MATHEMATICAL MODELING OF THE TUBULOGLOMERULAR FEEDBACK MECHANISM IN THE KIDNEY

Size: px
Start display at page:

Download "MATHEMATICAL MODELING OF THE TUBULOGLOMERULAR FEEDBACK MECHANISM IN THE KIDNEY"

Transcription

1 MATHEMATICAL MODELING OF THE TUBULOGLOMERULAR FEEDBACK MECHANISM IN THE KIDNEY Susanne Ditlevsen Department of Mathematical Sciences, University of Copenhagen Donald Marsh Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University Niels-Henrik Holstein-Rathlou Department of Biomedical Sciences, University of Copenhagen Keywords: Myogenic response, Nephron, Rat kidney, Renal hemodynamic control, Spontaneously hypertensive rat, Negative feedback loop, Nonlinear dynamics. Contents 1. Introduction 2. Anatomy and physiology of the kidney 3. Mathematical models of the TGF mechanism 4. Conclusion Acknowledgements Glossary Bibliography Biographical Sketches Summary This chapter provides an overview of mathematical models of the hemo- and hydrodynamics of the kidneys. These models have been developed over the last two decades, mainly motivated by experimental evidence of spontaneous tubular pressure oscillations in the nephron tubule, the functional unit of the kidney, thus extending the existing models of a steady state nature. More recent observations reveal that the oscillations in single nephrons are synchronized with neighboring nephrons, and to get a complete picture of the physiological mechanisms, models incorporating the interactions between ensembles of nephrons should be considered. Here merely single nephron models are considered, which are the building blocks of more complex models, only giving models of coupled nephrons a short treatment in the end. 1. Introduction The kidney has long been known as an organ of homeostasis. Homeostasis implies constancy, and a steady state would seem to be the most appropriate dynamical state in which to view the kidney. But like the heart, another organ of homeostasis, the kidney

2 has an intrinsic beat, and there are disorders of renal rhythms that occur in at least one disease, chronic hypertension (high blood pressure). The renal beat arises in the operation of intrarenal mechanisms that provide autoregulation of blood flow, i.e. the intrarenal mechanisms that minimizes changes in renal blood flow in response to changes in the arterial blood pressure. Studies of the temporal dynamics and interactions of different parts of these systems have provided insight into the mechanisms. The blood pressure, the principal stimulus to autoregulation, is highly variable, and if not compensated for these fluctuations would lead to corresponding fluctuations in renal blood flow. Since renal blood flow is an important variable when it comes to determining renal function, knowledge of the dynamics of autoregulation is important for understanding how the kidney responds to this variation in its environment. Physiological control systems often involve negative feedback regulation, which in principle should be stable. However, due to delays in the system the regulation can become unstable in many cases, producing self-sustained oscillations and other nonlinear phenomena. The possible biological advantages of such non-stable behavior are controversial. One clear advantage is that the instabilities arise in the operation of nonlinear systems which can generate a number of interesting properties of potential physiological significance, including amplitude and frequency modulation, synchronization, and bifurcations to chaos. Each of these properties has been described in the renal circulation. It is also possible that dynamic behaviors, avoiding steady states, may protect a system against long-term drift or protect it from being trapped in suboptimal conditions. The kidneys also have a negative feedback system with delay, namely the tubuloglomerular feedback mechanism (TGF). Early micropuncture experiments in halothane anesthetized rats by Leyssac, Baumbach and Holstein-Rathlou demonstrated that this feedback regulation could become unstable and generate self-sustained oscillations in the proximal intratubular pressure with characteristic periods of s. The appearance of oscillations depends on the experimental conditions, since rats anesthetized with the commonly used anesthetic inactin do not show similar oscillations in the proximal tubular pressure. This is due to the specific effects of inactin, since oscillations in tubular pressure has now been observed in rats anesthetized with such diverse anesthetic agents as isoflurane, sevoflurane and amytal, and in mice anesthetized with chloralose/ketamine. It is still an open question what type of tubular pressure dynamics is present in conscious animals and humans. 2. Anatomy and Physiology of the Kidney The kidneys are the main organs that regulate the composition and the volume of the body fluids by excretion of salts, water and metabolic end products. The main tasks are regulation of osmolarity of all body fluids and the volume of the extracellular fluid; regulation of the electrolyte balance by controlling excretion of ions, e.g. Na+ and Cl - ; balancing of acids and bases; excretion of waste products such as urea, uric acids and creatinine; secretion of externally supplied substances such as drugs or environmental

3 toxics; and finally synthesis and secretion of hormones, mainly renin. Figure 1. The anatomy of the urinary system. To the right, a cross section of a kidney. The kidney consists of three major parts: the cortex, the medulla and the pelvis (see Figure 1). Blood enters through the renal artery, has its composition altered by filtration at the glomerulus and transport of water and solutes by the tubules, and leaves through the renal vein. It is the organ with the highest blood perfusion in the organism: in 24 hours 1,000 liters of plasma and 800 liters of red blood cells pass through the kidneys, which corresponds to 1/5 of the total cardiac output at rest. Thus, the total blood volume passes through the kidneys around 300 times a day. The urine leaves the kidney through the renal pelvis and ends up in the urinary bladder via the ureter. The kidneys need a reasonably stable blood flow to function properly, and therefore make use of effective autoregulatory mechanisms to compensate for fluctuations in arterial blood pressure. For instance, variations in arterial blood pressure between 80 and 180 mmhg do not affect renal blood flow in humans. Two control mechanisms have been proposed to explain autoregulation: TGF and the myogenic mechanism. Both act to increase (decrease) the hemodynamic resistance of the preglomerular vessels in response to an increase (decrease) in the arterial blood pressure. By changing the vascular resistance these mechanisms will minimize the changes in blood flow in response to the variations in arterial pressure. The myogenic mechanism is an intrinsic response of the preglomerular vessels, where an increase in arterial blood pressure increases wall tension, which induces a reflex vasoconstriction, and an increase in vascular resistance. This will decrease the blood flow back towards the value prior to the pressure increase. Conversely, a decrease in arterial blood pressure causes vasodilatation, decreasing vascular resistance, and an increase in blood flow back towards the control value. The TGF mechanism reacts to the NaCl concentration in tubular fluid at a location in the tubule called the macula densa that is sensitive to the concentration of chloride, a low concentration (and thus a low flow rate of tubular fluid) signals the afferent arteriole to dilate, which increases blood flow, and vice versa. Both mechanisms work at the level of the individual nephron, (see Figure 2). A human kidney contains around one million nephrons, a rat kidney around 30,000.

