A. Ravi Kumar, P.A. Kurup*

Size: px
Start display at page:

Download "A. Ravi Kumar, P.A. Kurup*"

Transcription

1 ORIGINAL ARTICLE Endogenous Sodium-Potassium ATPase Inhibition Related Biochemical Cascade in Trisomy 21 and Huntington s Disease : Neural Regulation of Genomic Function A. Ravi Kumar, P.A. Kurup* Department of Neurology Medical College Hospital, and Department of Biochemistry* University of Kerala, Trivandrum, Kerala, India. Summary The isoprenoid pathway related cascade was assessed in trisomy 21 and Huntington s disease. Membrane Na + -K + ATPase activity, serum magnesium and ubiquinone were decreased while HMG CoA reductase activity, serum digoxin and dolichol levels were increased in both the disorders. There were increased levels of tryptophan catabolites (nicotine, strychnine, quinolinic acid and serotonin) and decreased levels of tyrosine catabolites (dopamine, noradrenaline and morphine) in both trisomy 21 and Huntington s disease. There was an increase in dolichol levels, carbohydrate residues of glycoproteins, glycolipids, total/individual GAG fractions and lysosomal enzymes in both disorders. Reduced levels of ubiquinone, reduced glutathione and free radical scavenging enzymes as well as increased lipid peroxidation products and nitric oxide were noticed in both the disorders. The role of hypothalamic digoxin and a disordered isoprenoid pathway in the pathogenesis of trisomy 21 and Huntington s disease is discussed. Key words : Digoxin, Dolichol, Membrane Na + -K + ATPase, Trinucleotide repeats, Chromosomal non-dysjunction, Magnesium. Neurol India, 2002; 50 : Introduction The pathology of the brain in trisomy 21 is akin to that in Alzheimer s disease with amyloid plaques described in both. 1 Defects in the isoprenoid pathway have been described in neuronal degeneration and Correspondence to : Dr. P.A. Kurup, Gouri Sadan, T.C. 4/1525, Kattu Road, North of Cliff House, Kowdiar, Trivandrum, Kerala, India. Alzheimer s disease. 2 It has been noticed that there is an increased incidence of Alzheimer s disease in relatives of patients with trisomy The isoprenoid pathway produces four important metabolites important in cellular function - digoxin (endogenous inhibitor of membrane Na + -K + ATPase produced by hypothalamus), ubiquinone (a component of the mitochondrial electron transport chain), dolichol (important in N-glycosylation of proteins) and 174

2 Neural Regulation of Genomic Function in Trisomy 21 cholesterol (which is a component of cellular membrane). 3,4 Alteration in ubiquinone, dolichol and cholesterol has been described in degenerative disorders like Alzheimer s disease. 2 There is no data on the changes in the isoprenoid pathway in trisomy 21 and Huntington s disease (HD). Digoxin has been reported to regulate the transport of neutral aminoacids and modulate their catabolism. 5 There are increased levels of tryptophan and tryptophan catabolite, quinolinic acid in Huntington s disease (HD). 6 Quinolinic acid can function as a NMDA agonist contributing to NMDA excitotoxicity and neuronal degeneration. Digoxin, by altering intracellular calcium/magnesium ratios and alteration in ubiquinone levels, can affect mitochondrial function. Mitochondrial dysfunction has been described in Huntington s disease. 7 A decrease in complex 1 activity of platelets has been reported in HD. The results of the study on the isoprenoid pathway related biochemical cascade in the two neurogenetic syndromes are described in this paper. Material and Methods 15 cases each of trisomy 21 and Huntington s disease (HD) attending the metabolic and genetics clinic of Medical College Hospital, Trivandrum were chosen for the study. Each patient had an age and sex matched control. All patients and controls were non-smokers (passive or active). All blood samples were collected from the patients before starting treatment. Activity of HMG CoA reductase of the serum was determined using the method of Rao and Ramakrishnan by determining the ratio of HMG CoA to mevalonate. 8 For the determination of the RBC Na + -K + ATPase activity of the erythrocyte membrane, the procedure described by Wallach and Kamat was used. 9 Digoxin in the serum was determined using the procedure described by Arun et al. 10 For estimation of ubiquinone and dolichol in the serum, the procedure described by Palmer et al was used. 11 Magnesium in the serum was estimated by atomic absorption spectrophotometry. 12 Tryptophan was estimated by the method of David and William and tyrosine by the method of Wong et al. 13,14 Serotonin was estimated by the method of Curzon and Green and catecholamines by the method of Well-Malherbe. 15,16 Quinolinic acid content of serum was estimated by HPLC (C18 column micro BondapakTM 4.6x150 nm), solvent system 0.01 M acetate buffer (ph 3.0) and methanol (6:4), flow rate 1.0 ml/minute and detection UV 250 nm. Morphine, strychnine and nicotine were estimated by the method described by Arun et al. 17 Details of the procedures used for the estimation of total and individual GAG, carbohydrate components of glycoproteins, activity of GAG degrading enzymes and activity of glycohydrolases have been described before. 18 Serum glycolipids were estimated as described in Methods in Enzymology. 19 Cholesterol was estimated by using commercial kits supplied by Sigma Chemicals, USA. SOD was assayed by the method of Nishikimi et al as modified by Kakkar et al. 20 Catalase activity was estimated by the method of Maehly and Chance, glutathione peroxidase by the method of Paglia and Valentine as modified by Lawrence and Burk and glutathione reductase by the method of Horn and Burns MDA (malondialdehyde) was estimated by the method of Will and conjugated dienes and hydroperoxides by the procedure of Brien. 24,25 Reduced glutathione was estimated by the method of Beutler et al. 26 Nitric oxide was estimated in the plasma by the method of Gabor and Allon. 27 Statistical analysis was done by student s t test. Results (i) The activity of serum HMG CoA reductase and the concentration of serum digoxin and dolichol were increased in HD and trisomy 21. The concentration of serum ubiquinone and magnesium, and the activity of erythrocyte membrane Na + -K + ATPase were decreased (Table I). (ii) The concentrations of serum tryptophan, quinolinic acid and serotonin were increased in these patients while that of tyrosine, dopamine and noradrenaline were decreased (Table II). (iii) Nicotine and strychnine were detected in the serum of patients with trisomy 21 and HD but were not detectable in control serum. Morphine was not detected in the serum of these patients (Table III). (iv) The concentration of total glycosaminoglycans (GAG) was increased in the serum of HD and trisomy 21 patients. The concentration of heparan sulphate (HS) heparin (H), dermatan sulphate (DS), chondroitin sulphates (ChS) and hyaluronic acid (HA) was increased. The concentration of total hexose, fucose and sialic acid was increased in the glycoproteins of the serum in these patients. The concentration of gangliosides, glycosyl-diglycerides, cerebrosides and sulphatides showed significant increase in the serum in these patients (Table IV). (v) The activity of glycosaminoglycan (GAG) degrading enzymes-beta-glucuronidase, beta-n-acetyl hexosaminidase, hyaluronidase and cathepsin-d was increased in HD and trisomy 21 when compared to the controls. The activity of beta-galactosidase, betafucosidase and beta-glucosidase was increased in HD and trisomy 21. (vi) The concentration of total GAG 175

