Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa

Size: px
Start display at page:

Download "Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa"

Transcription

1 Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa Misao Nishikawa, M.D., Hiroaki Sakamoto, M.D., Akira Hakuba, M.D., Naruhiko Nakanishi, M.D., and Yuichi Inoue, M.D. Departments of Neurosurgery and Radiology, Osaka City University Medical School, Osaka, Japan To investigate overcrowding in the posterior cranial fossa as the pathogenesis of adult-type Chiari malformation, the authors studied the morphology of the brainstem and cerebellum within the posterior cranial fossa (neural structures consisting of the midbrain, pons, cerebellum, and medulla oblongata) as well as the base of the skull while taking into consideration their embryological development. Thirty patients with Chiari malformation and 50 normal control subjects were prospectively studied using neuroimaging. To estimate overcrowding, the authors used a "volume ratio" in which volume of the posterior fossa brain (consisting of the midbrain, pons, cerebellum, and medulla oblongata within the posterior cranial fossa) was placed in a ratio with the volume of the posterior fossa cranium encircled by bony and tentorial structures. Compared to the control group, in the Chiari group there was a significantly larger volume ratio, the two occipital enchondral parts (the exocciput and supraocciput) were significantly smaller, and the tentorium was pronouncedly steeper. There was no significant difference in the posterior fossa brain volume or in the axial lengths of the hindbrain (the brainstem and cerebellum). In six patients with basilar invagination the medulla oblongata was herniated, all three occipital enchondral parts (the basiocciput, exocciput, and supraocciput) were significantly smaller than in the control group, and the volume ratio was significantly larger than that in the Chiari group without basilar invagination. These results suggest that in adult-type Chiari malformation an underdeveloped occipital bone, possibly due to underdevelopment of the occipital somite originating from the paraxial mesoderm, induces overcrowding in the posterior cranial fossa, which contains the normally developed hindbrain. Basilar invagination is associated with a more severe downward herniation of the hindbrain due to the more severely underdeveloped occipital enchondrium, which further exacerbates overcrowding of the posterior cranial fossa. Key Words * skull base * basilar invagination * Chiari malformation * occipital bone * posterior cranial fossa * syringomyelia Chiari malformation is characterized by a downward herniation of the caudal part of the cerebellum and/or medulla oblongata into the spinal canal. This malformation is classified into at least two distinct types according to the degree of herniation: Type I displays herniation of the cerebellar tonsils and Type II exhibits herniation of the fourth ventricle and the medulla oblongata as well as the caudal part of the

2 cerebellum.[5] From a clinical point of view, Chiari malformation can also be divided into adult and pediatric types.[9] The adult-type Chiari malformation falls mostly into Type I and usually presents after the second or third decade of life with symptoms and signs resulting from tightness of the posterior cranial fossa and/or from associated syringomyelia.[3,4,8,14,21] This type is often accompanied by bone anomalies in the base of the skull such as basilar invagination, but is less frequently associated with brain abnormalities other than herniation of the cerebellar tonsils. The pediatric type mainly belongs to Chiari Type II and is characterized by myeloschisis at birth and brainstem dysfunction in the early periods after birth.[2,5,8,21] Typical features include a small posterior cranial fossa and various neural abnormalities such as brainstem deformities and hydrocephalus.[2,3,5,21] Chiari malformation is considered to be a primary neurological disease involving the posterior cranial fossa and the hindbrain.[2] Many investigators have tried to explain the pathogenesis of Chiari malformation from the standpoint of primary neural anomaly.[2,10,18] However, clinical and experimental studies indicate that the chronic tonsillar herniation observed in Chiari malformation could result from overcrowding within a primary small and shallow posterior cranial fossa due to an underdeveloped occipital bone.[9,16,17] Recent morphometric studies focusing on the bony part of the posterior cranial fossa in adult patients with Chiari malformation have lent support to this hypothesis.[23,25,28] In the present study, to estimate properly the overcrowding of the posterior cranial fossa in adult-type Chiari malformation without myelodysplasia, we quantitatively measured the volume of the whole posterior cranial fossa encompassed by both the bony and tentorial parts as well as the volume of the neural structures (the brainstem and cerebellum) within the posterior cranial fossa. The results obtained strongly suggest that overcrowding in the posterior cranial fossa due to an anomaly in the embryological development of the base of the skull is the pathogenesis of Chiari malformation. CLINICAL MATERIAL AND METHODS Patients with adult-type Chiari malformation (the Chiari group) who were selected for this prospective study were strictly chosen through surgical exploration of the major cistern in addition to neuroimaging. Of 58 patients with hindbrain herniation (without myelodysplasia) surgically treated at our hospitals, eight with basal meningitis or hydrocephalus were excluded. Another 20 patients who were diagnosed as having adult-type Chiari malformation before the era of magnetic resonance (MR) imaging were also excluded. The remaining 30 patients consecutively diagnosed as having adult-type Chiari malformation between June 1987 and June 1995 at Osaka City University Medical School and Osaka City General Hospital were investigated. Twenty-six of these patients displayed symptomatic syringomyelia and four presented with neurological signs caused by impairment of the cerebellum, medulla oblongata, or both due to a tight posterior cranial fossa. Of these 30 patients, 22 displayed no herniation of the medulla oblongata. The remaining eight showed mild herniation of the medulla oblongata below the foramen magnum in addition to tonsillar herniation; two had a downward herniation of the fourth ventricle with cervicomedullary kinking visible on the MR image, six had basilar invagination, one had assimilation of the atlas, and one had Klippel Feil syndrome.[24] All patients with basilar invagination manifested medullary herniation. As a control group we studied 50 normal individuals without central nervous system involvement between June 1987 and June 1995 at Osaka City University Medical School and Osaka City General Hospital. Table 1 provides a summary of the subjects of each radiological study.

