Nervous system intrinsic change with aging. Lect. Dr.Nisamanee Charoenchon

Size: px
Start display at page:

Download "Nervous system intrinsic change with aging. Lect. Dr.Nisamanee Charoenchon"

Transcription

1 Nervous system intrinsic change with aging Lect. Dr.Nisamanee Charoenchon Edited:

2 Scope In this section the prominent molecular biochemical cellular changes that occur in the aging nervous system, How the changes might result in dysfunction of neural circuits How the changes may predispose to neurodegenerative disorders such as Alzheimer s and Parkinson s diseases

3 Introduction probability of developing a neurodegenerative disorder increases dramatically with advancing age it is likely that at least some of the cellular and molecular changes that occur in the nervous system during normal aging are also fundamental to disease processes

4 Function performance of the nervous system slowed reaction times sensory and motor deficits disturbances of circadian rhythms a decline in cognitive performance

5 the rate of nervous system functional decline varies considerably among individuals, as does the particular regions of the nervous system affected.

6 Environmental factors are tightly related to cellular aging and nervous system decline. Cellular changes associated with aging result in neuron dysfunction and death. Neuron dysfunction leads to agingrelated changes in nervous system function, such as cognitive declines and sensory deficits. protective environmental and genetic factors can delay aging-related declines and protect against neurodegenerative disease. Genetic and environmental factors influence nervous system aging and development of agingrelated neurodegenerative diseases.

7

8

9 Intrinsic Changes in the Nervous System Associated with Aging Sensory Loss Olfaction Hearing Vision Cognitive Decline relating to cognition

10 Sensory Loss

11 Sensory Loss Aging is associated with gradual functional loss in the sensory systems, such as olfaction, hearing and vision, which has profound impacts on daily activities of the elderly. Population studies indicate that more than 60% of people over 80 display olfactory impairment and more than 50% of people over 75 show hearing loss.

12 Epidemiological studies Environmental and genetic factors as risk factors for sensory loss.

13 1. Olfactory impairment Characteristics of age-associated olfactory impairment include 1. defects in thresholds to detect odors 2. recognition and discrimination of odors 3. perception of odor intensity

14

15 Chemosensory function (olfaction and gustation) safety and quality of the life of older adults. compromised chemosensory function greater risk for food poisoning and cooking heating gas injuries due to their inability to identify spoiled food or detect the odour warning of a gas leak. Olfactory dysfunction has been identified as an early marker of neurodegenerative disorders Gustatory and olfactory dysfunction in older adults: a national probability study, 2011

16 A study of 80 healthy elderly persons and 80 patients with Alzheimer disease noted a lack of awareness of decreased ability to detect odor (Prevalence of Olfactory Impairment in Older Adults, 2002). Many neurodegenerative diseases including Parkinson's, Alzheimer's, and Huntington's are associated with non-inflammatory neuronal cell loss and they are accompanied in the early stages with olfactory disturbances.

17 Most attempts to explain olfactory dysfunction in common neurodegenerative diseases have focused on neuropathological markers such as Olfaction and neurodegenerative diseases are linked clinically and pathologically Classic neuropathological markers of neurodegenerative diseases amyloid β neurofibrillary tangles α-synuclein

18 The pathology of the olfactory mucosa most cases of hyposmia and anosmia appear to be associated with a decline in the number of functioning mature olfactory sensory neurons (OSNs). Very early siqn of Pakinson s disease เย อเม อกร บกล น (olfactory mucosa) Hyposmia is a reduced ability to smell and to detect odors. Anosmia is the inability to perceive odor or a lack of functioning olfaction the loss of the sense of smell.

19 Olfactory Dysfunction: Common in Later Life and Early Warning of Neurodegenerative Disease, 2013 Classification of olfactory dysfunction Olfactory dysfunction (dysosmia) Quantitative Hyperosmia Oversensitivity Normosmia Hyposmia Anosmia (functional anosmia, specific anosmia) Normal sensitivity Reduced sensitivity Complete anosmia: absolute loss of olfactory function; no sense of smell detectable Functional anosmia: severe limitation of olfactory function; includes complete loss as well as residual odor perception Partial anosmia: greatly reduced sensitivity to a particular odoriferous substance/group of substances compared with the general population, usually not viewed as pathological

20 Qualitative Parosmia Altered perception of odors in the presence of a stimulus Phantosmia Perception of odors in the absence of a stimulus

21 The principal causes of olfactory dysfunction include: Trauma Viral infections Rhinosinusitis or nasal polyposis Neurodegenerative illnesses such as Parkinson disease or Alzheimer dementia

22 2. Age-related hearing loss (ARHL) is associated with increased thresholds to low-frequency sound (e.g khz), but decreased thresholds to the high frequency sound (e.g. 8 khz) Age-related hearing loss most often occurs in both ears, affecting them equally. A common form of ARHL is called presbycusis, in which a patient has difficulty understanding speech due to inability distinguishing high-frequency tones (also spelled presbyacusis, from Greek presbys old + akousis hearing )

23 Pathophysiology Histologic changes associated with aging occur throughout the auditory system from the hair cells of the cochlea to the auditory cortex in the temporal lobe of the brain.