3 Ravi Kumar and Kurup Table I Concentration of Serum Digoxin, Dolichol, Magnesium Ubiquinone RBC Membrane Na + -K + ATPase Activity and Tryptophan/Tyrosine Catabolic Patterns in Trisomy 21 and HD Groups Controls (1) Trisomy 21 (2) HD (3) HMG a a CoA Reductase HMG CoA/ Mevalonate* Digoxin a a (ng/dl) Dolichol a b (µg/dl) Ubiquinone a (µg/dl) Na + -K a a ATPase (µg/pi/mg protein) Magnesium a a (mg/dl) Tryptophan a a (mg/dl) Tyrosine a a (mg/dl) SHT a (µg/dl) Dop a a (ng.dl) Norepi a (ng/dl) QA a a (ng/ml) Mean of the values from 15 samples + SD Groups 2 and 3 have been compared with group 1 a = p less than 0.01, b = p between 0.01 and and hexose and fucose residues of glycoproteins in the RBC membrane was decreased significantly in HD and trisomy 21. The concentration of RBC membrane cholesterol increased while that of phospholipid decreased. The ratio of RBC membrane cholesterol : phospholipids increased in HD and trisomy 21. (vii) The activity of superoxide dismutase (SOD), catalase, glutathione reductase and glutathione peroxidase in the erythrocytes decreased significantly in HD and trisomy 21. The concentration of malondialdehyde (MDA), hydroperoxides, conjugated dienes and nitric oxide (NO) increased significantly. The concentration of reduced glutathione decreased in HD and trisomy 21. Discussion Table II Tryptophan and Tyrosine Derived Alkaloids in Serum of Patients with Trisomy 21 and HD Groups Morphine Strychnine Nicotine (µg/dl) (µg/dl) (µg/dl) Control ND ND ND HD ND Trisomy 21 ND Values are mean + SD of 15 cases in each group ND = not detectable. The increase in the activity of HMG CoA reductase in trisomy 21 and HD suggests an upregulation of the isoprenoid pathway and increased digoxin synthesis. In this connection, incorporation of 14 C-acetate into digoxin in rat brain has been shown by us indicating that acetyl CoA is the precursor for digoxin biosynthesis in mammals also. 28 The increase in endogenous digoxin, a potent inhibitor of membrane Na + -K + ATPase, can decrease this enzyme activity in trisomy 21 and HD. The inhibition of Na + -K + ATPase by digoxin is known to cause an increase in intracellular calcium and reduction in intracellular magnesium stores. 29 Serum magnesium was assessed in trisomy 21 and HD and was found to be reduced. DNA polymerase requires magnesium for its function. The 3 exonuclease activity of DNA polymerases 1 and III is the device for proofreading the newly made DNA strands and for correcting errors made by the polymerase activity. 30 The proof reading function of the DNA polymerase is very efficient and contributes a factor of at least 10 4 in guaranteeing the fidelity of replication. Membrane Na + -K + ATPase inhibition can produce intracellular magnesium depletion leading on to a defect in the proofreading function of DNA polymerase during DNA replication. 30 This may possibly lead on to the genesis of trinucleotide repeats described in HD. 31 Intracellular magnesium depletion can also produce defective phosphorylation of MAP (microtubule associated proteins). This results in defective microtubule related spindle fibre function and chromosomal non-dysfunction, probably contributing to Trisomy 21. The same reason holds good for the broken appearance and fragile sites of the chromosome in fragile X syndrome. 31 Thus the genetic defect described in these two syndromes may 176

4 Neural Regulation of Genomic Function in Trisomy 21 Table III Concentration of Glycoconjugates, Lysosomal Enzymes and Membrane Composition in HD and Trisomy 21 Controls (1) HD (2) Trisomy 21 (3) Total GAG a a HA (hyaluronic acid) (mg uronic acid/dl of plasma) a a HS (heparan sulphate) (mg uronic acid/dl of plasma) a a H (heparin) (mg uronic acid/dl of plasma) a a DS (dermatan sulphate) (mg uronic acid/dl of plasma) a a ChS (chondroitin sulphate) (mg uronic acid/dl of plasma) a a Hexose (mg/g protein) a a Fucose (mg/g protein) b a Sialic acid (mg/g protein) a a Ganglioside (µg/dl plasma) a a Glycosyl diglyceride (µg/dl plasma) a a Cerebrosides (µg/dl plasma) a a Sulphatides (µg/dl plasma) a a Beta glucuronidase (µg p-nitrophenol / hr / g protein) a a Beta N-acetyl Hexosaminidase (µg p-nitrophenol/hr/g protein) a a Hyaluronidase (µg N-acetylglucosamine/hr/g Protein) a a Cathepsin D (µg tyrosine / hr/ g protein) a a β Galactosidase (µg of p-nitrophenol/hr/mg protein) a a β fucosidase (µg of p-nitrophenol/hr/mg protein) a a β glucosidase (µg of p-nitrophenol/hr/mg protein) a RBC membrane GAG (µg/mg protein) a a RBC membrane Hexose (µg/mg protein) a a RBC membrane Fucose (µg/mg protein) a a RBC membrane Cholesterol (nmol/mg protein) a a RBC membrane Phospholipid (nmol/mg protein) a a RBC membrane Cholesterol : Phospholipid a a Mean of the values from 15 patients in each group + SD. Groups 2 and 3 have been compared with group 1. a = p less than 0.01, b = p between 0.05 between 0.05 and partly be contributed by hypothalamic digoxin induced membrane Na + -K + ATPase inhibition. Digoxin can possibly regulate the function of heatshock protein which functions as a molecular chaperone involved in protein folding and maturation. 32 The heat-shock protein has an ATP/ADP switch domain that regulates HSP conformation. HSP is dysfunctional in the presence magnesium deficiency. Normally cellular mutations are masked by HSP90, one of the heat shock proteins. But when HSP90 is out of commission, it can no longer stabilise mutant proteins and keep them working properly. Instead the mutations are unmasked and revealed. Thus the brain can regulate genomic function by hypothalamic digoxin acting on the neuronal or cell membrane. Digoxin can regulate neutral amino acid transport. Two of the neutral aminoacids tryptophan, a precursor for strychnine and nicotine and tyrosine, a precursor for morphine are important. 17,33 There is an increase in tryptophan and its depolarising catabolites (serotonin, nicotine and quinolinic acid) and a reduction in tyrosine and its hyperpolarising catabolites (dopamine, norepinephrine and morphine) in trisomy 21 and HD. 34 This could be due to the fact that digoxin can preferentially promote tryptophan transport over tyrosine. Membrane Na + -K + ATPase inhibition, consequent to this alteration of hyperpolarising/depolarising neurotransmitter ratio, can lead to neuronal degeneration. 35 Reduced dopamine levels have been noticed in our study but there is increased dopaminergic transmission in HD. There is a possibility that circulating plasma levels of dopamine may not correlate with CNS dopamine levels. Also, increased levels of nicotine can lead on to dopamine release, promoting dopaminergic transmission even in the presence of reduced dopamine synthesis. 36 The increase in serotonin levels and decrease in dopamine and noradrenaline could contribute to the psychiatric manifestations and cognitive dysfunction described in trisomy 21 and HD. Nicotine acts as a CNS stimulant and can bind to the central nicotinic receptors, contributing to the increase in cholinergic transmission and tremor in HD. 36 Membrane Na + -K + ATPase inhibition can lead 177