3 Quantitative Measurement by X-Ray Tomography An attempt was made to measure accurately the three occipital enchondral parts: the supraocciput, exocciput, and basiocciput. The axial length of the clivus (the basiocciput and basisphenoid) was measured from the top of the dorsum sellae to the basion (Fig. 1 upper). The length of the supraocciput was defined as the distance between the internal occipital protuberance and the opisthion measured on midline films (Fig. 1 upper). The length of the exocciput was measured from the bottom of the occipital condyle to the top of the jugular tubercle at the level of the hypoglossal canal in anteroposterior view films vertical to the orbitomeatal line (Fig.1 center). Tomograms of the basicranium were obtained (Polytome U tomographical system; Philips, Einthourr, Holland), and measurements were recorded for all 30 patients and 50 control subjects. Fig. 1. X-ray tomography and magnetic resonance (MR) imaging measurements. Upper: X-ray tomogram (lateral midline view) showing the length of the clivus and the length between the internal occipital protuberance and the opisthion. Center: X-ray tomogram (anteroposterior view) showing the jugular tubercle and the occipital condyle with the hypoglossal canal. The straight line demonstrates the length of the exocciput between the bottom of the occipital condyle and the top of the jugular tubercle. At = lateral mass of the atlas; D = dens of the axis; H.C. = hypoglossal canal; J.T. = jugular tubercle; O.C. = occipital condyle.

4 Lower: A T1-weighted sagittal MR image showing the midline structures of the posterior cranial fossa and the brainstem and cerebellum. a = length of the basisphenoid between the top of the dorsum sellae and the sphenooccipital synchondrosis of the clivus; b = length of the basiocciput between the synchondrosis and the basion; c = length of the supraocciput between the internal occipital protuberance and the opisthion; d = length of the hindbrain (brainstem) between the midbrain pons junction and the medullocervical junction; e = length of the hindbrain (cerebellar hemisphere); f = angle of the cerebellar tentorium to Twining's line. B = basion; D = top of the dorsum sellae; I.P. = internal occipital

5 protuberance; O.P. = opisthion; S = sphenooccipital synchondrosis of the clivus; T = Twining's line. Volume Study by Computerized Tomography We defined the total volume of the posterior cranial fossa (PFCV: posterior fossa cranial volume) as the space encircled by the tentorium of the cerebellum, clivus, occipital bone, and pyramidal bone. Axial images were obtained using computerized tomography (CT) (Somatom; Siemens, Erlangen, Germany) after intravenous administration of contrast medium. The images were made with a reference line drawn between the basion and opisthion, corresponding to the horizontal plain of the foramen magnum, on the lateral scout view of the CT scan. The sigmoid sinus was arbitrarily included as part of the posterior cranial fossa but the jugular foramen was not. The petroclinoid ligament was regarded as the external margin and the tentorial hiatus as the most cephalic margin of the posterior cranial fossa. The slice width was 0.3 to 0.8 cm and the window level was set at 250/30 to 1000/30. The area calculated was multiplied by the slice width to obtain the volume. Computerized tomography scanning was used to study the PFCV in the 20 most recent patients and in 30 normal subjects. Morphometric and Volume Studies of the Contents Within the Posterior Cranial Fossa by MR Imaging The structures of the brain and base of the skull were investigated using MR imaging (Signa 1.5-tesla; General Electric, Milwaukee, WI) (Fig. 1 lower). The T1-weighted images were obtained using a repetition time of 500 to 600 msec and an echo time of 15 to 40 msec; the T2-weighted images were obtained using a repetition time of 3000 to 4000 msec and an echo time of 80 to 100 msec. Axial and sagittal images were obtained at 3- to 5-mm intervals. The clivus was divided into two parts, basisphenoid and basiocciput, with the basioccipital synchondrosis as the demarcation. Using midline sagittal MR imaging, we measured the length from the synchondrosis to the top of the dorsum sellae as constituting the basisphenoidal part of the clivus, and the length from the synchondrosis to the basion as the basioccipital portion. To determine the axial length of the brainstem (pons and medulla oblongata), the distance between the ventral point of the midbrain pons junction and the medullocervical junction was measured on both T1- and T2-weighted images.[13] The medullocervical junction was defined as the level at which the pyramidal tract changed its route on the T2-weighted image.[13] The long axial length of the cerebellar hemisphere was measured on T1-weighted sagittal images from the highest to the lowest point of the cerebellar hemisphere along a straight line drawn caudally and parallel to the bottom of the fourth ventricle. To estimate the steepness of the cerebellar tentorium, the angle of the cerebellar tentorium to Twining's line was measured on sagittal images. The volume of the brainstem and cerebellum within the posterior cranial fossa (PFBV: posterior fossa brain volume) was measured using MR imaging. The PFBV was defined as the volume of the neural structures contained within the posterior cranial fossa as measured on CT scans, including the parts of the brain that herniate into the spinal canal. The total PFBV thus consisted of the midbrain, pons, cerebellum, and medulla oblongata. This PFBV was measured on T1-weighted axial images, and the volume ratio of the PFBV to the PFCV was then calculated on the basis of results of CT and MR imaging by a volume study to estimate overcrowding of the posterior cranial fossa.