24 The auditory hair cells are located within the spiral organ in the cochlea of the inner ear. Inner Ear The inner ear contains a snail-shaped structure filled with fluid called the cochlea. Sound vibrations create waves in the cochlear fluids. As the waves peak, they cause tiny hair cells (types of receptors that can detect sound) to bend, which converts the vibrations into electrical signals.

25

26

27 Histologic changes in the cochleae of human ears with presbycusis The histologic changes are correlated approximately with symptoms and auditory test results. Sensory presbycusis This refers to epithelial atrophy with loss of sensory hair cells and supporting cells in the organ of Corti. Neural presbycusis This refers to atrophy of nerve cells in the cochlea and central neural pathways.

28 Metabolic (ie, strial) presbycusis This condition results from atrophy of the stria vascularis. The stria vascularis normally maintains the chemical and bioelectric balance and metabolic health of the cochlea. Mechanical (ie, cochlear conductive) presbycusis This condition results from thickening and secondary stiffening of the basilar membrane of the cochlea.

29 For hearing loss, noise is an obvious environmental risk factor, such as long-term exposure to noise. Noise-induced hearing loss is caused by long-term exposure to sounds that are either too loud or last too long. This kind of noise exposure can damage the sensory hair cells in your ear that allow you to hear. By the time you notice hearing loss, many hair cells have been destroyed and cannot be repaired. The average person is born with about 16,000 hair cells. Up to 30% to 50% of hair cells can be damaged or destroyed before changes in your hearing can be measured by a hearing test.

30 The pictures below show electron micrographs of healthy hair cells (left) and hair cells after exposure to excessive noise (right).

31 Calcium ions (Ca 2+ ) play numerous and fundamental roles in the inner ear. Calcium signaling in the cochlea Molecular mechanisms and physiopathological implications, 2012 aspects of sound transduction that are influenced by Ca 2+ mechanotransduction function and neurotransmitter release at the hair cell synapse Ca 2+ signaling in the network of non-sensory cells in the developing cochlea

32 Quantitative trait loci (QTL) mapping studies in human and mice have identified several genes and modifiers potentially involved in age-related hearing loss (ARHL). (=presbycusis) One possible candidate involved in ARHL is ATP2B2, a plasma membrane ATPase type 2-Ca2 + transporter pump, located in the hair cells of the cochlea, suggesting a critical role for Ca2+ signaling in age-related changes of the auditory system A unique role of ATP2B2 in hearing was indicated by the high levels of its expression in cochlear outer hair cells, it played an important role in intracellular calcium homeostasis. PON2 and ATP2B2 gene polymorphisms with noise-induced hearing loss, 2016

33 3. Vision Maculopathy is damage to the macula, the part of the eye which provides us with our central vision. Age-related macular degeneration (AMD) is the most common cause of visual loss in adults in the developed world. AMD affects the macula, which is the most sensitive part of the retina.

34 Macular Degeneration is caused by the deterioration of the central portion of the retina, the inside back layer of the eye that records the images we see and sends them via the optic nerve from the eye to the brain

35 Age-Related Macular Degeneration progressive sight loss. It is characterised changes in pigmentation in the Retinal Pigment Epithelium, the appearance of drusen on the retina of the eye and choroidal neovascularization.

36 Drusen are yellow deposits under the retina. Drusen are made up of lipids, a fatty protein. Drusen likely do not cause age-related macular degeneration (AMD). But having drusen increases a person's risk of developing AMD.

37 Choroidal neovascularization growth of new blood vessels that originate from the choroid through a break in the Bruch membrane into the sub retinal pigment epithelium (sub-rpe) or subretinal space.

38 Age-related Macular Degeneration The image on the left shows bleeding at the macula due to wet AMD. The image on the right shows yellow deposits called drusen in dry AMD.

39 Wet AMD occurs when abnormal blood vessels behind the retina start to grow under the macula. These new blood vessels tend to be very fragile and often leak blood and fluid. With wet AMD, loss of central vision can occur quickly. Dry AMD light-sensitive cells in the macula slowly break down, gradually blurring central vision in the affected eye. As dry AMD gets worse, you may see a blurred spot in the center of your vision. Over time, as less of the macula functions, central vision is gradually lost in the affected eye. Patients with dry AMD are at higher risk of getting wet AMD.

40 Risk Factors for AMD AMD affects mainly people aged older than 60 years. The major risk factors for developing AMD are: age, family history of AMD, and, smoking.

