human epidermis Preliminary data: Isogenic DEK status identifies gene-metabolic flux connections De novo synthesis of Gln, AXP, UDP-Glc, UDP-Gal and glycogen from C-Glc DEK OE stimulates de novo synthesis of Ala, Gln, Glu, Gly, but not Lac Hypotheses: DEK OE drives a hyperactive TCA cycle and anaplerosis via targetable nuclear or mitochondrial activities? This may be reflected by excessive succinate and fumarate accumulation opportunities for targeting these oncometabolites? Gly accumulation might promote GSH/GSSG synthesis High GSSG/GSH ratio may reflect oxidative stress opportunities for antioxidant based therapies? Target DEK OE via metabolic interventions

18

19

20 Alanine C-enrichment - R78: 87% - DEK: 86%

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7 Midterm 2 Low: 14 Mean: 61.3 High: 98 Standard Deviation: 17.7 Lecture 17 Amino Acid Metabolism Review of Urea Cycle N and S assimilation Last cofactors: THF and SAM Synthesis of few amino acids Dietary

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI AMINO ACID METABOLISM Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI Amino acids derived from dietary protein absorbed from intestine through blood taken up by tissues used for biosynthesis

More information

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry!

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry! Welcome to Class 14 Introductory Biochemistry Class 14: Outline and Objectives Amino Acid Catabolism Fates of amino groups transamination urea cycle Fates of carbon skeletons important cofactors metabolic

More information

Midterm 2 Results. Standard Deviation:

Midterm 2 Results. Standard Deviation: Midterm 2 Results High: Low: Mean: Standard Deviation: 97.5% 16% 58% 16.3 Lecture 17 Amino Acid Metabolism Urea Cycle N and S assimilation Last cofactors: THF and SAM Dietary (Exogenous) Proteins Hydrolyzed

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

Information transmission

Information transmission 1-3-3 Case studies in Systems Biology Goutham Vemuri goutham@chalmers.se Information transmission Fluxome Metabolome flux 1 flux flux 3 Proteome metabolite1 metabolite metabolite3 protein 1 protein protein

More information

Metabolism of amino acids. Vladimíra Kvasnicová

Metabolism of amino acids. Vladimíra Kvasnicová Metabolism of amino acids Vladimíra Kvasnicová Classification of proteinogenic AAs -metabolic point of view 1) biosynthesis in a human body nonessential (are synthesized) essential (must be present in

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lecture 16 Based on Profs. Kevin Gardner & Reza Khayat 1 Catabolism of Di- and Polysaccharides Catabolism (digestion) begins

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 1. A cell in an active, catabolic state has a. a high (ATP/ADP) and a high (NADH/NAD + ) ratio b. a high (ATP/ADP) and a low (NADH/NAD + ) ratio c. a

More information

SIMPLE BASIC METABOLISM

SIMPLE BASIC METABOLISM SIMPLE BASIC METABOLISM When we eat food such as a tuna fish sandwich, the polysaccharides, lipids, and proteins are digested to smaller molecules that are absorbed into the cells of our body. As these

More information

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain Glycolysis 4 / The Text :- Some Points About Glucose Glucose is very soluble source of quick and ready energy. It is a relatively stable and easily transported. In mammals, the brain uses only glucose

More information

(de novo synthesis of glucose)

(de novo synthesis of glucose) Gluconeogenesis (de novo synthesis of glucose) Gluconeogenesis Gluconeogenesis is the biosynthesis of new glucose. The main purpose of gluconeogenesis is to maintain the constant blood Glc concentration.