6 Statistical Analysis The values of all parameters measured for the Chiari group and the control group were comparatively assessed using the Mann Whitney test. The volume data, volume ratio, and angle of the tentorium were compared using the linear regression test. Quantitative Measurement by X-Ray Tomography RESULTS Although the mean length of the clivus in the Chiari group was not significantly shorter than that in the control group (49.7 mm in the Chiari group and 50.1 mm in the control group), it was significantly (p < 0.01) shorter (39.8 mm) in the six patients with basilar invagination of the eight patients displaying downward herniation of the medulla oblongata (Fig. 2 upper left).

7 A significant difference (p < 0.001) was found in the mean length of the exocciput from the bottom of the occipital condyle to the top of the jugular tubercle, which measured 16 mm (16 mm on the right side and 16.1 mm on the left side) in the Chiari group and 20.5 mm (20.9 mm on the right side and 20.2 mm on the left side) in the control group. It was significantly (p < 0.001) shorter irrespective of the side. It was also significantly (p < 0.001) shorter in patients with basilar invagination (16.8 mm on the right side and 16.7 mm on the left side) (Fig. 2 upper right). A significant difference (p < 0.001) was also found in the mean length of the supraocciput between the internal occipital protuberance and the opisthion, which measured 38.9 mm in the Chiari group and 48.1 mm in the control group. It was also significantly (p < 0.001) shorter in patients with basilar invagination (38.9 mm) (Fig. 2 lower left). Volume Study by CT and MR Imaging There was no significant difference between the Chiari group and the control group in the mean PFCV as measured by CT scanning, which was 186 cubic centimeters in the Chiari group (188 cubic centimeters in patients without vs. 184 cubic centimeters in those with basilar invagination) and 193 cubic centimeters in the control group (Fig. 3 upper left). No significant difference was found in the PFBV, which was 156 cubic centimeters in the Chiari group (156 cubic centimeters in patients without vs. 157 cubic centimeters in those with basilar invagination) and 153 cubic centimeters in the control group (Fig. 3 upper right). Because the exact location of Twining's line as the border of the bony and tentorial portions of the posterior cranial fossa could not be accurately observed on the axial MR images, the PFBV encompassed by each of the bony and tentorial parts could not be separately calculated. The overall results showed no significant difference in either the PFBV or PFCV between the Chiari and control groups.

8 Overcrowding of the Posterior Cranial Fossa A significant difference (p < 0.001) was found, however, in the volume ratio of the PFBV to the PFCV (Fig. 3 lower left). The mean volume ratio was in the Chiari group (0.813 in patients without vs in those with basilar invagination) and in the control group. The volume ratio in the Chiari

9 group without basilar invagination was significantly (p < 0.01) larger than in the control group, and the volume ratio in the group with basilar invagination was even significantly (p < 0.01) larger than the ratio in the Chiari group without invagination. Morphometric Study Using MR imaging Compared to the control group, regardless of basilar invagination there was a significant difference (p < 0.001) in the mean angle of the cerebellar tentorium against Twining's line, which was 44.6š in the Chiari group (44š in patients without vs. 44.9š in those with basilar invagination) and 36.2š in the control group (Fig. 4). This indicated that the cerebellar tentorium was significantly steeper in the Chiari group than in the control group. Fig. 4. Chart showing the angle of the cerebellar tentorium to Twining's line. The angle in patients with adult-type Chiari malformation was significantly (p < 0.001) larger than that in the control subjects, irrespective of basilar invagination. Open circles = Chiari malformation with basilar invagination; closed circles = all cases of Chiari malformation. The relationship between the volume ratio and the steepness of the tentorium was significant (y = 121x -

10 58.3, p < 0.01) in all the individuals studied (Fig. 5). No significant relationship was found, however, between the volume of the herniated brain below the foramen magnum (range cubic centimeters, mean 2.2 cubic centimeters ± standard deviation 0.8 cubic centimeters) and the PFCV or between the volume of the herniated brain below the foramen magnum and the volume ratio. Fig. 5. Graph displaying the relationship between the posterior fossa volume ratio (PFBV/PFCV) and the angle of the tentorium. When the posterior fossa volume ratio is correlated with the angle of the tentorium, the slope of the line is significant (p < 0.01). The sphenooccipital synchondrosis was clearly visible in 14 of 20 patients with adult-type Chiari malformation and in 25 of 44 normal control subjects who underwent MR imaging, although it was not demonstrated by x-ray tomography (Table 1). Of the individuals with a clearly visualized sphenooccipital synchondrosis, the top of the dorsum sellae, which was defined as the top of the clivus, was clearly demonstrated in the MR images of 10 patients in the Chiari group and 10 in the control group. Although there was no significant difference in the length of the basisphenoidal or basioccipital part of the clivus between the Chiari and control groups, patients with basilar invagination had a significantly (p < 0.01) shorter basiocciput than the control group. The mean length of the basisphenoidal part in the Chiari group was 18.5 mm versus 20.6 mm in the control group; the mean length of the basioccipital portion in the Chiari group was 24.4 mm versus 28.1 mm in the control group and was even shorter in patients with basilar invagination at 20.8 mm (Fig. 6).