4 2.1. Anatomy of the Nephron Each nephron consists of a glomerulus and a tubule. The glomerulus is a capillary network inserted between the afferent and the efferent arteriole. The glomerulus is surrounded by Bowman's capsule, from where the tubule starts. The tubule is mm long and has a diameter of µm (see Figure 2). The tubule is divided into the proximal tubule (closest to the glomerulus); the loop of Henle, which is a hairpin like structure that can be divided into a descending and an ascending limb; and the distal tubule. Tubules from many nephrons merge to form collecting ducts. As these descend through the kidney medulla they continue to merge, ultimately forming a few thousand papillary collecting ducts which empties into the renal pelvis at the tip of the papillas. All tubules together are called the tubular system. Figure 2. The nephron. The loop of Henle returns to its own glomerulus. Part of the loop of Henle lies close to the corresponding afferent arteriole, and together they constitute the juxtaglomerular apparatus. It consists of several structures, including the macula densa, which are tubular epithelial cells in the wall of the ascending limb of the loop of Henle; and juxtaglomerular cells in the afferent arteriole. The close contact between the afferent arteriole and the loop of Henle constitutes the structural base of the TGF mechanism Physiology of the Nephron The nephron is the functional unit of the kidney, and where the filtering of blood occurs. Three basic transport processes take place in the nephron: glomerular filtration, tubular reabsorption and tubular secretion, resulting in the formation of the final urine.

5 In the glomerulus, blood passes through a capillary network where plasma water together with substances with a molecular weight under 5,000 g/mol are filtered through the glomerular membrane and into Bowman's capsule. Plasma substances with a molecular weight above 70,000 g/mol, mainly proteins, are almost entirely retained in the vessels. Substances in between are partly passed. This process is called glomerular ultrafiltration. The ultrafiltrate contains almost no protein. It is isosmolar with plasma, containing the same concentration of low molecular weight substances. Ultrafiltration in the glomerulus increases with increasing hydrostatic pressure difference between the capillaries and the capsular space, whereas the colloid osmotic pressure in the glomerular capillaries impedes the filtration. Since the ultrafiltrate contains no protein, the protein concentration increases gradually as plasma water is filtered, and thus, the colloid osmotic pressure increases as the blood flows through the glomerulus from the afferent to the efferent arteriole. If the colloid osmotic pressure becomes equal to the hydrostatic pressure difference filtration stops. This is termed filtration equilibrium, and has been observed to occur in certain rat strains. However, it is generally assumed that under most physiological conditions filtration equilibrium is not attained. The ultrafiltrate, the nascent urine, flows from the capsular space to the tubular system and continues to the renal pelvis. On its way, volume and composition are changed as some substances (e.g. water, NaCl, and glucose) are transported from the tubular fluid back to the blood (in the peritubular capillaries and in vasa recta), a process called tubular reabsorption, while other substances are transported in the opposite direction from the blood to the tubular fluid, denoted tubular secretion. In humans, around a fifth of the plasma passing through the glomeruli is filtered into the tubular system, which means that 180 liters of ultrafiltrate is produced daily. However, only 1-2 liters are excreted as urine, so that around 99% of the ultrafiltrate is reabsorbed from the tubular system and returned to the circulating blood. Tubular reabsorption of electrolytes and water from the more distal segments of the nephron is regulated by hormones from the adrenal gland (aldosterone) and the pituitary gland in the brain (antidiuretic hormone). Through these and other hormonal control systems, the composition and the volume of the final urine is adapted to the physiological needs of the body, maintaining the composition and volume of the extracellular fluid, the electrolyte balance and the balance of acids and bases within strict limits. The proximal tubule reabsorbs approximately 70% of the filtrate into the surrounding capillaries. The composition of tubular fluid remains nearly unchanged in this part of the nephron. In the descending limb of the loop of Henle another 15% of the water is reabsorbed, while urea is secreted into the tubule. Hence the composition becomes more hyper-osmotic the deeper into the renal medulla the nephron reaches. The ascending limb of the loop of Henle is nearly impermeable to water, whereas salts, primarily NaCl, are transported out of the tubule into the interstitial space. Therefore the tubular fluid turns from hyper- to hypo-osmotic as the tubule returns to the renal cortex. Another 10%

6 of the water is reabsorbed in the distal tubule, so that around 5% of the ultrafiltrate reaches the collecting duct, and the fluid is iso-osmotic with plasma at this point. In the collecting duct, which receives tubular fluid from many nephrons, the tubular fluid is transformed into the final urine by epithelial transport of water, salts and urea, so that only around 1% of the original ultrafiltrate is excreted. In the presence of antidiuretic hormone (vasopressin), the osmolarity of the fluid in the collecting duct increases on its way down from the renal cortex, through the renal medulla, and to the end in the renal pelvis at the papillas, with an osmolarity of osmol/l compared to a plasma osmolarity of 300 osmol/l. Aldosterone, from the cortex of the adrenal gland, promotes Na + reabsorption and K + secretion in the distal tubule and collecting ducts Autoregulation of Renal Blood Flow Together with the brain, the kidney has the most efficient autoregulation of blood flow. Due to autoregulation even rather large fluctuations in the arterial blood pressure will only lead to small changes in renal blood flow. A perturbation of the arterial blood pressure will induce rapid changes in the vascular resistance that tends to stabilize the renal blood flow. The kidneys dispose of two autoregulatory mechanisms to stabilize the renal blood flow, namely the myogenic mechanism and TGF. Each of the two mechanisms is frequency dependent and the contribution each makes to autoregulation therefore depends on the frequency of the perturbation of the blood pressure. Both contribute to autoregulation and there is a complex interaction between them. The myogenic mechanism. An increase in the arterial blood pressure leads to a rapid contraction in the smooth muscles of the vessels. As pressure rises, the smooth muscle cells within the arteriolar wall will sense an increase in wall tension, to which the myogenic mechanism responds by contracting the arteriole, thus reducing the blood flow back towards the control value. The myogenic mechanism reacts within one or two seconds, and is hence related to fast autoregulatory changes. The TGF mechanism. TGF a negative feedback loop, is unique to the kidney. By changing the renal vascular resistance, the TGF regulates the renal blood flow, the glomerular filtration rate (GFR), the pressure in the glomerulus and in the proximal tubule, and the flow into the loop of Henle. Its most important task is to maintain the stability of salt and water delivery to the distal part of the nephron so that the distal tubule and the collecting duct can regulate hormone dependent salt and water excretion and reabsorption optimally for the homeostatic needs of the body. An increased blood pressure will transiently increase both the renal blood pressure and the glomerular capillary pressure. Both changes will increase the filtration rate, and thereby increase the flow into the loop of Henle. TGF is activated by increased flow into the loop of Henle, because of the resulting increase in the NaCl concentration at the macula densa. The macula densa cells monitor the NaCl concentration and generate a signal that is transmitted to smooth muscle cells in the wall of the afferent arteriole, causing the afferent arteriole to contract. The details of the signaling process is still not