More information

Regulation. 1. Short term control 8-1

Regulation. 1. Short term control 8-1 Regulation Several aspects of regulation have been alluded to or described in detail as we have progressed through the various sections of the course. These include: (a) compartmentation: This was not

More information

Tracing compartmentspecific. using stable isotopes and mass spectrometry. Christian Metallo IECM 2017

Tracing compartmentspecific. using stable isotopes and mass spectrometry. Christian Metallo IECM 2017 Tracing compartmentspecific redox pathways using stable isotopes and mass spectrometry Christian Metallo IECM 2017 Department of Bioengineering Moores Cancer Center UCSD Diabetes Research Center Michal

More information

Supporting information for. Time-dependent Responses of Earthworms to Soil. Contaminated with Low Levels of Lead as Detected using 1 H

Supporting information for. Time-dependent Responses of Earthworms to Soil. Contaminated with Low Levels of Lead as Detected using 1 H Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supporting information for Time-dependent Responses of Earthworms to Soil Contaminated with

More information

Glycolysis. Intracellular location Rate limiting steps

Glycolysis. Intracellular location Rate limiting steps Glycolysis Definition Fx Fate Site Intracellular location Rate limiting steps Regulation Consume ATP Subs level phosphoryla tion Key reactions control points Nb Oxidation of glucose to give pyruvate (

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism I. Overall concepts A. Definitions ANC/NUTR 618 Lipids & Lipid Metabolism 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose, lactate, and pyruvate) b.

More information

Biology 638 Biochemistry II Exam-1

Biology 638 Biochemistry II Exam-1 Biology 638 Biochemistry II Exam-1 Using the following values, answer questions 1-3. ATP + H 2 O ADP + P i ΔG = -30 kj/mol Creatine-phosphate + H 2 O Creatine + P i ΔG = -12 kj/mol ½O 2 + 2H + + 2e - H

More information

doi: /nature10642

doi: /nature10642 doi:10.1038/nature10642 Supplementary Fig. 1. Citric acid cycle (CAC) metabolism in WT 143B and CYTB 143B cells. a, Proliferation of WT 143B and CYTB 143B cells. Doubling times were 28±1 and 33±2 hrs for

More information

Control vs. HFD-lipid

Control vs. HFD-lipid Animals Control vs. T1D vs. T1D-leptin and Hyperinsulinemic-diabetic vs. hyperinsulinemic-diabetic-leptin STZ ± nicotinamide injection Leptin or saline 6 8 1 12 2 4 6 8 1 12 2 4 6 8 1 12 Control vs. HFD-lipid

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Biology 638 Biochemistry II Exam-2

Biology 638 Biochemistry II Exam-2 Biology 638 Biochemistry II Exam-2 Biol 638, Exam-2 (Code-1) 1. Assume that 16 glucose molecules enter into a liver cell and are attached to a liner glycogen one by one. Later, this glycogen is broken-down

More information

Cell Metabolism Assays. for OMICS. Research

Cell Metabolism Assays. for OMICS. Research Gene-Protein-metabolism links Cell Metabolism Assays for OMICS Research STANDARD Parameters of Functional METABOLIsm Genomics Cells use gene expression to synthesize proteins and other products that are

More information

Dr. Mohnen s notes on GLUCONEOGENESIS

Dr. Mohnen s notes on GLUCONEOGENESIS Dr. Mohnen s notes on GLUCONEOGENESIS Note: Even though we did not get through all of these slides during lecture, I advise you to look them all through because they will be helpful to you as you learn

More information

Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle

Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle BIOC 423: Introductory Biochemistry Biochemistry Education Department of Biochemistry & Molecular Biology University of New Mexico Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle OBJECTIVES Describe

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions Citrate Cycle Lecture 28 Key Concepts The Citrate Cycle captures energy using redox reactions Eight reactions of the Citrate Cycle Key control points in the Citrate Cycle regulate metabolic flux What role

More information

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet http://testbankair.com/download/test-bank-for-fundamentals-ofbiochemistry-4th-edition-by-voet/ Chapter 16: Glycogen

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

Metabolic engineering some basic considerations. Lecture 9

Metabolic engineering some basic considerations. Lecture 9 Metabolic engineering some basic considerations Lecture 9 The 90ties: From fermentation to metabolic engineering Recruiting heterologous activities to perform directed genetic modifications of cell factories