11 Fig. 6. Graph showing the lengths of the basisphenoid and basiocciput. No significant difference was found in the length of the basisphenoid or basiocciput between the Chiari group and the control group, but patients with basilar invagination had a significantly (p < 0.01) shorter basiocciput than control subjects. Open circles = Chiari malformation with basilar invagination; closed circles = all cases of Chiari malformation. Comparing the Chiari group to the control group, no significant difference was found in the length of the brainstem from the midbrain pons junction to the medullocervical junction (50.2 mm in the Chiari group and 49 mm in the control group) or in the long axial length of the cerebellar hemisphere (49.1 mm in the Chiari group and 47.7 mm in the control group) (Fig. 7), and no significant difference in these lengths was found between the patients with and without basilar invagination. In the 20 patients with adult-type Chiari malformation studied by MR imaging, eight displayed downward herniation of the medulla oblongata below the foramen magnum. Of these eight patients, six had accompanying basilar invagination and the remaining two displayed a very short clivus (46 mm and 47.3 mm) (Fig. 2 upper left).

12 Fig. 7. Graphs showing axial lengths of the hindbrain. Left: Axial length of the brainstem between the midbrain pons junction and the medullocervical junction. Right: Axial length of the cerebellar hemisphere. There was no significant difference in the axial length of the hindbrain between the Chiari group and the control group, irrespective of basilar invagination. Open circles = Chiari malformation with basilar invagination; closed circles = all cases of Chiari malformation. *Patients with downward herniation of the medulla oblongata below the foramen magnum in addition to tonsillar herniation. Overcrowding of the Posterior Cranial Fossa DISCUSSION To estimate overcrowding in the posterior cranial fossa of patients with adult-type Chiari malformation, we used the volume ratio of the PFBV to the PFCV. This ratio in the Chiari group, associated basilar invagination notwithstanding, turned out to be significantly larger than in the control group (Fig. 3 lower left). This result was obtained even though there was no significant difference in the PFCVs, encompassed by both the bony and tentorial structures (Fig. 3 upper left) or in the PFBVs, consisting of the midbrain, pons, cerebellum, and medulla oblongata (Fig. 3 upper right). In a previous report we looked at the distance from the basilar artery to the posterior aspect of the clivus at the midportion of the clivus on vertebral angiograms in adult-type Chiari malformation; we found significant encroachment of the basilar artery with respect to the clivus as an indirect sign of overcrowding in the posterior cranial fossa.[22] The present study clearly showed overcrowding of the posterior cranial fossa in adult-type Chiari malformation by direct measurement of the volume of the posterior cranial fossa and the volume of the neural structures contained within it. Three recent morphometric studies have suggested a significantly smaller volume in the lower half, or bony portions, of the posterior cranial fossa in adult patients with Chiari malformation.[23,25,28]

13 However, the authors failed to consider the upper half, or tentorial part, of the posterior fossa and ignored the size of the neural structures contained in the posterior cranial fossa.[23,25,28] To estimate overcrowding properly, we decided that it was necessary to use the volume ratio of the PFBV to the PFCV (Fig. 3). Patients with adult-type Chiari malformation were strictly selected through surgical exploration of the major cistern in addition to neuroimaging because various pathological conditions, such as hydrocephalus, arachnoiditis at the major cistern, spinal shunt for hydrocephalus, and others, which could induce secondary tonsillar herniation, might have misled the results of the morphometric study.[29] Associated Occipital Hypoplasia The present study showed that patients with adult-type Chiari malformation had various degrees of occipital hypoplasia and structured abnormalities of the tentorium, but displayed no significant abnormalities of the neural structures (that is, the hindbrain) in the posterior cranial fossa. In the Chiari group (with and without basilar invagination), two embryogenic parts of the occipital bone (the exocciput and supraocciput) were significantly shorter than in the control group (Fig. 2 upper right and lower left), although no significant difference was revealed in the long axial lengths of the hindbrain (the pons, medulla oblongata, and cerebellum) (Fig. 7). The present study also showed that the cerebellar tentorium in the Chiari group was significantly steeper than in the control group, even though no significant difference in the total PFCV was found (Fig. 4). When the more prominent structural abnormalities in the occipital enchondrium are considered in conjunction with the less significant structural abnormalities in the hindbrain in the posterior cranial fossa, the overcrowding observed in adult-type Chiari malformation can be regarded as the primary cause of downward herniation of the normally developing caudal hindbrain.[6] Overcrowding in the posterior cranial fossa may induce a consistent upward shifting of its contents, leading to a significantly steeper tentorium as well as a downward shifting of the hindbrain. The volume of the herniated brain below the foramen magnum displayed no relationship to the volume of the posterior cranial fossa and the volume ratio of the PFBV to the PFCV. The volume of the herniated brain below the foramen magnum was quite small (lt 2%) compared to the volume of the tentorial parts of the posterior cranial fossa, and thus was only minimally related to overcrowding. The volume ratio and the angle of the tentorium showed a significant correlation (Fig. 5), indicating that the volume of the tentorial parts of the posterior cranial fossa may relieve overcrowding of the posterior cranial fossa. The upward shifting of the cerebellar tentorium may explain why the PFCV was not significantly smaller in the Chiari group. It can be inferred that overcrowding of the posterior cranial fossa induces remodeling of neural structures as the cerebellar tentorium shifts upward and the cerebellar tonsils herniate to accommodate the growing brain, rather than remodeling the cranium. When we looked into the incidence of basilar invagination and downward herniation of the medulla oblongata in patients with adult-type Chiari malformation, we found that of eight patients with medullary herniation in addition to tonsillar herniation, six had basilar invagination and the remaining two had a very short clivus (Fig. 2 upper left). Of the six patients with basilar invagination, four in whom the sphenooccipital synchondrosis was identified on MR imaging had a significantly short basiocciput (Fig. 6). On the other hand, the eight patients with medullary herniation showed no significant difference in their hindbrain structures from the normal control subjects. Looking at the upper part of the clivus