5 Ravi Kumar and Kurup Table IV Free Radical Metabolism in HD and Trisomy 21 Groups Control (1) Trisomy 21 (2) HD (3) MDA* a a Hydro a a peroxide* Conjug a a ated dienes* NO** a Gluta a a thione*** Superoxide a a dismutase**** Catalase a ***** GSH a a peroxidase ****** GSH a reductase ****** * µm / ml RBC, ** µm / gm protein, *** µg / ml RBC, **** units / mg protein, ***** x10-2 units / mg protein, ****** units / g protein Groups 2 and 3 have been compared with group 1 a = p < 0.01 on to increase glutamatergic excitatory transmission contributing to trisomy 21 and HD. In the presence of hypomagnesemia, consequent to membrane Na + -K + ATPase inhibition, the magnesium block on the NMDA receptor is removed leading to NMDA excitotoxicity. 37 The increased presynaptic neuronal calcium can produce cyclic AMP dependent phosphorylation of synapsins resulting in increased glutamate release into the synaptic junction and vesicular recycling. Increased intracellular calcium in the post synaptic neuron can also activate the calcium dependent NMDA signal transduction. The plasma membrane glutamate transporter (on the surface of the glial cell and presynaptic neuron) is coupled to sodium gradient which is disrupted by the inhibition of membrane Na + -K + ATPase, resulting in decreased clearance of glutamate by presynaptic and glial uptake at the end of synaptic transmission. By these mechanisms, inhibition of membrane Na + -K + ATPase can promote excitatory glutamatergic transmission. 37 Serotonin and quinolinic acid are NMDA agonist and positive modulators, and could contribute to increased NMDA transmission. 38 Strychnine, by blocking glycinergic transmission, contributes to the decreased inhibitory transmission in the brain. Strychnine displaces glycine from its binding sites and the glycine is free to bind to the strychnine insensitive site of the NMDA receptor and promote excitatory NMDA transmission. 36 Upregulated NMDA transmission could lead to increased excitatory transmission in the corticostriatal glutamatergic pathways and also produce derangement of the basal ganglia functional loops contributing to choreiform movements in HD. NMDA excitotoxicity contributes to neuronal degeneration in trisomy 21 and HD by increasing the intracellular calcium levels. 39 All these results agrees with previous work on tryptophan catabolic pathways in Huntington s disease. 6 The membrane Na + -K + ATPase inhibition related magnesium depletion and elevated dolichol levels can upregulate the metabolism of glycosaminoglycans, glycoproteins and glycolipids. 40 The results show an increase in the concentration of serum total GAG, individual GAG fractions, glycolipids and carbohydrate components of glycoproteins in trisomy 21 and HD. The increase in the carbohydrate components (total hexose, fucose and sialic acid) in trisomy 21 and HD was not to the same extent suggesting qualitative change in glycoprotein structure. The activity of GAG degrading enzymes and glycohydrolases was increased in trisomy 21 and HD suggesting reduced lysosomal stability and leakage of the lysosomal enzymes into the serum. Intracellular magnesium deficiency also results in defective ubiquitin dependent proteolytic processing of glycoconjugates as it requires magnesium for its function. 41 Defective ubiquitin dependent proteolytic processing of proteins has been described in neuronal degeneration. 42 The increase in the concentration of carbohydrate components of glycoproteins inspite of increased activity of many glycohydrolases may be due to their possible resistance to cleavage by glycohydrolases consequent to qualitative change in their structure. Structurally abnormal glycoproteins resist catabolism by lysosomal enzymes and accumulate in neuronal degeneration as in the case of beta-amyloid in trisomy Proteoglycan complexes formed in the presence of altered calcium/magnesium ratios intracellularly may be structurally abnormal and resistant to lysosomal enzymes and may accumulate. Interaction between HS-proteoglycan and ChSproteoglycan with proteins like beta amyloid and huntingtin and reduced proteolytic digestion of these complexes can also lead on to their accumulation in the neurons. 43 The upregulation of isoprenoid pathway can lead to increased cholesterol synthesis and magnesium deficiency can inhibit phospholipid 178