7 fully understood, but it appears that an increased concentration of NaCl in the tubular fluid at the site of the macula densa causes an increased uptake of NaCl into the macula densa cells through the action of the Na + /K + /2Cl - -cotransporter present in the luminal membrane of the cells. Through unknown mechanisms the increased uptake of NaCl causes secretion of ATP by the macula densa cells into the mesangial region, where it is rapidly converted to adenosine by the extracellular enzyme ectonucleotidase. Adenosine then reaches the vascular smooth muscle cells of the afferent arteriole causing constriction of the vessel. Because of the vasconstriction renal blood flow and glomerular filtration pressure decreases, this then reduces GFR and inflow to the loop of Henle. A causal loop diagram of the TGF mechanism is illustrated in Figure 3. Due to the transition time through the tubular system, the salt concentration at the macula densa does not change instantaneously after a change in glomerular filtration rate, but some 8-10 seconds later. An additional delay of 4-5 seconds is associated with the transmission of the signal from the macula densa cells to the arterial wall. The response time for the TGF mechanism is thus related to slower autoregulatory changes of around seconds. Figure 3. Causal loop diagram of the TGF mechanism. From Holstein-Rathlou and Marsh, Physiological Reviews, Am Physiol Soc, with permission. Experiments have shown that spontaneously hypertensive rats have a stronger TGF response, i.e. the increase in resistance is greater and occur at lower concentrations of NaCl, when compared to normotensive rats. The exact mechanism underlying this change is unknown. Dynamics of tubular pressure and flow. Tubular and vascular pressures can be measured experimentally on the surface of the kidneys of anesthetized rats. The data we use for illustration are obtained by Yip, Marsh and Holstein-Rathlou. The experimental data show two fundamental oscillations in tubular pressure and flow,

8 one with a frequency of 25 to 45 mhz (see Figure 4), and another with a frequency of 100 to 140 mhz. The slower of the two is due to the operation of the TGF mechanism, and the faster is due to the myogenic mechanism. Data show a clear difference in dynamic behavior of the tubular pressure oscillations between normo- and hypertensive rats. In normotensive rats the TGF mediated oscillation is regular, and is seen in 80-90% of the nephrons studied, Figure 4. In contrast in rats with a genetic form of hypertension (spontaneously hypertensive rats) the fluctuations are highly irregular, Figure 4. Why the rhythms are different is at present unknown, but as will be seen below, comparing the results of computer simulations of TGF models to experimental data can help suggest causal explanations. Figure 4. Typical fluctuations of proximal tubular pressure. Upper panel: normotensive rat. Lower panel: spontaneous hypertensive rat. From Holstein-Rathlou and Marsh, Physiological Reviews, Am Physiol Soc, with permission. The kidneys play a central role in the regulation of the arterial blood pressure, and it is well known that renal dysfunction can lead to hypertension. Experiments have shown that transplanting a kidney from a hypertensive rat into a normotensive rat induces hypertension in the otherwise healthy rat, and that hypertension can be alleviated by transplanting a kidney from a normotensive rat to a rat with hypertension. Despite the clear evidence for a central role of the kidneys in the regulation of arterial pressure, it has not been possible to identify changes in kidney function in most subjects (humans and animals) with hypertension. It remains an open question whether the observed change in dynamics of the TGF system is associated with the changes in renal function that ultimately lead to the development of high blood pressure. The change in

9 the dynamics of TGF will lead to changes in the response to the fluctuations in arterial pressure, and this could lead to changes in the excretory function of the kidneys. An understanding of the consequences of the intrinsic dynamics in the nephron for kidney function may therefore be central to an understanding of the role of the kidney in blood pressure regulation. This endeavor will require the development of detailed dynamic models of the nephron and its associated regulatory mechanisms Bibliography TO ACCESS ALL THE 39 PAGES OF THIS CHAPTER, Visit: Holstein-Rathlou N.-H. and Leyssac P.P. (1987). Oscillations in the proximal intratubular pressure: a mathematical model. Am J Physiol, 252:F560 F572. [One of the first dynamic models of the TGF system]. Holstein-Rathlou N.-H. and Marsh D.J. (1994). Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics. Physiol Rev, 74: [Gives a detailed review of nonlinear dynamics and analysis of models of the TGF and the myogenic mechanism]. Jensen K.S., Mosekilde E., and Holstein-Rathlou N.-H. (1986). Self-sustained oscillations and chaotic behavior in kidney pressure regulation. Mondes en Developpement, 54-55: [One of the first dynamic models of the TGF system]. Randall Thomas S., Layton A.T., Layton H.E. and Moore L.C. (2006). Kidney modeling: status and perspectives. Proceedings of IEEE, 94: [A review paper on mathematical models at various levels of renal physiology]. Sosnovtseva O.V., Mosekilde E., and Holstein-Rathlou N.-H. (2007). Modeling Kidney Pressure and Flow Regulation, part of: Biosimulation in Drug Development, chapter 3, pages Wiley-VCH. [A book chapter on the Barfred-Mosekilde-Holstein-Rathlou model]. Biographical Sketches Susanne Ditlevsen graduated in 1999 with a MSc in mathematics from Universidad Nacional de Educacion a Distancia, Spain and a MSc in statistics in 2000 from University of Copenhagen, Denmark. She got a PhD in 2005 from Department of Biostatistics, University of Copenhagen, where she became Associate Professor in She is now Professor at Department of Mathematical Sciences, University of Copenhagen, and head of the research group Statistics and Probability Theory. Her major fields of research are statistical inference for stochastic processes, computational neuroscience and mathematical modeling of physiological dynamics. Donald Marsh received the MD degree in 1958 from the University of California, San Francisco. He was Assistant Professor of Physiology and Biophysics at New York University from , and Associate Professor from 1967 to He was Professor of Biomedical Engineering at the University of Southern California from In 1978 he also became Professor of Physiology and Biophysics at the University of Southern California. In 1992 he became Professor of Molecular Pharmacology, Physiology, and Biotechnology at Brown University, and from Dean of Medicine and Biological Sciences.