14 composed of the sphenoidal bone, no significant difference was found among the patient group, the patient group with basilar invagination, and the control group. Thus, the downward herniation of the medulla oblongata observed in adult-type Chiari malformation with basilar invagination can be explained by shortening of the basiocciput rather than by a primary neural abnormality associated with Chiari malformation, in addition to overcrowding in the posterior cranial fossa due to occipital hypoplasia.[24] Embryological Aspects of the Base of the Skull in Adult-Type Chiari Malformation The present study took into consideration the embryological development of the human occipital enchondrium, and each part of the base of the skull in patients with adult-type Chiari malformation was compared to that of normal controls using available neuroradiological techniques. Although the results obtained were for only a limited number of individuals in the patient and control groups, it was found that two parts of the occipital enchondrium (the exocciput and supraocciput) were underdeveloped in patients with adult-type Chiari malformation, and that all three parts of the occipital enchondrium (the exocciput, supraocciput, and basiocciput) were underdeveloped in patients with basilar invagination (Figs. 2 and 6). No significant difference was found in the length of the basisphenoid of the sphenoidal bone between the Chiari group and the control group. O'Rahilly and colleagues[20] have proved that the basioccipital and exoccipital portions of the occipital bone up to the top of the jugular tubercle are derived from the occipital somites in the human fetus. The results of the present morphometric study strongly imply normal development of the hindbrain and underdevelopment of the occipital somites in patients with adult-type Chiari malformation. Marin-Padilla and Marin-Padilla[16,17] suggested a hypothesis of cephalic axial skeletal neural dysraphic disorder to explain the brain abnormalities associated with pediatric-type Chiari malformation and postulated that paraxial mesodermal insufficiency contributed to a cephalic axial skeletal neural dysraphic disorders as anencephaly, a dysraphic anomaly, or even Chiari malformation. According to this hypothesis, paraxial mesodermal insufficiency or primary lesion of the somitic structures may induce various neural abnormalities in pediatric-type Chiari malformation. Thus, when paraxial mesodermal insufficiency is regarded as the pathogenesis of Chiari malformation, adult-type Chiari malformation can be considered a mild form and the pediatric type a severe form. Surgical Treatment of Syringomyelia Associated With Adult-Type Chiari Malformation The syringomyelia quite often associated with adult-type Chiari malformation is now treatable by different types of surgical intervention, such as drainage of cerebrospinal fluid (CSF) or decompression of the foramen magnum with or without plugging the central canal.[3,10,14,15,26] Recent flow studies of CSF by MR imaging have shown that blockage of CSF flow at the foramen magnum between the intracranial and intraspinal subarachnoid space is the most important factor exacerbating syringomyelia associated with adult-type Chiari malformation.[1,7,10,19,30] Overcrowding in the posterior cranial fossa, in addition to downward herniation of the caudal portion of the hindbrain, can induce such a CSF blockage at the foramen magnum. We believe that the most suitable treatment for syringomyelia associated with adult-type Chiari malformation is not to drain the fluid in the syrinx, but to improve CSF flow around the foramen magnum by expansion of the abnormally small space surrounded by the underdeveloped occipital bone.[11,12,22,27] CONCLUSIONS Our results lead us to the conclusion that adult-type Chiari malformation is most likely produced

15 primarily by underdevelopment of the occipital enchondrium, possibly due to underdevelopment of the occipital somite originating from the paraxial mesoderm. Overcrowding in the posterior cranial fossa due to a normal-sized hindbrain in the underdeveloped occipital enchondrium secondarily induces a downward herniation of the brain as well as an upward shift of the cerebellar tentorium. Associated basilar invagination due to a more severely underdeveloped occipital enchondrium further exacerbates overcrowding of the posterior cranial fossa. Acknowledgment We thank Miguel Marin-Padilla, M.D., for his excellent suggestions in the preparation of this manuscript. References 1. Ball MJ, Dayan AD: Pathogenesis of syringomyelia. Lancet 2: , Barry A, Patten BM, Stewart BH: Possible factors in the development of the Arnold-Chiari malformation. J Neurosurg 14: , Batzdorf U: Chiari I malformation with syringomyelia. Evaluation of surgical therapy by magnetic resonance imaging. J Neurosurg 68: , Bindal AK, Dunsker SB, Tew JM Jr: Chiari I malformation: classification and management. Neurosurgery 37: , Chiari H: Concerning alterations in the cerebellum resulting from cerebral hydrocephalus. Pediatr Neurosci 13:3 8, Dobbing J, Sands J: Quantitative growth and development of human brain. Arch Dis Child 48: , Du Boulay G, Shah SH, Currie JC, et al: The mechanism of hydromyelia in Chiari type 1 malformations. Br J Radiol 47: , Dyste GN, Menezes AH, VanGilder JC: Symptomatic Chiari malformations. An analysis of presentation, management, and long-term outcome. J Neurosurg 71: , Friede RL, Roessmann U: Chronic tonsillar herniation. An attempt at classifying chronic herniations at the foramen magnum. Acta Neuropathol 34: , Gardner WJ, Goodall RJ: The surgical treatment of Arnold-Chiari malformation in adults. An explanation of its mechanism and importance of encephalography in diagnosis. J Neurosurg 7: , Hakuba A: [Surgical treatment of syringomyelia associated with Chiari malformation.] Spinal Surg 4:69 76, 1990 (Jpn) 12. Hakuba A: Syringomyelia, in Kikuchi H, Hakuba A (eds): Illustrated Techniques in Microneurosurgery. Tokyo: Igaku-shoin, 1990, pp