More information

Dr. Abir Alghanouchi Biochemistry department Sciences college

Dr. Abir Alghanouchi Biochemistry department Sciences college Dr. Abir Alghanouchi Biochemistry department Sciences college Under aerobic conditions, pyruvate(the product of glycolysis) passes by special pyruvatetransporter into mitochondria which proceeds as follows:

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

0.40. Biochemistry of Carbohydrates

0.40. Biochemistry of Carbohydrates 0.40 Biochemistry of Carbohydrates Biochemistry of Carbohydrates ATP ADP Glycolysis The Breakdown of Glucose Primary Energy Source of Cells Central Metabolic Pathway All Reactions Occur in Cytoplasm Two

More information

Spring 2012 BIBC 102 midterm Hampton et al. Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50

Spring 2012 BIBC 102 midterm Hampton et al. Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50 Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50 Good afternoon and goooood evening. This midterm has two purposes. One is to solidify your knowledge of the frequently-used ideas and information

More information

BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS

BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS Lymphatic Vessels One main lymph vessel receives lymph from the right upper arm and the right side of the head and the thorax and empties into the

More information

BIOENERGETICS. 1. Detection of succinate dehydrogenase activity in liver homogenate using artificial electron acceptors.

BIOENERGETICS. 1. Detection of succinate dehydrogenase activity in liver homogenate using artificial electron acceptors. BIOENERGETICS Problems to be prepared: 1. Methods of enzymes activity assessment, the role of artificial electron acceptors and donors. 2. Reactions catalyzed by malate dehydrogenase, succinate dehydrogenase,

More information

Supplemental Data. Takahashi et al. Plant Cell (2014) /tpc

Supplemental Data. Takahashi et al. Plant Cell (2014) /tpc Supplemental Data. Takahashi et al. Plant Cell (4).5/tpc.4.363 Fructose Glucose Sucrose Gentiobiose Gentianose Fructose STDs +GLU +INV Gentianose Supplemental Figure. TLC analysis of sugars hydrolyzed

More information

Carbohydrate. Metabolism

Carbohydrate. Metabolism Carbohydrate Metabolism Dietary carbohydrates (starch, glycogen, sucrose, lactose Mouth salivary amylase Summary of Carbohydrate Utilization Utilization for energy (glycolysis) ligosaccharides and disaccharides

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Reactions and amino acids structure & properties

Reactions and amino acids structure & properties Lecture 2: Reactions and amino acids structure & properties Dr. Sameh Sarray Hlaoui Common Functional Groups Common Biochemical Reactions AH + B A + BH Oxidation-Reduction A-H + B-OH + energy ª A-B + H

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Metabolism of Foods Food is broken down into carbohydrates, lipids, and proteins and sent through catabolic pathways to produce energy. Glycolysis glucose 2 P i 2 ADP

More information

How do we retain emphasis on function?

How do we retain emphasis on function? Systems Biology Systems biology studies biological systems by systematically perturbing them (biologically, genetically, or chemically); monitoring the gene, protein, and informational pathway responses;

More information

Course: Nutrition and Metabolism

Course: Nutrition and Metabolism Course: Nutrition and Metabolism Part (1): Metabolism of Carbohydrates Lecture (8): Pentose Phosphate Pathway Dr. Rihab Siddig Mobile: +249918191982 Glucose Uses Energy Stores Glycogen Glucose Pentose

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko

Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko Content 1. Structure of mitochondria Mitochondrial transport systems 2. Electron transport 3. Parts

More information

Biology 638 Biochemistry II Exam-3. (Note that you are not allowed to use any calculator)

Biology 638 Biochemistry II Exam-3. (Note that you are not allowed to use any calculator) Biology 638 Biochemistry II Exam-3 (Note that you are not allowed to use any calculator) 1. In the non-cyclic pathway, electron pathway is. Select the most accurate one. a. PSII PC Cyt b 6 f PC PSI Fd-NADP