10 His current research interests are renal physiology and hypertension, with application of nonlinear dynamical systems to the problem of regulation of renal blood flow. Niels-Henrik Holstein-Rathlou received the MD degree in 1983 and the Dr. Med. Sci. degree in physiology in 1992, both from the University of Copenhagen, Denmark. He was Associate Professor of Physiology and Biophysics at the University of Southern California, Los Angeles, from 1988 to Since 1993, he has been Professor of Medical Physiology at the University of Copenhagen. Since 2007 he has been Head of the Department of Biomedical Sciences at the University of Copenhagen. His current research interests are within the field of renal physiology and hypertension, and include the application of the theory of nonlinear dynamical systems to physiological problems.

Glomerular Capillary Blood Pressure

Glomerular Capillary Blood Pressure Glomerular Capillary Blood Pressure Fluid pressure exerted by blood within glomerular capillaries Depends on Contraction of the heart Resistance to blood flow offered by afferent and efferent arterioles

More information

Renal Quiz - June 22, 21001

Renal Quiz - June 22, 21001 Renal Quiz - June 22, 21001 1. The molecular weight of calcium is 40 and chloride is 36. How many milligrams of CaCl 2 is required to give 2 meq of calcium? a) 40 b) 72 c) 112 d) 224 2. The extracellular

More information

Osmotic Regulation and the Urinary System. Chapter 50

Osmotic Regulation and the Urinary System. Chapter 50 Osmotic Regulation and the Urinary System Chapter 50 Challenge Questions Indicate the areas of the nephron that the following hormones target, and describe when and how the hormones elicit their actions.

More information

2) This is a Point and Click question. You must click on the required structure.

2) This is a Point and Click question. You must click on the required structure. Class: A&P2-1 Description: Test: Excretory Test Points: 144 Test Number: 28379 Printed: 31-March-10 12:03 1) This is a Point and Click question. You must click on the required structure. Click on the Bowman's

More information

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion.

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The Kidney Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The kidney has 6 roles in the maintenance of homeostasis. 6 Main Functions 1. Ion Balance

More information

Urinary Physiology. Chapter 17 Outline. Kidney Function. Chapter 17

Urinary Physiology. Chapter 17 Outline. Kidney Function. Chapter 17 Urinary Physiology Chapter 17 Chapter 17 Outline Structure and Function of the Kidney Glomerular Filtration Reabsorption of Salt and Water Renal Plasma Clearance Renal Control of Electrolyte and Acid-Base

More information

BCH 450 Biochemistry of Specialized Tissues

BCH 450 Biochemistry of Specialized Tissues BCH 450 Biochemistry of Specialized Tissues VII. Renal Structure, Function & Regulation Kidney Function 1. Regulate Extracellular fluid (ECF) (plasma and interstitial fluid) through formation of urine.

More information

014 Chapter 14 Created: 9:25:14 PM CST

014 Chapter 14 Created: 9:25:14 PM CST 014 Chapter 14 Created: 9:25:14 PM CST Student: 1. Functions of the kidneys include A. the regulation of body salt and water balance. B. hydrogen ion homeostasis. C. the regulation of blood glucose concentration.

More information

The Excretory System. Biology 20

The Excretory System. Biology 20 The Excretory System Biology 20 Introduction Follow along on page 376 What dangers exist if your body is unable to regulate the fluid balance of your tissues? What challenged would the body have to respond

More information

P215 Spring 2018: Renal Physiology Chapter 18: pp , Chapter 19: pp ,

P215 Spring 2018: Renal Physiology Chapter 18: pp , Chapter 19: pp , P215 Spring 2018: Renal Physiology Chapter 18: pp. 504-520, 525-527 Chapter 19: pp. 532-548, 553-560 I. Main Components of the Renal System 1. kidneys 2. ureters 3. urinary bladder 4. urethra 4 Major Functions

More information

Copyright 2009 Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. Figure 19-1c. Efferent arteriole. Juxtaglomerular apparatus

Copyright 2009 Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. Figure 19-1c. Efferent arteriole. Juxtaglomerular apparatus /6/0 About this Chapter Functions of the Kidneys Anatomy of the urinary system Overview of kidney function Secretion Micturition Regulation of extracellular fluid volume and blood pressure Regulation of

More information

BIOL2030 Human A & P II -- Exam 6

BIOL2030 Human A & P II -- Exam 6 BIOL2030 Human A & P II -- Exam 6 Name: 1. The kidney functions in A. preventing blood loss. C. synthesis of vitamin E. E. making ADH. B. white blood cell production. D. excretion of metabolic wastes.

More information

Nephron Function and Urine Formation. Ms. Kula December 1, 2014 Biology 30S

Nephron Function and Urine Formation. Ms. Kula December 1, 2014 Biology 30S Nephron Function and Urine Formation Ms. Kula December 1, 2014 Biology 30S The Role of the Nephron In order for the body to properly function and maintain homeostasis, the amount of dissolved substances

More information

Urinary System Organization. Urinary System Organization. The Kidneys. The Components of the Urinary System

Urinary System Organization. Urinary System Organization. The Kidneys. The Components of the Urinary System Urinary System Organization The Golden Rule: The Job of The Urinary System is to Maintain the Composition and Volume of ECF remember this & all else will fall in place! Functions of the Urinary System

More information

Human Urogenital System 26-1

Human Urogenital System 26-1 Human Urogenital System 26-1 Urogenital System Functions Filtering of blood, Removal of wastes and metabolites Regulation of blood volume and composition concentration of blood solutes ph of extracellular

More information

describe the location of the kidneys relative to the vertebral column:

describe the location of the kidneys relative to the vertebral column: Basic A & P II Dr. L. Bacha Chapter Outline (Martini & Nath 2010) list the three major functions of the urinary system: by examining Fig. 24-1, list the organs of the urinary system: describe the location

More information

1. a)label the parts indicated above and give one function for structures Y and Z

1. a)label the parts indicated above and give one function for structures Y and Z Excretory System 1 1. Excretory System a)label the parts indicated above and give one function for structures Y and Z W- renal cortex - X- renal medulla Y- renal pelvis collecting center of urine and then