41 Cognitive Decline

42 Cognitive function gradually declines with increasing age although the impairment varies among individuals with different ages of onset As a part of cognitive function, memory is a complex process involving the peripheral and central nervous systems.

43 A memory process Information is received by the sensory system, transmitted to the central nervous system, and processed and stored in the brain to form memory

44 Despite its complexity, memory can be classified into several different types based on the difference in information acquisition, retention and recall. Not all types of memory are equally affected by aging. It appears that aging primarily affects memory for recent events while having little effect long on short term memory

45 Age-related memory impairment (AMI) Structural studies indicate that the age-related memory impairment (AMI) appears not to result from gross morphological change since general brain structures and neuron numbers remain relatively unchanged during aging Stages Simple Mild Dementia (diseasse stage) Dementia: is a term used to describe a series of conditions that can affect a person s ability to think, remember, understand, make judgments, communicate, and interact socially

46

47 Alterations of Ca 2+ homeostasis in AMI AMI can be attributed to agerelated alterations of Ca 2+ homeostasis, cyclic AMP (camp) level synapse number in the neurons One group of neurons implicated in AMI is central cholinergic neurons primarily located in the pontine reticular formation and basal forebrain

48 Dysfunction of brain cholinergic neurons in AMI A number of rodent studies have demonstrated age-related changes of calcium buffering systems and Ca 2+ signaling, which may cause dysfunction of brain cholinergic neurons A cholinergic neuron is a nerve cell which mainly uses the neurotransmitter acetylcholine (ACh) to send its messages.

49

AGE RELATED CHANGES 2. Dr. Rehab gwada

AGE RELATED CHANGES 2. Dr. Rehab gwada AGE RELATED CHANGES 2 Dr. Rehab gwada Objectives of lecture At the end of this lecture the student will be able to: Determine Age-related sensory, proprioceptive, vestibular Changes in addition to nervous

More information

Taste buds Gustatory cells extend taste hairs through a narrow taste pore

Taste buds Gustatory cells extend taste hairs through a narrow taste pore The Special Senses Objectives Describe the sensory organs of smell, and olfaction. Identify the accessory and internal structures of the eye, and explain their function. Explain how light stimulates the

More information

SENSATION & PERCEPTION

SENSATION & PERCEPTION SENSATION & PERCEPTION Sensation and perception result from a symphony of sensory receptors and the neurons those receptors communicate with. The receptors and neurons fire in different combinations and

More information

The Power of Smell. Dakota Aulds, Theresa VanSchyndel, Molly Hibbler

The Power of Smell. Dakota Aulds, Theresa VanSchyndel, Molly Hibbler The Power of Smell Dakota Aulds, Theresa VanSchyndel, Molly Hibbler Key Terms -Olfactory epithelium is a specialized epithelial tissue inside the nasal cavity that is involved in smell -Olfactory receptor

More information

Senses and Sense Organs

Senses and Sense Organs Senses and Sense Organs SENSORY SYSTEMS Human experience is effected by both internal and external stimuli. Humans are able to distinguish among many different types of stimuli by means of a highly developed

More information

Overview of olfactory system

Overview of olfactory system OLFACTORY NERVE Introduction First cranial nerve One of the two cranial nerves which doesn t course through the posterior fossa Only neurons which can regenerate (basal cells) Only sensation which is not

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

TASTE: Taste buds are the sense organs that respond to gustatory stimuli. Chemoreceptors that respond to chemicals broken down from food in the saliva

TASTE: Taste buds are the sense organs that respond to gustatory stimuli. Chemoreceptors that respond to chemicals broken down from food in the saliva UNIT 5: Nervous System- Senses Somatic Senses Somatic senses are associated with receptors in the skin, muscles, joints, and viscera (organs of the body) Include senses of touch, pressure, temperature,

More information

-Detect heat or cold and help maintain body temperature

-Detect heat or cold and help maintain body temperature Sensory Receptors -Transduce stimulus energy and transmit signals to the central nervous system -Reception occurs when a receptor detectd a stimulus -Perception occurs in the brain as this information

More information

PSY 214 Lecture # (11/9/2011) (Sound, Auditory & Speech Perception) Dr. Achtman PSY 214

PSY 214 Lecture # (11/9/2011) (Sound, Auditory & Speech Perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, Auditory System & Speech Perception Chapter 11, pages 270-289 Corrections: None Announcements: CD is available outside Dr Achtman s office if you would like to see demonstrations

More information

Organs of the Nervous System: brain, spinal cord, and nerves

Organs of the Nervous System: brain, spinal cord, and nerves Nervous System The Nervous System functions as a control center and coordinates all actions and reactions, sending immediate and specific information as electrical impulses. Organs of the Nervous System:

More information

Page 1. Neurons Transmit Signal via Action Potentials: neuron At rest, neurons maintain an electrical difference across