16 13. Ho PSP, Yu SW, Czervionke LF, et al: MR appearance of gray and white matter at the cervicomedullary region. AJNR 10: , Levy WJ, Mason L, Hahn JF: Chiari malformation presenting in adults: a surgical experience in 127 cases. Neurosurgery 12: , Logue V, Edwards MR: Syringomyelia and its surgical treatment--an analysis of 75 patients. J Neurol Neurosurg Psychiatry 44: , Marin-Padilla M: Notochordal-basichondrocranium relationships: abnormalities in experimental axial skeletal (dysraphic) disorders. J Embryol Exp Morphol 53:15 38, Marin-Padilla M, Marin-Padilla TM: Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci 50:29 55, McLone DG, Knepper PA: The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1 12, Oldfield EH, Muraszko K, Shawker TH, et al: Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg 80:3 15, O'Rahilly R, Müller F, Meyer DB: The human vertebral column at the end of the embryonic period proper. The occipitocervical region. J Anat 136: , Paul KS, Lye RH, Strang FA, et al: Arnold-Chiari malformation. Review of 71 cases. J Neurosurg 58: , Sakamoto H, Nishikawa M, Nakanishi N, et al: [Surgical treatment of syringomyelia associated with Chiari malformation.] Spinal Surg 8:1 6, 1994 (Jpn) 23. Schady W, Metcalfe RA, Butler P: The incidence of craniocervical bony anomalies in the adult Chiari malformation. J Neurol Sci 82: , Schmidt H, Sartor K, Heckl RW: Bone malformations of the craniocervical region, in Vinken PJ, Bruyn GW (eds): Handbook of Clinical Neurology. Vol 32: Congenital Malformations of the Spine and Spinal Cord. Amsterdam: Elsevier/North-Holland, 1978, pp Stovner LJ, Bergan U, Nilsen G, et al: Posterior cranial fossa dimensions in the Chiari I malformation: relation to pathogenesis and clinical presentation. Neuroradiology 35: , Tator CH, Meguro K, Rowed DW: Favorable results with syringosubarachnoid shunts for treatment of syringomyelia. J Neurosurg 56: , Tokuno H, Hakuba A, Suzuki T, et al: Operative treatment of Chiari malformation with syringomyelia. Acta Neurochir Suppl 43:22 25, Vega A, Quintana F, Berciano J: Basichondrocranium anomalies in adult Chiari type I malformation: a morphometric study. J Neurol Sci 99: , Welch K, Shillito J, Strand R, et al: Chiari I "malformation"--an acquired disorder? J Neurosurg 55: , 1981

17 30. Williams B: A critical appraisal of posterior fossa surgery for communicating syringomyelia. Brain 101: , 1978 Manuscript received April 5, Accepted in final form August 21, This study was supported by Research Grant 5B-3 for nervous and mental disorders from Japan's Ministry of Health and Welfare. Address reprint requests to: Misao Nishikawa, M.D., Department of Neurosurgery, Osaka City General Hospital, Miyakojima-hondori, Miyakojima-ku, Osaka 534, Japan.

Skull base growth in children with Chiari malformation Type I

Skull base growth in children with Chiari malformation Type I See the corresponding editorial in this issue, pp 187. J Neurosurg (3 Suppl Pediatrics) 107:188 192, 2007 Skull base growth in children with Chiari malformation Type I SPYROS SGOUROS, M.D., F.R.C.S.(SN),

More information

Ch i a r i malformation Type I is characterized by

Ch i a r i malformation Type I is characterized by See the corresponding editorial in this issue, pp 1043 1045. J Neurosurg 111:1046 1052, 2009 Incidence of basioccipital hypoplasia in Chiari malformation Type I: comparative morphometric study of the posterior

More information

Brain Imaging. Bearbeitet von Klaus Sartor, Stefan Hähnel, Bodo Kress

Brain Imaging. Bearbeitet von Klaus Sartor, Stefan Hähnel, Bodo Kress Brain Imaging Bearbeitet von Klaus Sartor, Stefan Hähnel, Bodo Kress 1. Auflage 2007. Taschenbuch. 312 S. Paperback ISBN 978 3 13 143961 1 Format (B x L): 12,5 x 19 cm Weitere Fachgebiete > Medizin > Sonstige

More information

Basilar Invagination: cranio-cervical kyphosis rather than prolapse from the upper cervical spine

Basilar Invagination: cranio-cervical kyphosis rather than prolapse from the upper cervical spine Botelho RV, Melo Diniz J. J Neurol Neuromedicine (2017) 2(3): 15-19 www.jneurology.com Neuromedicine www.jneurology.com Mini Review Open Access Basilar Invagination: cranio-cervical kyphosis rather than

More information

Significance of Cerebellar Tonsillar Position on MR

Significance of Cerebellar Tonsillar Position on MR 795 Significance of Cerebellar Tonsillar Position on MR A. J. Barkovich 1. 3 F. J. Wippold 2. 3 J. L. Sherman 3. 4 C. M. Citrin 4. 5 It has been noted that a low degree of ectopia of the cerebellar tonsils

More information

Arnold Chiari Malformation - A hospital based autopsy study

Arnold Chiari Malformation - A hospital based autopsy study Rapotra Megha et al / International Journal of Biomedical Research 2017; 8(05): 250-254. 250 International Journal of Biomedical Research ISSN: 0976-9633 (Online); 2455-0566 (Print) Journal DOI: https://dx.doi.org/10.7439/ijbr

More information

Chiari Malformations. Google. Objectives Seventh Annual NKY TBI Conference 3/22/13. Kerry R. Crone, M.D.