6 Neural Regulation of Genomic Function in Trisomy 21 synthesis. The cholesterol : phospholipid ratio of the RBC membrane was increased in trisomy 21 and HD. The concentration of total GAG and hexose and fucose of glycoprotein decreased in the RBC membrane and increased in the serum suggesting their reduced incorporation into the membrane and defective membrane formation. This could be due to inhibition of membrane trafficking enzymes (GTPases and lipid kinases) which transport membrane components from the endoplasmic reticulum - golgi complex, where they are synthesised to the cell membranes in the presence of magnesium deficiency. 44 The change in membrane structure produced by alteration in glycoconjugates and cholesterol : phospholipid ratio can produce changes in the conformation of Na + -K + ATPase resulting in further membrane Na + -K + ATPase inhibition. The same changes can affect the structure of organalle membrane and result in defective lysosomal stability. The concentration of ubiquinone decreased significantly in trisomy 21 and HD which may be the result of low tyrosine levels, consequent to digoxin s effect in preferentially promoting tryptophan transport over tyrosine. 5 The aromatic ring portion of ubiquinone is derived from the tyrosine. Ubiquinone, which is an important component of the mitochondrial electron transport chain, is a membrane antioxidant and contributes to free radical scavenging. The increase in intracellular calcium can open the mitochondrial PT pore causing a collapse of the hydrogen gradient across the inner membrane and uncoupling of the respiratory chain. 45 Intracellular magnesium deficiency can lead to a defect in the function of ATP synthase. All this leads to a defect in mitochondrial oxidative phosphorylation, incomplete reduction of oxygen and generation of superoxide ion which produces lipid peroxidation. Ubiquinone deficiency also leads to reduced free radical scavenging. The increase in intracellular calcium may lead to increased generation of NO by inducing the enzyme nitric oxide synthase which combines with superoxide radical to form peroxynitrite. Increased intracellular calcium also can activate phospholipase A 2 resulting in increased generation of arachidonic acid which can undergo increased lipid peroxidation. Increased generation of free radicals like the superoxide ion and hydroxyl radical can produce lipid peroxidation and cell membrane damage which can further inactivate membrane Na + -K + ATPase triggering the cycle of free radical generation again. There was an increase in lipid peroxidation products and NO with decreased antioxidant protection as indicated by a decrease in ubiquinone and reduced glutathione levels and free radical scavenging enzyme activity in trisomy 21 and HD. Glutathione synthetase, glutathione peroxidase and glutathione reductase are dysfunctional in the presence of magnesium deficiency. The increased intracellular calcium related opening of the mitochondrial PT pore produces hyperosmolality and matrix expansion of the mitochondria. This ruptures the outer membrane producing leakage and inactivation of the mitochondrial dismutase. Alteration in peroxisomal membranes results in a catalase dysfunction. Mitochondrial dysfunction related free radical generation has been implicated in the pathogenesis of neuronal degeneration like HD and trisomy 21. Mitochondrial dysfunction can remove the magnesium block of the NMDA receptor leading on to excitotoxicity and neuronal degeneration. 46 Cell death is also mediated by the increased intracellular calcium and ceramide related opening of the mitochondrial PT pore causing a collapse of the hydrogen gradient across the inner membrane. This leads to volume dysregulation of mitochondria causing hyperosmolality of matrix and expansion of matrix space. The outer membrane of the mitochondria ruptures and releases AIF (apoptosis inducing factor) and cyto C (cytochrome C) in to the cytoplasm activating caspase-9, important in apoptosis crucial to neuronal degeneration. Also caspase 3 activation can cleave P 21 involved in linking DNA duplication to cell division resulting in a polyploid cell and oncogenesis noticed in trisomy 21. The isoprenoid pathway may this contribute to the genesis of trisomy 21 and Huntington s disease, the two neurogenetic syndromes. Thus, trisomy 21 and HD are evidence of the role played by the central nervous system in regulating genomic function. References 1. Raymond D Adams, Maurice Victor : In : Principles of Neurology : McGraw Hill Information Services Company, New York Edlund C, Soderberg M, Kristensson K et al : Ubiquinone, dolichol and cholesterol metabolism in aging and Alzheimer s disease. Biochem Cell Biol 1992; 60 : Goldstein JL, Brown MS : Regulation of the mevalonate pathway. Nature 1990; 343 : Haupert GT : Sodium pump regulation by endogenous inhibition. Top Membr Transport 1989; 34 : Hisaka A, Kazamatu S, Takenaga N : Absorption of a novel prodrug of DOPA. Drug Metab Dispos 1990; 18 : Andrew Freese, Kenton J Swartz, Mathew J During et al : Kynurenine pathway. Neurology 1990; 40 :

7 Ravi Kumar and Kurup 7. Parker WD, Boyson SJ, Luder AS et al : Evidence for a defect in NADH : ubiquinone oxidoreductase (complex 1) in Huntington s disease. Neurology 1990; 40 : Rao AV, Ramakrishnan S : Estimation of HMG CoA reductase activity. Clin Chem 1975; 21 : Wallach DFH, Kamat VB : Assay for membrane Na+-K+ ATPase. In : Methods in Enzymology. Colowick SP, Kaplan O (Ed) : Academic Press, New York. 1966; Arun P, Ravi Kumar A, Leelamma S et al : Identification and estimation of endogenous digoxin in biological fluids and tissues by TLC and HPLC. Indian J Biochem Biophys 1998; 35 : Palmer DN, Maureen AA, Robert DJ : Separation of some neutral lipids by normal phase high performance liquid chromatography on a cyanopropyl column : ubiquinone, dolichol and cholesterol levels in sheep liver. Anal Biochem 1984; 140 : Price WJ : Spectrochemical analysis by atomic absorption : John Wiley Sons, New York. 1985; David L Bloxam, William H Warren : Error in the determination of tryptophan by the method of Denkala and Dewey. A revised procedure. Anal Biochem 1974; 60 : Wong PWK, O Flynn ME, Inouye : Flourimetric method for tyrosine. Clin Chem 1964; 10 : Curzon G, Green AR : Rapid method for the determination of 5-hydroxy tryptamine and 5-hydroxy indoleacetic acid in certain regions of rat brain. Br J Pharmacol 1970; 39 : Well-Malherbe : The chemical estimation of catecholamines and their metabolites in body fluids and tissue extracts. In : Methods of Biochemical Analysis, Glick D (Ed) : Inter Science, New York. 1971; Arun P, Ravi Kumar A, Leelamma S et al : Endogenous alkaloids in the brain of rats loaded with tyrosine / tryptophan and in the serum of patients of neurodegenerative and psychiatric disorders. Indian J Med Res 1998; 107 : Manoj AJ, Kurup PA : Changes in the glycosaminoglycans and glycoproteins in the rat brain during protein calorie malnutrition. J Clin Biochem Nutr 1998; 25 : John M Lowenstein : In : Methods in Enzymology 25 : Academic Press, New York. 1969; Kakkar P, Das B, Viswanathan PN : A modified spectrophotometric assay of SOD. Indian J Biochem Biophys 1984; 21 : Maehly AC, Chance B : The assay of catalase and peroxidase. Methods Biochem Anal 1954; 2 : Paglia DE, Valentine WN : Studies on quantitative and qualitative characterisation of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70 : Horn HD, Burns FH : Assay of glutathione reductase activity. In : Methods of Enzymatic Analysis, Bergmeyer HV (Ed) : Academic Press, New York. 1978; Will ED : Lipid peroxide formation in microsomes - general consideration. Biochem J 1969; 113 : Brien PJO : Estimation of conjugated dienes and hydroperoxide. Can J Biochem 1969; 47 : Beutler E, Duran O, Kelley BM : Modified procedure for the estimation of reduced glutathione. J Lab Clin Med 1963; 61 : Gabor G, Allon N : Spectrofluorometric method for NO determination. Anal Biochem 1994; 220 : Jyothi : In : Investigations on metabolic derangement in coronary artery disease and neurodegenerative disorders : University of Kerala Press, Trivandrum Haga H : Effect of dietary Mg ++ supplementation on diurnal variation of BP and plasma Na + -K + ATPase activity in essential hypertension. Jpn Heart J 33 (6) Albert B, Sternglansz R : Recent excitement in the DNA replication problem. Nature 1977; 269 : Jennings C : How trinucleotide repeats may function. Nature 1995; 378 : Pennisi E : Heat shock protein mutes genetic changes. Science 1998; 282 : Stefano GB, Scharrer B : Endogenous morphine and related opiates, a new class of chemical messengers. Advances in Neuroimmunology 1994; 4 : Elaine Wyllie : In : Treatment of epilepsy principles and practice. William and Wilkins, Baltimore Lees GJ : Inhibition of sodium potassiuim ATPase a potentially ubiquitous mechanism contributing to CNS neuropathology. Brain Res Rev 1991; 16 : Seiden LS, Dykstra LA : In : Psychopharmacology - A biochemical and behavioural approach : Van Nostrand Reinhold Company, New York Greenamyre JT, Poter RHP : Anatomy and physiology of glutamate in CNS. Neurology 1994; 44 : Gramsbergen JB, Van der Sluijis, Gelling AJ : Time and dose dependent 45 Ca 2+ accumulation in rat striatum and substantia nigra after an intrastriatal injection of quinolinic acid. Exp Neurol 1993; 121 : Choi DW : Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1 : Jaya P, Kurup PA : Effect of magnesium deficiency on the metabolism of glycosaminoglycans in rats. J Biosci 1986; 10 : Monia BP, Ecker J, Crooke ST : Ubiquitination enzymes, Biotechnology 1990; 8 : Hardy J, Gwinn-Hardy K : Genetic classification of primary neurodegenerative disease. Science 1998; 282 : Beyreuther K, Masters CL : Alzheimer s disease tangle disentanglement. Nature 1996; 383 : Wiedemann C, Cockcroft S : Vesicular transport. Nature 1998; 394 : Green RD, Reed CJ : Mitochondria and apoptosis. Science 1998; 281 : Beal MG : Aging energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995; 38 : Accepted for publication : 6th June,