Page 1. Neurons Transmit Signal via Action Potentials: neuron At rest, neurons maintain an electrical difference across Chapter 33: The Nervous System and the Senses Neurons: Specialized excitable cells that allow for communication throughout the body via electrical impulses Neuron Anatomy / Function: 1) Dendrites: Receive

More information

SPECIAL SENSES PART I: OLFACTION & GUSTATION

SPECIAL SENSES PART I: OLFACTION & GUSTATION SPECIAL SENSES PART I: OLFACTION & GUSTATION 5 Special Senses Olfaction Gustation Vision Equilibrium Hearing Olfactory Nerves Extend through cribriform plate into nasal cavity on both sides of nasal septum

More information

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur Presentation On SENSATION Prof- Mrs.Kuldeep Kaur INTRODUCTION:- Sensation is a specialty area within Psychology that works at understanding how are senses work and how we perceive stimuli in the environment.

More information

PRESBYACUSIS A REVIEW

PRESBYACUSIS A REVIEW From the SelectedWorks of Balasubramanian Thiagarajan March 24, 2014 PRESBYACUSIS A REVIEW Balasubramanian Thiagarajan Available at: https://works.bepress.com/drtbalu/82/ Presbyacusis A Review Balasubramanian

More information

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe How We See How We See Cornea Ganglion Cells whose axons form the optic nerve Blind Spot the exit point at the back of the retina Pupil which is controlled by the iris Bipolar Cells Visual Area of the Thalamus

More information

Nervous System. Chapter Structure of the Nervous System. Neurons

Nervous System. Chapter Structure of the Nervous System. Neurons 33.1 Structure of the Neurons Neurons are specialized nerve cells that help you gather information about your environment, interpret the information, and react to it. Neurons consist of three main regions:

More information

Chapter 29 The Senses

Chapter 29 The Senses Chapter 29 The Senses PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Edward J. Zalisko

More information

Biology. Slide 1 of 49. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 49. End Show. Copyright Pearson Prentice Hall Biology 1 of 49 2 of 49 Sensory Receptors Neurons that react directly to stimuli from the environment are called sensory receptors. Sensory receptors react to stimuli by sending impulses to other neurons

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Outline Nervous System Sensory Systems I. II. III. IV. V. VI. Biol 105 Lecture 11 Chapter 9 Senses Sensory receptors Touch Vision Hearing and balance Smell Senses Sensory receptor cells Sensory receptors

More information

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed!

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed! Psychology Chapter 4 Sensation and Perception Most amazing introduction ever!! Turn to page 77 and prepare to be amazed! Chapter 4 Section 1 EQ: Distinguish between sensation and perception, and explain

More information

Chapter 18. The Senses SENSORY RECEPTION. Introduction: Superhuman Senses. Introduction: Superhuman Senses

Chapter 18. The Senses SENSORY RECEPTION. Introduction: Superhuman Senses. Introduction: Superhuman Senses Introduction: Superhuman Senses Chapter 18 The Senses! Three senses found in some animals but not humans Echolocation locating objects by detecting echoes of emitted sound waves Electroreception ability

More information

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sarah L. Chollar University of California, Riverside sarah.chollar@gmail.com Sensory Systems How the brain allows us to see, hear,

More information

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b Chapter 9: The Sensory System 1. Proprioceptors are involved in the sense of A) pain. B) temperature. C) pressure. D) movement of limbs. 2. Which are chemoreceptors? A) taste B) olfactory C) proprioceptors

More information

Chapter 18 Senses SENSORY RECEPTION 10/21/2011. Sensory Receptors and Sensations. Sensory Receptors and Sensations. Sensory Receptors and Sensations

Chapter 18 Senses SENSORY RECEPTION 10/21/2011. Sensory Receptors and Sensations. Sensory Receptors and Sensations. Sensory Receptors and Sensations SENSORY RECEPTION Chapter 18 Senses s convert stimulus energy to action potentials s 1. Are specialized cells, or 2. Specialized endings that detect stimuli All stimuli are forms of energy s in eyes detect

More information

Chapter x. Causes of Hearing Damage. 1. Introduction.

Chapter x. Causes of Hearing Damage. 1. Introduction. Chapter x Causes of Hearing Damage 1. Introduction. 2. Noise induced hearing damage. 3. Other causes of hearing loss. 4. Tests and Exercises. 5. References. 1. Introduction. This chapter explains the main

More information

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc.