More information

Chapter 25 The Urinary System

Chapter 25 The Urinary System Chapter 25 The Urinary System 10/30/2013 MDufilho 1 Kidney Functions Removal of toxins, metabolic wastes, and excess ions from the blood Regulation of blood volume, chemical composition, and ph Gluconeogenesis

More information

Use the following diagram to answer the next question. 1. In the diagram above, pressure filtration occurs in a. W b. X c. Y d. Z

Use the following diagram to answer the next question. 1. In the diagram above, pressure filtration occurs in a. W b. X c. Y d. Z Part A: Multiple Choice Questions Value: 32 Marks Suggested time: 40 minutes Instructions: For each question select the best answer and record your choice on the Scantron card provided. Using an HB pencil,

More information

RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015

RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015 RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015 1. In which abdominal cavity do the kidneys lie? a) Peritoneum. b) Anteperitoneal. c) Retroperitoneal. d) Parietal peritoneal 2. What is the

More information

QUIZ/TEST REVIEW NOTES SECTION 1 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 CHAPTER 19

QUIZ/TEST REVIEW NOTES SECTION 1 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 CHAPTER 19 QUIZ/TEST REVIEW NOTES SECTION 1 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 CHAPTER 19 Learning Objectives: Differentiate the following processes: filtration, reabsorption, secretion,

More information

Excretory System 1. a)label the parts indicated above and give one function for structures Y and Z

Excretory System 1. a)label the parts indicated above and give one function for structures Y and Z Excretory System 1 1. Excretory System a)label the parts indicated above and give one function for structures Y and Z W- X- Y- Z- b) Which of the following is not a function of the organ shown? A. to produce

More information

CHAPTER 25 URINARY. Urinary system. Kidneys 2 Ureters 2 Urinary Bladder 1 Urethra 1. functions

CHAPTER 25 URINARY. Urinary system. Kidneys 2 Ureters 2 Urinary Bladder 1 Urethra 1. functions CHAPTER 25 URINARY Kidneys 2 Ureters 2 Urinary Bladder 1 Urethra 1 fluid waste elimination secretion of wastes control blood volume and BP control blood ph electrolyte levels RBC levels hormone production

More information

CONTROLLING THE INTERNAL ENVIRONMENT

CONTROLLING THE INTERNAL ENVIRONMENT AP BIOLOGY ANIMAL FORM & FUNCTION ACTIVITY #5 NAME DATE HOUR CONTROLLING THE INTERNAL ENVIRONMENT KIDNEY AND NEPHRON NEPHRON FUNCTIONS Animal Form & Function Activity #5 page 1 NEPHRON STRUCTURE NEPHRON

More information

Waste Products & Kidney Function

Waste Products & Kidney Function Waste Products & Kidney Function urinary system principal means of metabolic waste removal urinary system is closely associated with reproductive system urogenital system share embryonic development share

More information

BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1

BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1 BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1 Terms you should understand by the end of this section: diuresis, antidiuresis, osmoreceptors, atrial stretch

More information

I. Metabolic Wastes Metabolic Waste:

I. Metabolic Wastes Metabolic Waste: I. Metabolic Wastes Metabolic Waste: a) Carbon Dioxide: by-product of cellular respiration. b) Water: by-product of cellular respiration & dehydration synthesis reactions. c) Inorganic Salts: by-product

More information

Excretory Lecture Test Questions Set 1

Excretory Lecture Test Questions Set 1 Excretory Lecture Test Questions Set 1 1. The separation and ejection of metabolic wastes, usually in aqueous solution, is: a. reabsorption b. secretion c. filtration d. excretion e. endocrinology 2. Besides

More information

Renal System and Excretion

Renal System and Excretion Renal System and Excretion Biology 105 Lecture 19 Chapter 16 Outline Renal System I. Functions II. Organs of the renal system III. Kidneys 1. Structure 2. Function IV. Nephron 1. Structure 2. Function

More information

Lecture 16: The Nephron

Lecture 16: The Nephron Lecture 16: The Nephron Reading: OpenStax A&P Text Chapter 25 Primary functions of the kidneys 1. Regulating osmolarity (blood concentration!) A. Regulating blood pressure B. Maintaining ion balance C.

More information

Outline Urinary System. Urinary System and Excretion. Urine. Urinary System. I. Function II. Organs of the urinary system

Outline Urinary System. Urinary System and Excretion. Urine. Urinary System. I. Function II. Organs of the urinary system Outline Urinary System Urinary System and Excretion Bio105 Chapter 16 Renal will be on the Final only. I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure III. Disorders of

More information

19. RENAL PHYSIOLOGY ROLE OF THE URINARY SYSTEM THE URINARY SYSTEM. Components and function. V BS 122 Physiology II 151 Class of 2011

19. RENAL PHYSIOLOGY ROLE OF THE URINARY SYSTEM THE URINARY SYSTEM. Components and function. V BS 122 Physiology II 151 Class of 2011 19. RENAL PHYSIOLOGY THE URINARY SYSTEM Components and function The urinary system is composed of two kidneys, the functionally filtering apparatus, which connect through two tubular structures called

More information

Nephron Anatomy Nephron Anatomy

Nephron Anatomy Nephron Anatomy Kidney Functions: (Eckert 14-17) Mammalian Kidney -Paired -1% body mass -20% blood flow (Eckert 14-17) -Osmoregulation -Blood volume regulation -Maintain proper ion concentrations -Dispose of metabolic

More information

Osmoregulation and Renal Function

Osmoregulation and Renal Function 1 Bio 236 Lab: Osmoregulation and Renal Function Fig. 1: Kidney Anatomy Fig. 2: Renal Nephron The kidneys are paired structures that lie within the posterior abdominal cavity close to the spine. Each kidney

More information

PARTS OF THE URINARY SYSTEM

PARTS OF THE URINARY SYSTEM EXCRETORY SYSTEM Excretory System How does the excretory system maintain homeostasis? It regulates heat, water, salt, acid-base concentrations and metabolite concentrations 1 ORGANS OF EXCRETION Skin and

More information

Questions? Homework due in lab 6. PreLab #6 HW 15 & 16 (follow directions, 6 points!)