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Citrate Cycle Supplemental Reading

Citrate Cycle Supplemental Reading Citrate Cycle Supplemental Reading Key Concepts - The Citrate Cycle captures energy using redox reactions - Eight enzymatic reactions of the Citrate Cycle - Key control points in the citrate cycle regulate

More information

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H +

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H + Glycolysis Glycolysis The conversion of glucose to pyruvate to yield 2ATP molecules 10 enzymatic steps Chemical interconversion steps Mechanisms of enzyme conversion and intermediates Energetics of conversions

More information

Metabolic requirements for cancer cell proliferation

Metabolic requirements for cancer cell proliferation Keibler et al. Cancer & Metabolism (2016) 4:16 DOI 10.1186/s40170-016-0156-6 RESEARCH Open Access Metabolic requirements for cancer cell proliferation Mark A. Keibler 1, Thomas M. Wasylenko 1,3, Joanne

More information

Integration of Metabolism

Integration of Metabolism Integration of Metabolism Metabolism is a continuous process. Thousands of reactions occur simultaneously in order to maintain homeostasis. It ensures a supply of fuel, to tissues at all times, in fed

More information

Glycolysis. Degradation of Glucose to yield pyruvate

Glycolysis. Degradation of Glucose to yield pyruvate Glycolysis Degradation of Glucose to yield pyruvate After this Lecture you will be able to answer: For each step of glycolysis: How does it occur? Why does it occur? Is it Regulated? How? What are the

More information

Energy stores in different organs for a 155 lb male, in Calories

Energy stores in different organs for a 155 lb male, in Calories Energy stores in different organs for a 155 lb male, in Calories Organ Glucose/ Glycogen Triacyl Glycerols* Liver 400 450 400 Brain 8 0 0 Mobile Proteins Muscle 1,200 450 24,000 Adipose Tissue 80 135,000

More information

neurotransmitter cycling in humans

neurotransmitter cycling in humans Special Issue Review Article Received: 10 December 2010, Revised: 9 June 2011, Accepted: 14 June 2011, Published online in Wiley Online Library: 2011 (wileyonlinelibrary.com) DOI: 10.1002/nbm.1772 13 C

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Biochemistry of carbohydrates

Biochemistry of carbohydrates Biochemistry of carbohydrates الفريق الطبي األكاديمي Done By: - Hanan Jamal لكية الطب البرشي البلقاء التطبيقية / املركز 6166 6102/ In the last lecture we talked about Pyruvate, pyruvate is a central intermediate;

More information

Principles and Practice of Mass Isotopomeric MultiOrdinate Spectral Analysis (MIMOSA) to Assess Metabolic Flux"

Principles and Practice of Mass Isotopomeric MultiOrdinate Spectral Analysis (MIMOSA) to Assess Metabolic Flux Principles and Practice of Mass Isotopomeric MultiOrdinate Spectral Analysis (MIMOSA) to Assess Metabolic Flux" Richard G. Kibbey M.D., Ph.D. Associate Professor Departments of Internal Medicine and Cellular

More information

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18 1 Sheet #13 #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016 Here we go.. Record #18 2 Three processes play central role in aerobic metabolism: 1) The citric acid

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

CHAPTER 16. Glycolysis

CHAPTER 16. Glycolysis CHAPTER 16 Glycolysis Net reaction of Glycolysis Converts: 1 Glucose Hexose stage 2 pyruvate - Two molecules of ATP are produced - Two molecules of NAD + are reduced to NADH Triose stage Glucose + 2 ADP

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

page1 (of9) BIBC102 Midterm 1 Sp 2009

page1 (of9) BIBC102 Midterm 1 Sp 2009 page1 (of9) 1) (2 pts) Define catabolism and anabolism. One sentence each should be fine. Catabolism- group of metabolic pathways that break down molecules to gain energy and precursors for biosynthesis

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Spring 2016 Protein Structure February 7, 2016 Introduction to Protein Structure A protein is a linear chain of organic molecular building blocks called amino acids. Introduction to Protein Structure Amine