Chiari Malformations. Google. Objectives Seventh Annual NKY TBI Conference 3/22/13. Kerry R. Crone, M.D. Chiari Malformations Kerry R. Crone, M.D. Professor of Neurosurgery and Pediatrics University of Cincinnati College of Medicine University of Cincinnati Medical Center Cincinnati Children s Hospital Medical

More information

Role of MRI in Selection of Patients for Surgery and Assessing the Post Operative Outcome in Chiari 1 Malformation

Role of MRI in Selection of Patients for Surgery and Assessing the Post Operative Outcome in Chiari 1 Malformation DOI: 10.7860/IJARS/2017/13599:2222 Radiology Section Original Article Role of MRI in Selection of Patients for Surgery and Assessing the Post Operative Outcome in Chiari 1 Malformation Rajesh Kumar V,

More information

Presented by : Shashwat Mishra

Presented by : Shashwat Mishra Presented by : Shashwat Mishra Named after Hans Chiari (1851 1916). Professor of Pathology in Prague, Czechoslovakia, Paper entitled Concerning alterations in the cerebellum resulting from cerebral hydrocephalus

More information

Malformations of the cranio-cervical junction: basilar impression Gonzalo Bertullo 1, Viviana Cabrera 2

Malformations of the cranio-cervical junction: basilar impression Gonzalo Bertullo 1, Viviana Cabrera 2 Malformations of the cranio-cervical junction: basilar impression Gonzalo Bertullo 1, Viviana Cabrera 2 Abstract Cranio-cervical junction abnormalities are a rare combination of congenital or acquired

More information

Morphometric Analysis of Left & Right Tonsils in Adult Symptomatic Type 1 Chiari Patients and Healthy Controls

Morphometric Analysis of Left & Right Tonsils in Adult Symptomatic Type 1 Chiari Patients and Healthy Controls The University of Akron IdeaExchange@UAkron Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors College Spring 2015 Morphometric Analysis of Left & Right Tonsils in Adult Symptomatic

More information

CASE OF THE WEEK PROFESSOR YASSER METWALLY

CASE OF THE WEEK PROFESSOR YASSER METWALLY CLINICAL PICTURE CLINICAL PICTURE A 13 years old male patient presented clinically with atrophy of the small muscles of the hands, bulbar cranial nerve manifestations and cerebellar manifestations. Physical

More information

BRAIN STEM AND CEREBELLUM..

BRAIN STEM AND CEREBELLUM.. Lecture Title: BRAIN STEM AND CEREBELLUM.. (CNS Block, Radiology) Dr. Hamdy Hassan Ass.Prof. Consultant Radiology Department KKHU King Saud University Lecture Objectives.. Students at the end of the lecture

More information

Brain ميهاربا لض اف دمح ا د The Meninges 1- Dura Mater of the Brain endosteal layer does not extend meningeal layer falx cerebri tentorium cerebelli

Brain ميهاربا لض اف دمح ا د The Meninges 1- Dura Mater of the Brain endosteal layer does not extend meningeal layer falx cerebri tentorium cerebelli .احمد د فاضل ابراهيم Lecture 15 Brain The Meninges Three protective membranes or meninges surround the brain in the skull: the dura mater, the arachnoid mater, and the pia mater 1- Dura Mater of the Brain

More information

O riginal article. Tethered Cord Syndrome Preliminary Report of Clinical Features and Morphometric Analysis on Association of Chiari Malformation Type

O riginal article. Tethered Cord Syndrome Preliminary Report of Clinical Features and Morphometric Analysis on Association of Chiari Malformation Type Spinal Surgery 23 2 195 203 2009 O riginal article Tethered Cord Syndrome Preliminary Report of Clinical Features and Morphometric Analysis on Association of Chiari Malformation Type Misao Nishikawa, M.

More information

Meninges and Ventricles

Meninges and Ventricles Meninges and Ventricles Irene Yu, class of 2019 LEARNING OBJECTIVES Describe the meningeal layers, the dural infolds, and the spaces they create. Name the contents of the subarachnoid space. Describe the

More information

Chiari malformations. A fact sheet for patients and carers

Chiari malformations. A fact sheet for patients and carers A fact sheet for patients and carers Chiari malformations This fact sheet provides information on Chiari malformations. It focuses on Chiari malformations in adults. Our fact sheets are designed as general

More information

Abstract !"# $% &%'(% )* ( % +$$ '% % % Presentation Notes

Abstract !# $% &%'(% )* ( % +$$ '% % % Presentation Notes Presenter Name: John Oro, MD Topic: Chiari & Syringomyelia 101 A Brief Look at Neuroanatomy The brain is enclosed and protected by a rounded skull made of rigid bone. The bottom of the skull contains multiple

More information

Cranial Cavity REFERENCES: OBJECTIVES OSTEOLOGY. Stephen A. Gudas, PT, PhD

Cranial Cavity REFERENCES: OBJECTIVES OSTEOLOGY. Stephen A. Gudas, PT, PhD Stephen A. Gudas, PT, PhD Cranial Cavity REFERENCES: Moore and Agur, Essential Clinical Anatomy (ECA), 3rd ed., pp. 496 498; 500 507; 512 514 Grant s Atlas 12 th ed., Figs 7.6; 7.19 7.30. Grant s Dissector