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc. Chapter 4: Sensation and Perception Sensation and Perception Sensation The process by which our sense organs receive information from the environment Perception The sorting out, interpretation, analysis,

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

SMELL. By: Col & Lincoln

SMELL. By: Col & Lincoln SMELL By: Col & Lincoln Anatomy Of Sense The Sense of smell relies heavily on Chemoreceptors used to detect Odorants The organ of smell itself is the olfactory epithelium The Epithelium covers the nasal

More information

Special Senses. Mechanoreception Electroreception Chemoreception Others

Special Senses. Mechanoreception Electroreception Chemoreception Others Special Senses Mechanoreception Electroreception Chemoreception Others Recall our receptor types Chemically regulated: Respond to particular chemicals Voltage regulated: respond to changing membrane potential

More information

NERVOUS SYSTEM & SENSES TEACHER COPY

NERVOUS SYSTEM & SENSES TEACHER COPY NERVOUS SYSTEM & SENSES TEACHER COPY FUNCTIONS OF THE NERVOUS SYSTEM What are the three functions of the Nervous System? 1. Receives information about what is happening inside and outside of your body

More information

Converting Sound Waves into Neural Signals, Part 1. What happens to initiate neural signals for sound?

Converting Sound Waves into Neural Signals, Part 1. What happens to initiate neural signals for sound? The Ear Outer Ear: Pinna. Collects sounds. Middle Ear: Chamber between eardrum and cochlea containing three tiny bones (hammer, anvil, stirrup) that concentrate the vibrations of the eardrum on the cochlea

More information

Sensation and Perception. 8.2 The Senses

Sensation and Perception. 8.2 The Senses Sensation and Perception 8.2 The Senses I. Introduction A. You probably think that you have just five senses: vision, hearing, taste, smell, and touch. In addition, people have two more internal senses:

More information

Objectives. ! Describe the major structures of the nervous system. ! Explain how a nerve impulse is transmitted.

Objectives. ! Describe the major structures of the nervous system. ! Explain how a nerve impulse is transmitted. Objectives! Describe the major structures of the nervous system.! Explain how a nerve impulse is transmitted.! Distinguish between the functions of the central and peripheral nervous systems.! Identify

More information

Deafness and hearing impairment

Deafness and hearing impairment Auditory Physiology Deafness and hearing impairment About one in every 10 Americans has some degree of hearing loss. The great majority develop hearing loss as they age. Hearing impairment in very early

More information

THE NERVOUS SYSTEM Functions of the Nervous System nervous system stimulus response Neuron structure and function neurons nerve impulses dendrite

THE NERVOUS SYSTEM Functions of the Nervous System nervous system stimulus response Neuron structure and function neurons nerve impulses dendrite THE NERVOUS SYSTEM Functions of the Nervous System The nervous system is a network of communication used by body parts to maintain homeostasis and bodily functions. The nervous system gathers information

More information

Definition Slides. Sensation. Perception. Bottom-up processing. Selective attention. Top-down processing 11/3/2013

Definition Slides. Sensation. Perception. Bottom-up processing. Selective attention. Top-down processing 11/3/2013 Definition Slides Sensation = the process by which our sensory receptors and nervous system receive and represent stimulus energies from our environment. Perception = the process of organizing and interpreting

More information

For this lab you will use parts of Exercise #18 in your Wise lab manual. Please be sure to read those sections before coming to lab

For this lab you will use parts of Exercise #18 in your Wise lab manual. Please be sure to read those sections before coming to lab Bio 322 Human Anatomy Objectives for the laboratory exercise The Eye and Ear Required reading before beginning this lab: Saladin, KS: Human Anatomy 5 th ed (2017) Chapter 17 For this lab you will use parts

More information

= add definition here. Definition Slide

= add definition here. Definition Slide = add definition here Definition Slide Definition Slides Sensation = the process by which our sensory receptors and nervous system receive and represent stimulus energies from our environment. Perception

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

The Sensory Systems. Lesson 7.1: The Eye Lesson 7.2: The Ear Lesson 7.3: Smell and Taste

The Sensory Systems. Lesson 7.1: The Eye Lesson 7.2: The Ear Lesson 7.3: Smell and Taste 7 The Sensory Systems Lesson 7.1: The Eye Lesson 7.2: The Ear Lesson 7.3: Smell and Taste Chapter 7: The Sensory Systems Lesson 7.1 The Eye The Eye anatomy of the eye external internal vision injuries,

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

Special Senses. Accessory Structures of the Eye. The Eye and Vision. Accessory Structures of the Eye. Accessory Structures of the Eye

Special Senses. Accessory Structures of the Eye. The Eye and Vision. Accessory Structures of the Eye. Accessory Structures of the Eye 8 PART A Special Senses PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Senses General senses

More information

Age-Related. macular degeneration.