Chapter 4. Cerebral Dominance and Archaeal Digoxin - Relation to the Tridosha Theory and Pathogenesis of Disease

Chapter 4. Cerebral Dominance and Archaeal Digoxin - Relation to the Tridosha Theory and Pathogenesis of Disease Chapter 4 Cerebral Dominance and Archaeal Digoxin - Relation to the Tridosha Theory and Pathogenesis of Disease 74 Introduction Global warming induces a genomic change in humans. Global warming induces

More information

BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester

BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester Section Director: Dave Ford, Ph.D. Office: MS 141: ext. 8129: e-mail: fordda@slu.edu Lecturers: Michael Moxley, Ph.D. Office: MS

More information

Neurotransmitter Systems III Neurochemistry. Reading: BCP Chapter 6

Neurotransmitter Systems III Neurochemistry. Reading: BCP Chapter 6 Neurotransmitter Systems III Neurochemistry Reading: BCP Chapter 6 Neurotransmitter Systems Normal function of the human brain requires an orderly set of chemical reactions. Some of the most important

More information

Chemical and Biochemical Mechanism Of Cell Injury.

Chemical and Biochemical Mechanism Of Cell Injury. Chemical and Biochemical Mechanism Of Cell Injury. Professor Dr. M. Tariq Javed Dept. of Pathology Faculty of Vet. Science The University Of Agriculture Faisalabad Cell Injury When the cell is exposed

More information

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n):

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n): Section: Chapter 5: Multiple Choice 1. The structure of synapses is best viewed with a(n): p.155 electron microscope. light microscope. confocal microscope. nissle-stained microscopic procedure. 2. Electron

More information

- Neurotransmitters Of The Brain -

- Neurotransmitters Of The Brain - - Neurotransmitters Of The Brain - INTRODUCTION Synapsis: a specialized connection between two neurons that permits the transmission of signals in a one-way fashion (presynaptic postsynaptic). Types of

More information

NERVOUS SYSTEM 1 CHAPTER 10 BIO 211: ANATOMY & PHYSIOLOGY I

NERVOUS SYSTEM 1 CHAPTER 10 BIO 211: ANATOMY & PHYSIOLOGY I BIO 211: ANATOMY & PHYSIOLOGY I 1 Ch 10 A Ch 10 B This set CHAPTER 10 NERVOUS SYSTEM 1 BASIC STRUCTURE and FUNCTION Dr. Lawrence G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill.

More information

Neuron types and Neurotransmitters

Neuron types and Neurotransmitters Neuron types and Neurotransmitters Faisal I. Mohammed. PhD, MD University of Jordan 1 Transmission of Receptor Information to the Brain the larger the nerve fiber diameter the faster the rate of transmission

More information

NEUROCHEMISTRY Brief Review

NEUROCHEMISTRY Brief Review NEUROCHEMISTRY Brief Review UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY PBL MBBS YEAR V SEMINAR VJ Temple 1 Membrane potential Membrane potential:

More information

Glycolysis, Global Warming and Human Stem Cell Transformation

Glycolysis, Global Warming and Human Stem Cell Transformation 1 Glycolysis, Global Warming and Human Stem Cell Transformation 2 The Endosymbiotic Archaea and Human Stem Cell Transformation The Neanderthals are symbiotic life form due to archaeal endosymbiosis. The

More information

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Question No. 1 of 10 Question 1. Which of the following statements about the nucleus is correct? Question #01 A. The

More information

Cell Injury MECHANISMS OF CELL INJURY

Cell Injury MECHANISMS OF CELL INJURY Cell Injury MECHANISMS OF CELL INJURY The cellular response to injurious stimuli depends on the following factors: Type of injury, Its duration, and Its severity. Thus, low doses of toxins or a brief duration

More information

BCMB 3100 Fall 2013 Exam III

BCMB 3100 Fall 2013 Exam III BCMB 3100 Fall 2013 Exam III 1. (10 pts.) (a.) Briefly describe the purpose of the glycerol dehydrogenase phosphate shuttle. (b.) How many ATPs can be made when electrons enter the electron transport chain

More information

Biomarkers for Hypothesis Testing

Biomarkers for Hypothesis Testing Biomarkers for Hypothesis Testing Definition for Drug Development: Biomarker = Any Measure of a Drug Action Proximal to a Clinical Effect Biochemical (PET, MRS & CSF* for CNS drugs) Physiological EEG,

More information

Citric acid cycle and respiratory chain. Pavla Balínová

Citric acid cycle and respiratory chain. Pavla Balínová Citric acid cycle and respiratory chain Pavla Balínová Mitochondria Structure of mitochondria: Outer membrane Inner membrane (folded) Matrix space (mtdna, ribosomes, enzymes of CAC, β-oxidation of FA,

More information

CELL AND PLASMA MEMBRANE CELL: BASIC UNIT OF LIFE

CELL AND PLASMA MEMBRANE CELL: BASIC UNIT OF LIFE CELL AND PLASMA MEMBRANE CELL: BASIC UNIT OF LIFE Approximate elementary composition of the human body (dry weight) Carbon - 50% Oxygen - 20% Hydrogen - 10% Nitrogen - 8.5% Calcium - 4% Phosphorus - 2.5%

More information

I. OVERVIEW DIRECT. Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of

I. OVERVIEW DIRECT. Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of THE CHOLINERGIC NEURON 1 I. OVERVIEW DIRECT Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of ACTING neuron involved in their mechanism of action.

More information

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve impulses - Impulse may be blocked in its transmission

More information

Electron Transport Chain and Oxidative phosphorylation

Electron Transport Chain and Oxidative phosphorylation Electron Transport Chain and Oxidative phosphorylation So far we have discussed the catabolism involving oxidation of 6 carbons of glucose to CO 2 via glycolysis and CAC without any oxygen molecule directly

More information

Mechanisms of Cell Injury: Loss of Calcium Homeostasis

Mechanisms of Cell Injury: Loss of Calcium Homeostasis Mechanisms of Cell Injury: Loss of Calcium Homeostasis SCPA610: Cellular Pathology Amornrat N. Jensen, Ph.D. amornrat.nar@mahidol.ac.th Leading questions Why is intracellular calcium important for the

More information

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons Chad Smurthwaite & Jordan Shellmire The Chemical Synapse The most common type of synapse used for signal transmission in the central

More information

Review of Neurochemistry What are neurotransmitters?