Questions? Homework due in lab 6. PreLab #6 HW 15 & 16 (follow directions, 6 points!) Questions? Homework due in lab 6 PreLab #6 HW 15 & 16 (follow directions, 6 points!) Part 3 Variations in Urine Formation Composition varies Fluid volume Solute concentration Variations in Urine Formation

More information

Sunday, July 17, 2011 URINARY SYSTEM

Sunday, July 17, 2011 URINARY SYSTEM URINARY SYSTEM URINARY SYSTEM Let s take a look at the anatomy first! KIDNEYS: are complex reprocessing centers where blood is filtered through and waste products are removed. Wastes and extra water become

More information

Urinary bladder provides a temporary storage reservoir for urine

Urinary bladder provides a temporary storage reservoir for urine Urinary System Organs Kidney Filters blood, allowing toxins, metabolic wastes, and excess ions to leave the body in urine Urinary bladder provides a temporary storage reservoir for urine Paired ureters

More information

LECTURE 25: FILTRATION AND CLEARANCE NEPHRON FILTRATION

LECTURE 25: FILTRATION AND CLEARANCE NEPHRON FILTRATION LECTURE 25: FILTRATION AND CLEARANCE NEPHRON FILTRATION 1. Everything in the plasma is filtered except large proteins and red blood cells. The filtrate in Bowman s capsule is an isosmotic fluid that is

More information

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION.

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION. !! www.clutchprep.com Osmoregulation regulation of solute balance and water loss to maintain homeostasis of water content Excretion process of eliminating waste from the body, like nitrogenous waste Kidney

More information

BIOH122 Human Biological Science 2

BIOH122 Human Biological Science 2 BIOH122 Human Biological Science 2 Session 16 Urinary System 1 The Kidneys Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session Plan o Functions of Urinary system o The Kidneys:

More information

Urinary System and Excretion. Bio105 Lecture 20 Chapter 16

Urinary System and Excretion. Bio105 Lecture 20 Chapter 16 Urinary System and Excretion Bio105 Lecture 20 Chapter 16 1 Outline Urinary System I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure III. Disorders of the urinary system

More information

1.&Glomerular/Pressure&Filtration&

1.&Glomerular/Pressure&Filtration& Urine&Formation& Overall&Process&! Urine gets rid of wastes (NH 3, urea, uric acid, creatinine) and other substances (vitamins, penicillin, histamines) found in excess in the blood!! blood is filtered

More information

Chapter 23. The Nephron. (functional unit of the kidney

Chapter 23. The Nephron. (functional unit of the kidney Chapter 23 The Nephron (functional unit of the kidney Renal capsule The Nephron Renal cortex Nephron Collecting duct Efferent arteriole Afferent arteriole (a) Renal corpuscle: Glomerular capsule Glomerulus

More information

Human Anatomy and Physiology - Problem Drill 23: The Urinary System, Fluid, Electrolyte and Acid-Base Balance

Human Anatomy and Physiology - Problem Drill 23: The Urinary System, Fluid, Electrolyte and Acid-Base Balance Human Anatomy and Physiology - Problem Drill 23: The Urinary System, Fluid, Electrolyte and Acid-Base Balance Question No. 1 of 10 Which of the following statements about the functions of the urinary system

More information

Chapter 26 The Urinary System

Chapter 26 The Urinary System Chapter 26 The Urinary System Kidneys, ureters, urinary bladder & urethra Urine flows from each kidney, down its ureter to the bladder and to the outside via the urethra Filter the blood and return most

More information

Basic Functions of the Kidneys

Basic Functions of the Kidneys Dr. Adelina Vlad Basic Functions of the Kidneys Eliminate plasma METABOLIC WASTE PRODUCTS and FOREIGN COMPOUNDS The kidney are the primary means for eliminating metabolic waste products (urea, creatinine,

More information

One Minute Movies: Molecular Action at the Nephron Joy Killough / Westwood High School / Austin,TX

One Minute Movies: Molecular Action at the Nephron Joy Killough / Westwood High School / Austin,TX One Minute Movies: Molecular Action at the Nephron Joy Killough / Westwood High School / Austin,TX To prepare your nephron model: ( A nephron is a tubule and the glomerulus. There are about a million of

More information

Nephron Structure inside Kidney:

Nephron Structure inside Kidney: In-Depth on Kidney Nephron Structure inside Kidney: - Each nephron has two capillary regions in close proximity to the nephron tubule, the first capillary bed for fluid exchange is called the glomerulus,

More information

Urinary System BIO 250. Waste Products of Metabolism Urea Carbon dioxide Inorganic salts Water Heat. Routes of Waste Elimination

Urinary System BIO 250. Waste Products of Metabolism Urea Carbon dioxide Inorganic salts Water Heat. Routes of Waste Elimination Urinary System BIO 250 Waste Products of Metabolism Urea Carbon dioxide Inorganic salts Water Heat Routes of Waste Elimination Skin: Variable amounts of heat, salts, and water; small amounts of urea and

More information

MAJOR FUNCTIONS OF THE KIDNEY

MAJOR FUNCTIONS OF THE KIDNEY MAJOR FUNCTIONS OF THE KIDNEY REGULATION OF BODY FLUID VOLUME REGULATION OF OSMOTIC BALANCE REGULATION OF ELECTROLYTE COMPOSITION REGULATION OF ACID-BASE BALANCE REGULATION OF BLOOD PRESSURE ERYTHROPOIESIS

More information

organs of the urinary system

organs of the urinary system organs of the urinary system Kidneys (2) bean-shaped, fist-sized organ where urine is formed. Lie on either sides of the vertebral column, in a depression beneath peritoneum and protected by lower ribs

More information

NOTES: CH 44 Regulating the Internal Environment (Homeostasis & The Urinary System)

NOTES: CH 44 Regulating the Internal Environment (Homeostasis & The Urinary System) NOTES: CH 44 Regulating the Internal Environment (Homeostasis & The Urinary System) HOMEOSTASIS **Recall HOMEOSTASIS is the steady-state physiological condition of the body. It includes: 1) Thermoregulation:

More information

URINARY SYSTEM. Primary functions. Major organs & structures

URINARY SYSTEM. Primary functions. Major organs & structures URINARY SYSTEM Primary functions Excretion of metabolic wastes Regulation of water and ion balances Regulation of blood pressure Vitamin D activation Regulation of rbc s (erythropoietin) Gluconeogenesis

More information

Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology

Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology Question No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully, (2) Work the problems on paper

More information

Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate

Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate Renal physiology The kidneys Allow us to live on dry land. Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate Kidneys maintain composition

More information

Kidney Functions Removal of toxins, metabolic wastes, and excess ions from the blood Regulation of blood volume, chemical composition, and ph