Age-Related. macular degeneration. Age-Related Macular Degeneration This pamphlet is designed to help people with age-related macular degeneration and their families better understand the disease. It describes the causes, symptoms, diagnosis,

More information

The olfactory epithelium is located at the roof of the nasal cavity. Nasal conchae cause turbulance of incoming air

The olfactory epithelium is located at the roof of the nasal cavity. Nasal conchae cause turbulance of incoming air Special Senses I. Olfaction II. Gustation A. Anatomy and general info The olfactory epithelium is located at the roof of the nasal cavity Nasal conchae cause turbulance of incoming air Olfactory glands

More information

The Special Senses. Chapter 17

The Special Senses. Chapter 17 The Special Senses Chapter 17 Objective Describe the structure of vertebrate sensory organs and relate structure to function in vertebrate sensory systems. The 5 Special Senses 1. Olfaction 2. Gustation

More information

Special Senses. Unit 6.7 (6 th Edition) Chapter 7.7 (7 th Edition)

Special Senses. Unit 6.7 (6 th Edition) Chapter 7.7 (7 th Edition) Special Senses Unit 6.7 (6 th Edition) Chapter 7.7 (7 th Edition) 1 Learning Objectives Identify the five special senses. Identify the four general senses. Trace the pathway of light rays as they pass

More information

Physiology of human perception

Physiology of human perception Physiology of human perception Vision Hearing Thermal and tactile sensations Basic introduction and the list and description of the tasks to be carried out Visible light: 400-700 nm. Vision or sight Anatomy

More information

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is Page 1 of 6 Question 1: How is the conduction of sound to the cochlea facilitated by the ossicles of the middle ear? Answer: Sound waves traveling through air move the tympanic membrane, which, in turn,

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

SENSATION AND PERCEPTION

SENSATION AND PERCEPTION SENSATION AND PERCEPTION CHAPTER 5 1 LEARNING OBJECTIVES Describe transduction, sensation, and perception for the following sensory systems: Vision Audition (hearing) Skin and body Touch Pain Chemical

More information

ENT 318 Artificial Organs Physiology of Ear

ENT 318 Artificial Organs Physiology of Ear ENT 318 Artificial Organs Physiology of Ear Lecturer: Ahmad Nasrul Norali The Ear The Ear Components of hearing mechanism - Outer Ear - Middle Ear - Inner Ear - Central Auditory Nervous System Major Divisions

More information

The lowest level of stimulation that a person can detect. absolute threshold. Adapting one's current understandings to incorporate new information.

The lowest level of stimulation that a person can detect. absolute threshold. Adapting one's current understandings to incorporate new information. absolute threshold The lowest level of stimulation that a person can detect accommodation Adapting one's current understandings to incorporate new information. acuity Sharp perception or vision audition

More information

The Nervous System. We have covered many different body systems which automatically control and regulate our bodies.

The Nervous System. We have covered many different body systems which automatically control and regulate our bodies. The Nervous System The Nervous System We have covered many different body systems which automatically control and regulate our bodies. There is one master system which controls all of these other systems.

More information

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers:

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers: The human body gathers information from the outside world by using the five senses of: The Sense Organs 12.3 Sight Hearing Taste Smell Touch This information is essential in helping the body maintain homeostasis.

More information

o A cushion of fat surrounds most of the eye

o A cushion of fat surrounds most of the eye Name Period SPECIAL SENSES The Senses of touch o Temperature o Pressure o Pain o Smell o Taste o Sight o Hearing o Equilibrium The Eye and Vision are in the eyes has over a o Most of the eye is enclosed

More information

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Physiology Unit 2 SENSORY PHYSIOLOGY

Physiology Unit 2 SENSORY PHYSIOLOGY Physiology Unit 2 SENSORY PHYSIOLOGY In Physiology Today Sensory System Sensory information Conscious sensations Unconscious sensations Sensory processing Transferring stimulus energy into a graded potential

More information

DATE: NAME: CLASS: Chapter 12 Test

DATE: NAME: CLASS: Chapter 12 Test Multiple Choice Questions Decide which of the choices best completes the statement or answers the question. Locate that question number on the separate answer sheet provided. Use the procedure described

More information

Sensing and Perceiving Our World

Sensing and Perceiving Our World PSYCHOLOGY: Perspectives & Connections 2 nd Edition GREGORY J. FEIST ERIKA L. ROSENBERG Sensing and Perceiving Our World Chapter Four Chapter Preview The Long Strange Trip From Sensation to Perception

More information

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium?

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium? CASE 44 A 53-year-old man presents to his primary care physician with complaints of feeling like the room is spinning, dizziness, decreased hearing, ringing in the ears, and fullness in both ears. He states

More information

Before we talk about the auditory system we will talk about the sound and waves

Before we talk about the auditory system we will talk about the sound and waves The Auditory System PHYSIO: #3 DR.LOAI ZAGOUL 24/3/2014 Refer to the slides for some photos. Before we talk about the auditory system we will talk about the sound and waves All waves have basic characteristics:

More information

Age-related Macular Degeneration (AMD) and Diabetic Retinopathy (DR)

Age-related Macular Degeneration (AMD) and Diabetic Retinopathy (DR) Preserve Vision Information Age-related Macular Degeneration (AMD) and Diabetic Retinopathy (DR) Regular examination by your ophthalmologist will allow early detection and treatment. Age-related Macular