Review of Neurochemistry What are neurotransmitters? Review of Neurochemistry What are neurotransmitters? In molecular terms, neurotransmitters are molecules that ( ) and of neurons by, for example, increasing or decreasing enzymatic activity or altering

More information

Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz )

Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz ) Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz ) Biochemistry Submitted by Marie Havlová on 8. February 2012-0:00 Syllabus of Biochemistry Mechanisms of enzyme catalysis.

More information

Cholesterol and its transport. Alice Skoumalová

Cholesterol and its transport. Alice Skoumalová Cholesterol and its transport Alice Skoumalová 27 carbons Cholesterol - structure Cholesterol importance A stabilizing component of cell membranes A precursor of bile salts A precursor of steroid hormones

More information

Metabolism of acylglycerols and sphingolipids. Martina Srbová

Metabolism of acylglycerols and sphingolipids. Martina Srbová Metabolism of acylglycerols and sphingolipids Martina Srbová Types of glycerolipids and sphingolipids 1. Triacylglycerols function as energy reserves adipose tissue (storage of triacylglycerol), lipoproteins

More information

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body Adapted from Martini Human Anatomy 7th ed. Chapter 2 Foundations: The Cell Introduction There are trillions of cells in the body Cells are the structural building blocks of all plants and animals Cells

More information

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by B.-W. Ku,

More information

Conversionofaminoacidsto specializedproducts

Conversionofaminoacidsto specializedproducts Conversionofaminoacidsto specializedproducts α-nitrogen atom of amino acids is a primary source for many nitrogenous compounds: Heme Purines and pyrimidines Hormones Neurotransmitters Biologically active

More information

Propagation of the Signal

Propagation of the Signal OpenStax-CNX module: m44452 1 Propagation of the Signal OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Membrane transport D. Endocytosis and Exocytosis

More information

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state?

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state? MCB 102: Pantea s Sxn Chapter 19 Problem Set Answer Key 1) Page: 690 Ans: E Almost all of the oxygen (O 2 ) one consumes in breathing is converted to: A) acetyl-coa. B) carbon dioxide (CO 2 ). C) carbon

More information

Synapses and Neurotransmitters

Synapses and Neurotransmitters Synapses and Neurotransmitters Communication Between Neurons Synapse: A specialized site of contact, and transmission of information between a neuron and an effector cell Anterior Motor Neuron Figure 45-5

More information

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed 16 Dania Ahmad Tamer Barakat + Dania Ahmad Faisal I. Mohammed Revision: What are the basic types of neurons? sensory (afferent), motor (efferent) and interneuron (equaled association neurons). We classified

More information

Mechanistic Toxicology

Mechanistic Toxicology SECOND EDITION Mechanistic Toxicology The Molecular Basis of How Chemicals Disrupt Biological Targets URS A. BOELSTERLI CRC Press Tavlor & France Croup CRC Press is an imp^t o* :H Taylor H Francn C'r,,jpi

More information

1. endoplasmic reticulum This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

1. endoplasmic reticulum This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins. Biology 4410 Name Spring 2006 Exam 2 A. Multiple Choice, 2 pt each Pick the best choice from the list of choices, and write it in the space provided. Some choices may be used more than once, and other

More information

Chapter 2: Cellular Mechanisms and Cognition

Chapter 2: Cellular Mechanisms and Cognition Chapter 2: Cellular Mechanisms and Cognition MULTIPLE CHOICE 1. Two principles about neurons were defined by Ramón y Cajal. The principle of connectional specificity states that, whereas the principle

More information

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY]

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY] QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY] Learning Objectives: Explain how neurons communicate stimulus intensity Explain how action potentials are conducted along

More information

Chapter 2. The Cellular and Molecular Basis of Cognition

Chapter 2. The Cellular and Molecular Basis of Cognition Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by B.-W. Ku,

More information

CONVERSION OF AMINO ACIDS TO SPECIALIZED PRODUCTS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

CONVERSION OF AMINO ACIDS TO SPECIALIZED PRODUCTS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU CONVERSION OF AMINO ACIDS TO SPECIALIZED PRODUCTS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU In addition to serving as building blocks for proteins, amino acids are precursors of many nitrogen-containing

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

6 DISCUSSION. Plants and plant products have been used medicinally for various. ailments for years. WHO has estimated that about 36,000 plant

6 DISCUSSION. Plants and plant products have been used medicinally for various. ailments for years. WHO has estimated that about 36,000 plant 168 6 DISCUSSION Plants and plant products have been used medicinally for various ailments for years. WHO has estimated that about 36,000 plant species are used worldwide for medical purposes out of the

More information

Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes

Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes The major site of acetoacetate and 3-hydorxybutyrate production is in the liver. 3-hydorxybutyrate is the

More information

Recall basic cell physiology

Recall basic cell physiology (a) Chemical level: a molecule in the membrane that encloses a cell (b) Cellular level: a cell in the stomach lining (c) Tissue level: layers of tissue in the stomach wall (d) Organ level: the stomach

More information

NBCE Mock Board Questions Biochemistry

NBCE Mock Board Questions Biochemistry 1. Fluid mosaic describes. A. Tertiary structure of proteins B. Ribosomal subunits C. DNA structure D. Plasma membrane structure NBCE Mock Board Questions Biochemistry 2. Where in the cell does beta oxidation

More information

CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer. CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY Ms. K. GOWRI. M.Pharm., Lecturer. Structure of cell: Human body develops from a single cell zygote which results from fusion of the ovum andd the spermatozoan.

More information

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA PART I (A): NEURONS & NEUROGLIA Neural Tissue Contains 2 kinds of cells: neurons: cells that send and receive signals neuroglia (glial cells): cells that support and protect neurons Neuron Types Sensory

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

McCance: Pathophysiology, 6th Edition

McCance: Pathophysiology, 6th Edition McCance: Pathophysiology, 6th Edition Chapter 01: Cellular Biology Test Bank TRUE/FALSE 1. Eukaryotic cells are characterized by a lack of a distinct nucleus, whereas prokaryotic cells have intracellular

More information

- Biosignaling: Signal transduction. References: chapter 8 of Lippincots chapter 1 3 of Lehningers

- Biosignaling: Signal transduction. References: chapter 8 of Lippincots chapter 1 3 of Lehningers Basic concepts of Metabolism Metabolism and metabolic pathway Metabolic Map Catabolism Anabolism - Regulation of Metabolism Signals from within the cell (Intracellular) Communication between cells. - Biosignaling:

More information

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION BIOLOGY 103 Spring 2001 MIDTERM NAME KEY LAB SECTION ID# (last four digits of SS#) STUDENT PLEASE READ. Do not put yourself at a disadvantage by revealing the content of this exam to your classmates. Your