Kidney Functions Removal of toxins, metabolic wastes, and excess ions from the blood Regulation of blood volume, chemical composition, and ph The Urinary System Urinary System Organs Kidneys are major excretory organs Urinary bladder is the temporary storage reservoir for urine Ureters transport urine from the kidneys to the bladder Urethra

More information

Outline Urinary System

Outline Urinary System Urinary System and Excretion Bio105 Lecture Packet 20 Chapter 16 Outline Urinary System I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure B. Urine formation 1. Hormonal regulation

More information

Chapter 17: Urinary System

Chapter 17: Urinary System Introduction Chapter 17: Urinary System Organs of the Urinary System REFERENCE FIGURE 17.1 2 kidneys filters the blood 2 ureters transport urine from the kidneys to the urinary bladder Urinary bladder

More information

Kidney and urine formation

Kidney and urine formation Kidney and urine formation Renal structure & function Urine formation Urinary y concentration and dilution Regulation of urine formation 1 Kidney and urine formation 1.Renal structure & function 1)General

More information

Physio 12 -Summer 02 - Renal Physiology - Page 1

Physio 12 -Summer 02 - Renal Physiology - Page 1 Physiology 12 Kidney and Fluid regulation Guyton Ch 20, 21,22,23 Roles of the Kidney Regulation of body fluid osmolarity and electrolytes Regulation of acid-base balance (ph) Excretion of natural wastes

More information

The kidneys are excretory and regulatory organs. By

The kidneys are excretory and regulatory organs. By exercise 9 Renal System Physiology Objectives 1. To define nephron, renal corpuscle, renal tubule, afferent arteriole, glomerular filtration, efferent arteriole, aldosterone, ADH, and reabsorption 2. To

More information

Class XI Chapter 19 Excretory Products and their Elimination Biology

Class XI Chapter 19 Excretory Products and their Elimination Biology Class XI Chapter 19 Excretory Products and their Elimination Biology Question 1: Define Glomerular Filtration Rate (GFR) Glomerular filtration rate is the amount of glomerular filtrate formed in all the

More information

1. Urinary System, General

1. Urinary System, General S T U D Y G U I D E 16 1. Urinary System, General a. Label the figure by placing the numbers of the structures in the spaces by the correct labels. 7 Aorta 6 Kidney 8 Ureter 2 Inferior vena cava 4 Renal

More information

osmoregulation mechanisms in gills, salt glands, and kidneys

osmoregulation mechanisms in gills, salt glands, and kidneys Ionic & Osmotic Homeostasis osmoregulation mechanisms in gills, salt glands, and kidneys extracellular intracellular 22 23 Salt Secretion: recycle Figure in Box 26.2 Hill et al. 2004 active Down electrochemical

More information

EXCRETORY SYSTEM E. F. G. H.

EXCRETORY SYSTEM E. F. G. H. XRTORY SYSTM 1. Label the following parts of the nephron in the diagram below:..... F. G. H. I. J. K. L. 2. Identify the following as either True or False: There is a greater osmotic concentration in the

More information

Urinary System. consists of the kidneys, ureters, urinary bladder and urethra

Urinary System. consists of the kidneys, ureters, urinary bladder and urethra Urinary System 1 Urinary System consists of the kidneys, ureters, urinary bladder and urethra 2 Location of Kidneys The kidneys which are positioned retroperitoneally lie on either side of the vertebral

More information

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood.

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood. OAT Biology - Problem Drill 16: The Urinary System Question No. 1 of 10 1. Which of the following would solve a drop in blood ph? Question #01 (A) Decreased retention of acids. (B) Increased excretion

More information

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 1. a. Proximal tubule. b. Proximal tubule. c. Glomerular endothelial fenestrae, filtration slits between podocytes of Bowman's capsule.

More information

Introduction to the kidney: regulation of sodium & glucose. Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health

Introduction to the kidney: regulation of sodium & glucose. Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health Introduction to the kidney: regulation of sodium & glucose Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health Objectives Overview of kidney structure & function Glomerular

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Figure 25.1 Using Figure 25.1, match the following: 1) Glomerulus. 2) Afferent arteriole. 3)

More information

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin Renal Physiology MCQ KD01 [Mar96] [Apr01] Renal blood flow is dependent on: A. Juxtaglomerular apparatus B. [Na+] at macula densa C. Afferent vasodilatation D. Arterial pressure (poorly worded/recalled

More information

A&P 2 CANALE T H E U R I N A R Y S Y S T E M

A&P 2 CANALE T H E U R I N A R Y S Y S T E M A&P 2 CANALE T H E U R I N A R Y S Y S T E M URINARY SYSTEM CONTRIBUTION TO HOMEOSTASIS Regulates body water levels Excess water taken in is excreted Output varies from 2-1/2 liter/day to 1 liter/hour

More information

5.Which part of the nephron removes water, ions and nutrients from the blood?

5.Which part of the nephron removes water, ions and nutrients from the blood? Uro question 1.While reading a blood test I notice a high level of creatinine, I could assume from this that A) There is a possibility of a UTI B) There is a possibility of diabetes C) There is a possibility

More information

The principal functions of the kidneys

The principal functions of the kidneys Renal physiology The principal functions of the kidneys Formation and excretion of urine Excretion of waste products, drugs, and toxins Regulation of body water and mineral content of the body Maintenance

More information

A. Incorrect! The urinary system is involved in the regulation of blood ph. B. Correct! The urinary system is involved in the synthesis of vitamin D.

A. Incorrect! The urinary system is involved in the regulation of blood ph. B. Correct! The urinary system is involved in the synthesis of vitamin D. Human Anatomy - Problem Drill 22: The Urinary System Question No. 1 of 10 1. Which of the following statements about the functions of the urinary system is not correct? Question #01 (A) The urinary system

More information

Functions of the kidney

Functions of the kidney Physiology of Urinary tract Kidney, Ureter, Urinary bladder Urethra Kidney function Excretion Physiology of volume regulation Functions of the kidney Excretion of dangerous substances endogenous (metabolites):

More information

November 30, 2016 & URINE FORMATION

November 30, 2016 & URINE FORMATION & URINE FORMATION REVIEW! Urinary/Renal System 200 litres of blood are filtered daily by the kidneys Usable material: reabsorbed back into blood Waste: drained into the bladder away from the heart to the

More information

BIOH122 Human Biological Science 2

BIOH122 Human Biological Science 2 BIOH122 Human Biological Science 2 Session 17 Urinary System 2 Glomerular Filtration Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session Plan o Overview of Renal Physiology