More information

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle Tricarboxylic Acid ycle TA ycle; Krebs ycle; itric Acid ycle The Bridging Step: Pyruvate D hase O H 3 - - pyruvate O O - NAD + oash O 2 NADH O H 3 - - S - oa acetyl oa Pyruvate D hase omplex Multienzyme

More information

Biosynthesis of Fatty Acids

Biosynthesis of Fatty Acids Biosynthesis of Fatty Acids Fatty acid biosynthesis takes place in the cytosol rather than the mitochondria and requires a different activation mechanism and different enzymes and coenzymes than fatty

More information

LAB#23: Biochemical Evidence of Evolution Name: Period Date :

LAB#23: Biochemical Evidence of Evolution Name: Period Date : LAB#23: Biochemical Evidence of Name: Period Date : Laboratory Experience #23 Bridge Worth 80 Lab Minutes If two organisms have similar portions of DNA (genes), these organisms will probably make similar

More information

[U- 13 C5] glutamine. Glutamate. Acetyl-coA. Citrate. Citrate. Malate. Malate. Isocitrate OXIDATIVE METABOLISM. Oxaloacetate CO2.

[U- 13 C5] glutamine. Glutamate. Acetyl-coA. Citrate. Citrate. Malate. Malate. Isocitrate OXIDATIVE METABOLISM. Oxaloacetate CO2. Supplementary Figures a. Relative mrna levels Supplementary Figure 1 (Christofk) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 LAT1 Fumarate Succinate Palmitate Acetyl-coA Oxaloacetate OXIDATIVE METABOLISM α-ketoglutarate

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT!

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT! Red boxes are IMPORTANT! Krebs Cycle Color Index: Original slides. Important. 436 Notes 438 notes : ل ی د ع ت ل ا ط ب ا ر https://docs.google.com/document/d/1wvdec1atp7j- ZKWOUSukSLsEcosjZ0AqV4z2VcH2TA0/edit?usp=sharing

More information

Yield of energy from glucose

Yield of energy from glucose Paper : Module : 05 Yield of Energy from Glucose Principal Investigator, Paper Coordinator and Content Writer Prof. Ramesh Kothari, Professor Dept. of Biosciences, Saurashtra University, Rajkot - 360005

More information

Energy storage in cells

Energy storage in cells Energy storage in cells Josef Fontana EC - 58 Overview of the lecture Introduction to the storage substances of human body Overview of storage compounds in the body Glycogen metabolism Structure of glycogen

More information

Integration & Hormone Regulation

Integration & Hormone Regulation Integration Branchpoints in metabolism where metabolites can go several directions 1. Glucose 6-phosphate Energy needed (low energy charge): glycolysis Low blood sugar: high [glucagon], low [insulin] glycogen

More information

Review of Carbohydrate Digestion

Review of Carbohydrate Digestion Review of Carbohydrate Digestion Glycolysis Glycolysis is a nine step biochemical pathway that oxidizes glucose into two molecules of pyruvic acid. During this process, energy is released and some of it

More information

The citric acid cycle Sitruunahappokierto Citronsyracykeln

The citric acid cycle Sitruunahappokierto Citronsyracykeln The citric acid cycle Sitruunahappokierto Citronsyracykeln Ove Eriksson BLL/Biokemia ove.eriksson@helsinki.fi Metabolome: The complete set of small-molecule metabolites to be found in a cell or an organism.