More information

The white of the eye and the part that maintains its shape is know n as the:

The white of the eye and the part that maintains its shape is know n as the: Scrub In The white of the eye and the part that maintains its shape is know n as the: a. Cornea b. Pupil c. Retina d. Sclera The structure that is found in the ear and contains the organ of hearing is

More information

Auditory System Feedback

Auditory System Feedback Feedback Auditory System Feedback Using all or a portion of the information from the output of a system to regulate or control the processes or inputs in order to modify the output. Central control of

More information

Bio11 schedule. Chapter 13 and 14. The Nervous System. The Nervous System. Organization of Nervous Systems. Nerves. Nervous and Sensory Systems

Bio11 schedule. Chapter 13 and 14. The Nervous System. The Nervous System. Organization of Nervous Systems. Nerves. Nervous and Sensory Systems Bio11 schedule Lecture Nervous system and senses Lab Current events reports (10 pts) Urinalysis Lecture exam 2 Thursday Feb 24 Same format as before Study guide will be posted Your total points so far

More information

Hearing. By Jack & Tori

Hearing. By Jack & Tori Hearing By Jack & Tori 3 Main Components of the Human Ear. Outer Ear. Middle Ear. Inner Ear Outer Ear Pinna: >Visible part of ear and ear canal -Acts as a funnel to direct sound Eardrum: >Airtight membrane

More information

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s, and. Located in the of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular

More information

l3;~~?~~~,'0~'~~t~t:~:~~~~~~~~~~!,1

l3;~~?~~~,'0~'~~t~t:~:~~~~~~~~~~!,1 112 Sensation and Perception Line A should look longer, even though both lines are actually the same length. People who come from noncarpentered cultures that do not use right angles and corners often

More information

Sensation and Perception. Chapter 6

Sensation and Perception. Chapter 6 Sensation and Perception Chapter 6 1 Sensation & Perception How do we construct our representations of the external world? Text To represent the world, we must detect physical energy (a stimulus) from

More information

Unit 3 Lesson 3 How Do Cells Work Together? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 3 How Do Cells Work Together? Copyright Houghton Mifflin Harcourt Publishing Company How Cells Are Organized Cells are organized to work together so the body functions smoothly. How do cells work together? Classwork 1: Question 1 How do cells work together? Classwork 1: Question 2 Organ

More information

Biology. A Guide to the Natural World. Chapter 27 Lecture Outline Communication and Control 1: The Nervous System. Fifth Edition.

Biology. A Guide to the Natural World. Chapter 27 Lecture Outline Communication and Control 1: The Nervous System. Fifth Edition. Biology A Guide to the Natural World Chapter 27 Lecture Outline Communication and Control 1: The Nervous System Fifth Edition David Krogh The Nervous System Nervous tissue is composed of two kinds of cells:

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

Sensation Outline Chapter 5, Psychology, David G Meyers, 7 th Edition

Sensation Outline Chapter 5, Psychology, David G Meyers, 7 th Edition Sensation Outline Chapter 5, Psychology, David G Meyers, 7 th Edition Sensation the process by which our sensory receptors and nervous system receive and represent stimulus energies from our environment

More information

amygdala (ah MIG da la) a region of the brain involved in emotional memory, such as fear (SRB)

amygdala (ah MIG da la) a region of the brain involved in emotional memory, such as fear (SRB) FOSS Human Systems Interactions, Next Generation Edition Glossary abnormal different from what is usual (SRB) aerobic cellular respiration the process by which a cell releases energy using chemical reactions

More information

SPECIAL SENSES. Anatomy & Physiology

SPECIAL SENSES. Anatomy & Physiology SPECIAL SENSES Anatomy & Physiology BELL WORK: DEFINE LACRIMAL ACHROMATIC OTOSCOPE TENNITIS VERTIGO STANDARD 25) Define key terms associated with vision disorders, ear disorders, nose disorders, and mouth

More information

Module H NERVOUS SYSTEM

Module H NERVOUS SYSTEM Module H NERVOUS SYSTEM Topic from General functions of the nervous system Organization of the nervous system from both anatomical & functional perspectives Gross & microscopic anatomy of nervous tissue

More information

A. Acuity B. Adaptation C. Awareness D. Reception E. Overload

A. Acuity B. Adaptation C. Awareness D. Reception E. Overload Unit 4 Review #1 The longer an individual is exposed to a strong odor, the less aware of the odor the individual becomes. This phenomenon is known as sensory A. Acuity B. Adaptation C. Awareness D. Reception

More information

Sensory Pathways & Somatic Nervous System. Chapter 15

Sensory Pathways & Somatic Nervous System. Chapter 15 Sensory Pathways & Somatic Nervous System Chapter 15 How Does Brain Differentiate Sensations? Pain impulses make brain aware of injuries and infections. Impulses from eye, ear, nose and tongue make brain

More information

Biology 3201 The Nervous System Test

Biology 3201 The Nervous System Test Biology 3201 The Nervous System Test 1. The central nervous system consists of: a. Nerves and neurons c. spinal chord and nerves b. brain and neurons d. brain and spinal chord 2. This part of the brain

More information

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages.