More information

BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term First Year. Lecture 2 Hagan Bayley

BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term First Year. Lecture 2 Hagan Bayley BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term 2007 - First Year Lecture 2 Hagan Bayley Introduction to the macromolecules of life and cell structures. Introduction

More information

The Nervous System. Chapter 4. Neuron 3/9/ Components of the Nervous System

The Nervous System. Chapter 4. Neuron 3/9/ Components of the Nervous System Chapter 4 The Nervous System 1. Components of the Nervous System a. Nerve cells (neurons) Analyze and transmit information Over 100 billion neurons in system Four defined regions Cell body Dendrites Axon

More information

Metabolism of Carbohydrates Inhibitors of Electron Transport Chain

Metabolism of Carbohydrates Inhibitors of Electron Transport Chain Paper : 04 Module : 19 Principal Investigator Paper Coordinator Content Reviewer Content Writer Dr.S.K.Khare,Professor IIT Delhi. Dr. Ramesh Kothari,Professor UGC-CAS Department of Biosciences Saurashtra

More information

Chapter 14. Energy conversion: Energy & Behavior

Chapter 14. Energy conversion: Energy & Behavior Chapter 14 Energy conversion: Energy & Behavior Why do you Eat and Breath? To generate ATP Foods, Oxygen, and Mitochodria Cells Obtain Energy by the Oxidation of Organic Molecules Food making ATP making

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

Exam 2 PSYC Fall (2 points) Match a brain structure that is located closest to the following portions of the ventricular system

Exam 2 PSYC Fall (2 points) Match a brain structure that is located closest to the following portions of the ventricular system Exam 2 PSYC 2022 Fall 1998 (2 points) What 2 nuclei are collectively called the striatum? (2 points) Match a brain structure that is located closest to the following portions of the ventricular system

More information

PHRM20001: Pharmacology - How Drugs Work!

PHRM20001: Pharmacology - How Drugs Work! PHRM20001: Pharmacology - How Drugs Work Drug: a chemical that affects physiological function in a specific way. Endogenous substances: hormones, neurotransmitters, antibodies, genes. Exogenous substances:

More information

Investigations on the mechanism of hypercholesterolemia observed in copper deficiency in rats

Investigations on the mechanism of hypercholesterolemia observed in copper deficiency in rats J. Biosci., Vol. 12, Number 2, June 1987, pp. 137 142. Printed in India. Investigations on the mechanism of hypercholesterolemia observed in copper deficiency in rats P. VALSALA and P. A. KURUP Department

More information

Lujain Hamdan. Tamer Barakat. Faisal Mohammad

Lujain Hamdan. Tamer Barakat. Faisal Mohammad 17 Lujain Hamdan Tamer Barakat Faisal Mohammad Review : Summary of synaptic transmission: 1) Action potential arrives to presynaptic terminals of a nerve and causes depolarization by opening Ca 2+ voltage-gated

More information

PCB 3023 Exam 4 - Form A First and Last Name

PCB 3023 Exam 4 - Form A First and Last Name PCB 3023 Exam 4 - Form A First and Last Name Student ID # (U Number) A Before beginning this exam, please complete the following instructions: 1) Write your name and U number on the first page of this

More information

Ch 07. Microbial Metabolism

Ch 07. Microbial Metabolism Ch 07 Microbial Metabolism SLOs Differentiate between metabolism, catabolism, and anabolism. Fully describe the structure and function of enzymes. Differentiate between constitutive and regulated enzymes.

More information

Thyroid hormones derived from two iodinated tyrosine molecules

Thyroid hormones derived from two iodinated tyrosine molecules Thyroid Hormones OBJECTIVES Chemical nature of the thyroid hormones How different enzymes play a role in thyroid hormone formation? And what drugs affect them? Describe Function & Metabolism of thyroid

More information

Neurotransmitters acting on G-protein coupled receptors

Neurotransmitters acting on G-protein coupled receptors Neurotransmitters acting on G-protein coupled receptors Part 1: Dopamine and Norepinephrine BIOGENIC AMINES Monoamines Diamine Overview of Neurotransmitters and Their Receptors Criteria for defining a

More information

MITOCHONDRIA LECTURES OVERVIEW

MITOCHONDRIA LECTURES OVERVIEW 1 MITOCHONDRIA LECTURES OVERVIEW A. MITOCHONDRIA LECTURES OVERVIEW Mitochondrial Structure The arrangement of membranes: distinct inner and outer membranes, The location of ATPase, DNA and ribosomes The

More information

Communication Between

Communication Between Communication Between Neurons Bởi: OpenStaxCollege The electrical changes taking place within a neuron, as described in the previous section, are similar to a light switch being turned on. A stimulus starts

More information

Biologic Oxidation BIOMEDICAL IMPORTAN

Biologic Oxidation BIOMEDICAL IMPORTAN Biologic Oxidation BIOMEDICAL IMPORTAN Chemically, oxidation is defined as the removal of electrons and reduction as the gain of electrons. Thus, oxidation is always accompanied by reduction of an electron

More information

Elise Cook. BForensics (Hons) Forensic Biology and Toxicology. BSc Biomedical Science and Molecular Biology

Elise Cook. BForensics (Hons) Forensic Biology and Toxicology. BSc Biomedical Science and Molecular Biology Acute and chronic toxicity of methamphetamine exposure in cultured neuronal cells Elise Cook BForensics (Hons) Forensic Biology and Toxicology BSc Biomedical Science and Molecular Biology This thesis is

More information

Moh Tarek + Faisal Massad. Tala Saleh ... Naif

Moh Tarek + Faisal Massad. Tala Saleh ... Naif 19 Moh Tarek + Faisal Massad Tala Saleh... Naif Last lecture we ve talked about the main antioxidant system which are the enzymes found in our body, mainly: 1. Glutathione peroxidase 2. Super oxide dismutase(sod)

More information

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse Neurotransmitters A chemical released by one neuron that affects another neuron or an effector organ (e.g., muscle, gland, blood vessel). Neurotransmitters are small molecules that serve as messengers

More information

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University.