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

Energy metabolism - the overview

Energy metabolism - the overview Energy metabolism - the overview Josef Fontana EC - 40 Overview of the lecture Important terms of the energy metabolism The overview of the energy metabolism The main pathways of the energy metabolism

More information

What is the Warburg Effect

What is the Warburg Effect What is the Warburg Effect Roles nutrients play in the biochemistry of a cell Thus, proliferating cells must acquire more nutrients, convert them into biosynthetic building blocks, and coordinate the reactions

More information

Novel stable isotope methods to assess metabolic fluxes using microscale samples

Novel stable isotope methods to assess metabolic fluxes using microscale samples Novel stable isotope methods to assess metabolic fluxes using microscale samples Jamey D. Young Associate Professor and Chancellor s Faculty Fellow Chemical and Biomolecular Engineering Molecular Physiology

More information

METABOLIC VULNERABILITIES OF CANCER. Eyal Gottlieb

METABOLIC VULNERABILITIES OF CANCER. Eyal Gottlieb METABOLIC VULNERABILITIES OF CANCER Eyal Gottlieb METABOLIC VULNERABILITIES OF CANCER Eyal Gottlieb Cancer and metabolism: the anabolic angle glucose glucose-6-phosphate Ribose-5-phosphate ADP + Pi Serine

More information

III. Metabolism - Gluconeogenesis

III. Metabolism - Gluconeogenesis Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism - Gluconeogenesis Carl & Gertrude Cori Slide 1 Carbohydrate Synthesis Lactate, pyruvate and glycerol are the important

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

Dr. DerVartanian is ill and will likely not be able to give lectures this week.

Dr. DerVartanian is ill and will likely not be able to give lectures this week. Dr. DerVartanian is ill and will likely not be able to give lectures this week. Today s slides will be put on-line today, and are designed to introduce you to glycolysis. You should use these slides, along

More information

7.014 Problem Set 2 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions will be posted on the web.

7.014 Problem Set 2 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions will be posted on the web. MIT Department of Biology 7.014 Introductory Biology, Spring 2005 Name: Section : 7.014 Problem Set 2 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 13 Done by Asma Karameh Corrected by Saad hayek Doctor Nayef Karadsheh Gluconeogenesis This lecture covers gluconeogenesis with aspects of: 1) Introduction to glucose distribution through tissues.

More information

Pyruvate Carboxylase Is Critical for Non-Small- Cell Lung Cancer Proliferation

Pyruvate Carboxylase Is Critical for Non-Small- Cell Lung Cancer Proliferation University of Kentucky UKnowledge Toxicology and Cancer Biology Faculty Publications Toxicology and Cancer Biology 1-20-2015 Pyruvate Carboxylase Is Critical for Non-Small- Cell Lung Cancer Proliferation

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism I. verall concepts A. Definitions ANSC/NUTR 618 Lipids & Lipid Metabolism 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose and lactate) 1) Uses glucose

More information

Carbohydrate metabolism 3. Atip Likidlilid

Carbohydrate metabolism 3. Atip Likidlilid Carbohydrate metabolism 3 Atip Likidlilid Glycogenolysis muscle glycogen (1-2 % by weight) liver glycogen (6-10 % by weight) Glycogen for energy storage > fat 1. Muscles cannot mobilize fat as rapid as

More information

PRINT your Name Student (FAMILY, first name) Midterm 7:00 P.M.

PRINT your Name Student (FAMILY, first name) Midterm 7:00 P.M. PRINT your Name Student No. (FAMILY, first name) BIOCHEMISTRY 311A VERSION 1 (ONE) Midterm 7:00 P.M. Examiners: Dr. R. E. MacKenzie (69%) Dr. A. Storer (18%) Dr. W. Mushynski (13%) READ THE QUESTIONS CAREFULLY!!

More information

Respiration. Energy is everything!

Respiration. Energy is everything! Respiration Energy is everything! Tesla was incredible Everyone was intrigued by Tesla Tesla showed that energy does not need to be feared So what does this have to do with twinkies? Everything! Cellular

More information

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants LECT 6. RESPIRATION COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the process of respiration (the oxidation of substrates particularly

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM II. Triacylglycerol synthesis A. Overall pathway Glycerol-3-phosphate + 3 Fatty acyl-coa à Triacylglycerol + 3 CoASH B. Enzymes 1. Acyl-CoA synthase 2. Glycerol-phosphate

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information