More information

Excretory System-Training Handout

Excretory System-Training Handout Excretory System-Training Handout Karen L. Lancour National Rules Committee Chairman Life Science Excretion - Excretion is the removal of the metabolic wastes of an organism. Wastes that are removed include

More information

Chapter 25: Urinary System

Chapter 25: Urinary System Chapter 25: Urinary System I. Kidney anatomy: retroperitoneal from 12 th thoracic to 3 rd lumbar area A. External anatomy: hilus is the indentation 1. Adrenal gland: in the fat at the superior end of each

More information

General Anatomy of Urinary System

General Anatomy of Urinary System General Anatomy of Urinary System URINARY SYSTEM ORGANS Kidneys (2) Ureters (2) Urinary bladder Urethra KIDNEY FUNCTIONS Control blood volume and composition KIDNEY FUNCTIONS Filter blood plasma, eliminate

More information

The Urinary S. (Chp. 10) & Excretion. What are the functions of the urinary system? Maintenance of water-salt and acidbase

The Urinary S. (Chp. 10) & Excretion. What are the functions of the urinary system? Maintenance of water-salt and acidbase 10.1 Urinary system The Urinary S. (Chp. 10) & Excretion 10.1 Urinary system What are the functions of the urinary system? 1. Excretion of metabolic wastes (urea, uric acid & creatinine) 1. Maintenance

More information

By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences. Body fluids and.

By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences. Body fluids and. By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences Body fluids and Renal physiology 25 Volume and Osmolality of Extracellular and Intracellular Fluids

More information

Collin County Community College RENAL PHYSIOLOGY

Collin County Community College RENAL PHYSIOLOGY Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 12 Urinary System 1 RENAL PHYSIOLOGY Glomerular Filtration Filtration process that occurs in Bowman s Capsule Blood is filtered and

More information

Histology Urinary system

Histology Urinary system Histology Urinary system Urinary system Composed of two kidneys, two ureters, the urinary bladder, and the urethra, the urinary system plays a critical role in: 1- Blood filtration,(filtration of cellular

More information

Figure 26.1 An Introduction to the Urinary System

Figure 26.1 An Introduction to the Urinary System Chapter 26 Figure 26.1 An Introduction to the Urinary System Components of the Urinary System Kidney Produces urine Ureter Transports urine toward the urinary bladder Urinary Bladder Temporarily stores

More information

RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM

RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM RENAL PHYSIOLOGY - ANATOMY Glomerulus + renal tubule Each kidney has 1.3 million nephrons Cortical nephrons (85%) have shorter Loop of Henle than Juxtamedullary nephrons

More information

Lab Activity 31. Anatomy of the Urinary System. Portland Community College BI 233

Lab Activity 31. Anatomy of the Urinary System. Portland Community College BI 233 Lab Activity 31 Anatomy of the Urinary System Portland Community College BI 233 Urinary System Organs Kidneys Urinary bladder: provides a temporary storage reservoir for urine Paired ureters: transport

More information

Lab 19 The Urinary System

Lab 19 The Urinary System Lab 19 The Urinary System Laboratory Objectives Identify and describe the micro- and macroscopic anatomy of the kidney. Track the blood flow in and out of the kidney. Compare blood, glomerular filtrate,

More information

RENAL PHYSIOLOGY. Physiology Unit 4

RENAL PHYSIOLOGY. Physiology Unit 4 RENAL PHYSIOLOGY Physiology Unit 4 Renal Functions Primary Function is to regulate the chemistry of plasma through urine formation Additional Functions Regulate concentration of waste products Regulate

More information

Unit #4 Waste and Excretion. The Kidneys

Unit #4 Waste and Excretion. The Kidneys Unit #4 Waste and Excretion The Kidneys Renal Hilus (Hilus) the doorway of the kidney Ureter leaves this region blood and lymphatic vessels enter and exit here Renal Capsule (Capsule) smooth fibrous tissue

More information

Urinary System and Fluid Balance. Urine Production

Urinary System and Fluid Balance. Urine Production Urinary System and Fluid Balance Name Pd Date Urine Production The three processes critical to the formation of urine are filtration, reabsorption, and secretion. Match these terms with the correct statement

More information

41B. Metabolism produces wastes that must be eliminated from the body. This. Renal System Physiology: Computer Simulation

41B. Metabolism produces wastes that must be eliminated from the body. This. Renal System Physiology: Computer Simulation 41B E X E R C I S E Renal System Physiology: Computer Simulation O B J E C T I V E S 1. To define the following terms: glomerulus, glomerular capsule, renal corpuscle, renal tubule, nephron, proximal convoluted

More information

12/7/10. Excretory System. The basic function of the excretory system is to regulate the volume and composition of body fluids by:

12/7/10. Excretory System. The basic function of the excretory system is to regulate the volume and composition of body fluids by: Excretory System The basic function of the excretory system is to regulate the volume and composition of body fluids by: o o removing wastes returning needed substances to the body for reuse Body systems

More information

Renal Functions: Renal Functions: Renal Function: Produce Urine

Renal Functions: Renal Functions: Renal Function: Produce Urine Renal Functions: Excrete metabolic waste products Reabsorb vital nutrients Regulate osmolarity: Maintain ion balance Regulate extracellular fluid volume (and thus blood pressure) Renal Functions: Regulate

More information

Anatomy/Physiology Study Guide: Unit 9 Excretory System

Anatomy/Physiology Study Guide: Unit 9 Excretory System Anatomy/Physiology Study Guide: Unit 9 Excretory System 1) In the space below, list the primary structures (organs) and their corresponding functions. Structures: Functions: KIDNEY 1) URETER BLADDER URETHRA

More information

April 08, biology 2201 ch 11.3 excretion.notebook. Biology The Excretory System. Apr 13 9:14 PM EXCRETORY SYSTEM.

April 08, biology 2201 ch 11.3 excretion.notebook. Biology The Excretory System. Apr 13 9:14 PM EXCRETORY SYSTEM. Biology 2201 11.3 The Excretory System EXCRETORY SYSTEM 1 Excretory System How does the excretory system maintain homeostasis? It regulates heat, water, salt, acid base concentrations and metabolite concentrations

More information

Physiology Lecture 2. What controls GFR?

Physiology Lecture 2. What controls GFR? Physiology Lecture 2 Too much blood is received by the glomerular capillaries, this blood contains plasma, once this plasma enters the glomerular capillaries it will be filtered to bowman s space. The

More information