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University. Chapter 2. The Cellular l and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 3 rd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2008. Summarized by B.-W. Ku,

More information

Fundamentals of Pharmacology

Fundamentals of Pharmacology Fundamentals of Pharmacology Topic Page Receptors 2 Ion channels / GABA 4 GPCR s 6 TK receptors 8 Basics of PK 11 ADR s / Clinical study design 13 Introduction to the ANS 16 Cholinergic Pharmacology 20

More information

Peroxisomal Disorders

Peroxisomal Disorders Peroxisomal Disorders George Gray Birmingham Childrens Hospital Peroxisomal Disorders Peroxisomes are large single membrane bound organelles that are present in the cytoplasm of all cells. They are formed

More information

Fatty acid breakdown

Fatty acid breakdown Fatty acids contain a long hydrocarbon chain and a terminal carboxylate group. Most contain between 14 and 24 carbon atoms. The chains may be saturated or contain double bonds. The complete oxidation of

More information

Study Guide Unit 2 Psych 2022, Fall 2003

Study Guide Unit 2 Psych 2022, Fall 2003 Study Guide Unit 2 Psych 2022, Fall 2003 Subcortical Anatomy 1. Be able to locate the following structures and be able to indicate whether they are located in the forebrain, diencephalon, midbrain, pons,

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

PSY 302 Lecture 6: The Neurotransmitters (continued) September 12, 2017 Notes by: Desiree Acetylcholine (ACh) CoA + Acetate Acetyl-CoA (mitochondria) (food, vinegar) + Choline ChAT CoA + ACh (lipids, foods)

More information

cholesterol structure Cholesterol FAQs Cholesterol promotes the liquid-ordered phase of membranes Friday, October 15, 2010

cholesterol structure Cholesterol FAQs Cholesterol promotes the liquid-ordered phase of membranes Friday, October 15, 2010 cholesterol structure most plasma cholesterol is in the esterified form (not found in cells or membranes) cholesterol functions in all membranes (drives formation of lipid microdomains) cholesterol is

More information

Fall Name Student ID

Fall Name Student ID Name Student ID PART 1: Matching. Match the organelle to its function (11 points) 1.Proton motive force 2. Fluid Mosiac 3. Oxidative Phosphorylation 4. Pyruvate dehydrogenase 5. Electrochemical Force 6.

More information

Classes of Neurotransmitters. Neurotransmitters

Classes of Neurotransmitters. Neurotransmitters 1 Drugs Outline 2 Neurotransmitters Agonists and Antagonists Cocaine & other dopamine agonists Alcohol & its effects / Marijuana & its effects Synthetic & Designer Drugs: Ecstasy 1 Classes of Neurotransmitters

More information

Cell Quality Control. Peter Takizawa Department of Cell Biology

Cell Quality Control. Peter Takizawa Department of Cell Biology Cell Quality Control Peter Takizawa Department of Cell Biology Cellular quality control reduces production of defective proteins. Cells have many quality control systems to ensure that cell does not build

More information

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins. Biology 4410 Name Spring 2006 Exam 2 A. Multiple Choice, 2 pt each Pick the best choice from the list of choices, and write it in the space provided. Some choices may be used more than once, and other

More information

Structure. Lysosomes are membrane-enclosed organelles. Hydrolytic enzymes. Variable in size & shape need

Structure. Lysosomes are membrane-enclosed organelles. Hydrolytic enzymes. Variable in size & shape need Lysosomes Structure Lysosomes are membrane-enclosed organelles Hydrolytic enzymes Variable in size & shape need Degrade material taken up from outside and inside the cell Variable in size and shape Lysosomal

More information

Biochemistry of the Eye

Biochemistry of the Eye Biochemistry of the Eye Elaine R. Berman Hadassah-Hebrew University Medical School Jerusalem, Israel Plenum Press New York and London Contents 1. Selected Topics in Biochemistry Relevant to the Eye 1.1.

More information

The Nervous System Mark Stanford, Ph.D.

The Nervous System Mark Stanford, Ph.D. The Nervous System Functional Neuroanatomy and How Neurons Communicate Mark Stanford, Ph.D. Santa Clara Valley Health & Hospital System Addiction Medicine and Therapy Services The Nervous System In response

More information

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell Chapt. 10 Cell Biology and Biochemistry Cell Chapt. 10 Cell Biology and Biochemistry The cell: Lipid bilayer membrane Student Learning Outcomes: Describe basic features of typical human cell Integral transport

More information

Cell Physiology

Cell Physiology Cell Physiology 21-10-2018 1 The two major parts of a typical cell are the nucleus and the cytoplasm. The nucleus is separated from the cytoplasm by a nuclear membrane, and the cytoplasm is separated from

More information

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled Protein Targeting Objectives 1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled As a protein is being synthesized, decisions

More information

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Receptor Receptor is defined as a macromolecule or binding site located on the surface or

More information

Oxidation of Long Chain Fatty Acids

Oxidation of Long Chain Fatty Acids Oxidation of Long Chain Fatty Acids Dr NC Bird Oxidation of long chain fatty acids is the primary source of energy supply in man and animals. Hibernating animals utilise fat stores to maintain body heat,

More information

Anti-Cancer & Anti-HIV effects of ALKA V-6

Anti-Cancer & Anti-HIV effects of ALKA V-6 Anti-Cancer & Anti-HIV effects of ALKA V-6 Dr. C. Reed Richardson & Dr. Dhiraj Vattem TEXAS STATE UNIVERSITY San Marcos Texas OBJECTIVES The overall objective of this research was to determine Cancer chemotherapeutic

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

number Done by Corrected by Doctor

number Done by Corrected by Doctor number 19 Done by حسام ابو عوض Corrected by وسيم ابو عبيدة Doctor د.نايف 1 P a g e GAGs and Glycoproteins: GAGs: long, unbranched heteropolysaccharides, made from زunits repeating disaccharide [Acidic

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Contents 1 Metabolism and Roles of Eicosanoids in Brain

Contents 1 Metabolism and Roles of Eicosanoids in Brain Contents 1 Metabolism and Roles of Eicosanoids in Brain... 1 1.1 Introduction... 1 1.2 Multiplicity of Cyclooxygenases, Lipoxygenases, and Epoxygenases in the Brain... 4 1.2.1 Cyclooxygenases (COXs)...

More information

SID#: Also give full SID# (w/ 9) on your computer grid sheet (fill in grids under Student Number) BIO 315 Exam I

SID#: Also give full SID# (w/ 9) on your computer grid sheet (fill in grids under Student Number) BIO 315 Exam I SID#: Also give full SID# (w/ 9) on your computer grid sheet (fill in grids under Student Number) BIO 315 Exam I Choose an answer of A,B, C, or D for each of the following Multiple Choice Questions 1-35.

More information

5-Nervous system II: Physiology of Neurons

5-Nervous system II: Physiology of Neurons 5-Nervous system II: Physiology of Neurons AXON ION GRADIENTS ACTION POTENTIAL (axon conduction) GRADED POTENTIAL (cell-cell communication at synapse) SYNAPSE STRUCTURE & FUNCTION NEURAL INTEGRATION CNS

More information

MCB II MCDB 3451 Exam 1 Spring, minutes, close everything and be concise!

MCB II MCDB 3451 Exam 1 Spring, minutes, close everything and be concise! MCB II MCDB 3451 Exam 1 Spring, 2016 50 minutes, close everything and be concise! Name ID NOTE: QUESTIONS ARE NOT ALL WORTH THE SAME POINTS Total (100) Grade EXAM 1, 2016 MCBII Name 1. Which is UNIQUE

More information

Advanced Neurotransmitters & Neuroglia

Advanced Neurotransmitters & Neuroglia Advanced Neurotransmitters & Neuroglia Otsuka Pharmaceutical Development & Commercialization, Inc. 2017 Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, MD Lundbeck, LLC. February

More information