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages. Learning Targets Module 20 Hearing 20-1 Describe the characteristics of air pressure waves that we hear as sound. 20-2 Explain how the ear transforms sound energy into neural messages. 20-3 Discuss how

More information

Guess: Correct or Incorrect. Trial (perform in random order)

Guess: Correct or Incorrect. Trial (perform in random order) AP Biology Senses Lab Names Per. Our senses are constantly bombarded with various stimuli from the environment, which are relayed to the central nervous system where the information is interpreted. In

More information

1. Use the following words to complete the text below. Terms may be used more than once.

1. Use the following words to complete the text below. Terms may be used more than once. THE NERVOUS AND MUSCULOSKELETAL SYSTEMS Nervous system, neuron, nerve impulse, peripheral nervous system, nerves STUDENT BOOK Ch. 7, pp. 202 206 1. Use the following words to complete the text below. Terms

More information

[CHAPTER 12: THE NERVOUS SYSTEM] [ANSWER KEY]

[CHAPTER 12: THE NERVOUS SYSTEM] [ANSWER KEY] WORDBANK: Cholinesterase Dopamine Axon Choroid layer Cochlea Incus Action Potential Cataract Cornea Astigmatism Dendrite Malleus Alzheimer s Disease Central Excitatory Response Fovea Centralis Acetylcholine

More information

Answer: B difficulty: 2 conceptual Goal 3: Critical Thinking Skills in Psychology

Answer: B difficulty: 2 conceptual Goal 3: Critical Thinking Skills in Psychology Chapter Test 1. The concepts of sensation and perception are different because a. perception is something that happens to your sense organs and neurons; sensation is something that happens to you b. sensation

More information

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University Cochlear anatomy, function and pathology II Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (2) on the biophysics of the cochlea, the dual roles

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University Cochlear anatomy, function and pathology I Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of these lectures Introduction to gross anatomy of the cochlea Focus (1) on

More information

Unit 4: Sensation and Perception

Unit 4: Sensation and Perception Unit 4: Sensation and Perception Sensation a process by which our sensory receptors and nervous system receive and represent stimulus (or physical) energy and encode it as neural signals. Perception a

More information

Dikran J. Martin. Psychology 110. Name: Date: Making Contact with the World around Us. Principal Features

Dikran J. Martin. Psychology 110. Name: Date: Making Contact with the World around Us. Principal Features Dikran J. Martin Psychology 110 Name: Date: Lecture Series: Chapter 3 Sensation and Perception: Pages: 31 Making Contact with the World around Us TEXT: Baron, Robert A. (2001). Psychology (Fifth Edition).

More information

SMELL 2

SMELL 2 SENSORY SYSTEMS 1 SMELL 2 TASTE 3 HEARING 4 TOUCH EQUILIBRIUM 5 PAIN 6 OTHER SENSES 7 HOW DO SENSORY CELLS CONVERT STIMULI INTO ACTION POTENTIALS? HOW DO SENSORY SYSTEMS DETECT CHEMICAL STIMULI? HOW DO

More information

Nervous System. Made of two parts. Central Peripheral

Nervous System. Made of two parts. Central Peripheral Nervous System Made of two parts Central Peripheral The Central Nervous System is made of the brain and the spinal cord. The Central Nervous System controls everything in the body. A system that controls

More information

Senses- Ch. 12. Pain receptors- respond to tissue damage in all tissues except in the brain

Senses- Ch. 12. Pain receptors- respond to tissue damage in all tissues except in the brain Senses- Ch. 12 5 general types of sensory neurons or receptors are known. These specialized neurons detect stimuli from the eyes, ears, nose, mouth, and skin. The stimuli are changed into electrical signals

More information

Acquired Deafness Loss of hearing that occurs or develops sometime in the course of a lifetime, but is not present at birth.

Acquired Deafness Loss of hearing that occurs or develops sometime in the course of a lifetime, but is not present at birth. Page 1 of 5 URMC» Audiology Glossary of Terms A Acoustic Neuroma A tumor, usually benign, which develops on the hearing and balance nerves and can cause gradual hearing loss, tinnitus, and dizziness. Acquired

More information

PHGY Physiology. SENSORY PHYSIOLOGY Sensory Receptors. Martin Paré

PHGY Physiology. SENSORY PHYSIOLOGY Sensory Receptors. Martin Paré PHGY 212 - Physiology SENSORY PHYSIOLOGY Sensory Receptors Martin Paré Assistant Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare Sensory Systems Question:

More information