More information

Chapter 7 Craniocervical Developmental Anatomy and Its Implications

Chapter 7 Craniocervical Developmental Anatomy and Its Implications Chapter 7 Craniocervical Developmental Anatomy and Its Implications Arnold H. Menezes, M.D. INTRODUCTION Congenital and developmental osseous anomalies and abnormalities that affect the craniovertebral

More information

Enhancement of Cranial US: Utility of Supplementary Acoustic Windows and Doppler Harriet J. Paltiel, MD

Enhancement of Cranial US: Utility of Supplementary Acoustic Windows and Doppler Harriet J. Paltiel, MD Enhancement of Cranial US: Utility of Supplementary Acoustic Windows and Doppler Harriet J. Paltiel, MD Boston Children s Hospital Harvard Medical School None Disclosures Conventional US Anterior fontanelle

More information

Idiopathic cervical syringomyelia can be associated. Pediatric Chiari malformation Type 0: a 12-year institutional experience.

Idiopathic cervical syringomyelia can be associated. Pediatric Chiari malformation Type 0: a 12-year institutional experience. J Neurosurg J Neurosurg Pediatrics Pediatrics 8:000 000, 8:1 5, 2011 Pediatric Chiari malformation Type 0: a 12-year institutional experience Clinical article Joshua J. Chern, M.D., Ph.D., Amber J. Gordon,

More information

Cerebellar tonsil herniation: Its diverse pathogenesis

Cerebellar tonsil herniation: Its diverse pathogenesis Cerebellar tonsil herniation: Its diverse pathogenesis Poster No.: C-0959 Congress: ECR 2014 Type: Educational Exhibit Authors: H. Mukai, H. Yokota, T. Horikoshi, K. Motoori, T. Uno; Chiba/JP Keywords:

More information

DEVELOPMENT OF BRAIN

DEVELOPMENT OF BRAIN Ahmed Fathalla OBJECTIVES At the end of the lecture, students should: List the components of brain stem. Describe the site of brain stem. Describe the relations between components of brain stem & their

More information

Brain Meninges, Ventricles and CSF

Brain Meninges, Ventricles and CSF Brain Meninges, Ventricles and CSF Lecture Objectives Describe the arrangement of the meninges and their relationship to brain and spinal cord. Explain the occurrence of epidural, subdural and subarachnoid

More information

Normal Value of Skull Base Angle. Using the Modified Magnetic Resonance Imaging Technique in Thai Population

Normal Value of Skull Base Angle. Using the Modified Magnetic Resonance Imaging Technique in Thai Population Open Access Journal of Oral Health and Craniofacial Science Research Article Normal Value of Skull Base Angle ISSN 2573-6191 Using the Modified Magnetic Resonance Imaging Technique in Thai Population Siriporn

More information

Birth injury: a possible contributory factor in the aetiology of primary basilar impression

Birth injury: a possible contributory factor in the aetiology of primary basilar impression Journal of Neurology, Neurosurgery, and Psychiatry 1982;45:879-883 Birth injury: a possible contributory factor in the aetiology of primary basilar impression ROBERT DE BATTERSBY, BERNARD WILLIAMS From

More information

Skull-2. Norma Basalis Interna. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology

Skull-2. Norma Basalis Interna. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology Skull-2 Norma Basalis Interna Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology Norma basalis interna Base of the skull- superior view The interior of the base of the skull is divided into

More information

Slide 1. Slide 2. Slide 3. Tomography vs Topography. Computed Tomography (CT): A simplified Topographical review of the Brain. Learning Objective

Slide 1. Slide 2. Slide 3. Tomography vs Topography. Computed Tomography (CT): A simplified Topographical review of the Brain. Learning Objective Slide 1 Computed Tomography (CT): A simplified Topographical review of the Brain Jon Wheiler, ACNP-BC Slide 2 Tomography vs Topography Tomography: A technique for displaying a representation of a cross

More information

HEAD AND NECK IMAGING. James Chen (MS IV)

HEAD AND NECK IMAGING. James Chen (MS IV) HEAD AND NECK IMAGING James Chen (MS IV) Anatomy Course Johns Hopkins School of Medicine Sept. 27, 2011 OBJECTIVES Introduce cross sectional imaging of head and neck Computed tomography (CT) Review head

More information

Skull-2. Norma Basalis Interna Norma Basalis Externa. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology

Skull-2. Norma Basalis Interna Norma Basalis Externa. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Skull-2 Norma Basalis Interna Norma Basalis Externa Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Norma basalis interna Base of the skull- superior view The interior of the base of the

More information

MR Imaging of Chiari II Malformation

MR Imaging of Chiari II Malformation 1037 MR Imaging of Chiari II Malformation Taher EI Gammal 1 Edward K. Mark2 Betty S. Brooks 1 High-field-strength MR imaging was performed in one patient with Chiari III and 19 patients with Chiari II

More information

Unit 18: Cranial Cavity and Contents

Unit 18: Cranial Cavity and Contents Unit 18: Cranial Cavity and Contents Dissection Instructions: The calvaria is to be removed without damage to the dura mater which is attached to the inner surface of the calvaria. Cut through the outer

More information

External carotid blood supply to acoustic neurinomas

External carotid blood supply to acoustic neurinomas External carotid blood supply to acoustic neurinomas Report of two cases HARVEY L. LEVINE, M.D., ERNEST J. FERmS, M.D., AND EDWARD L. SPATZ, M.D. Departments of Radiology, Neurology, and Neurosurgery,

More information

The "Keyhole": A Sign of

The Keyhole: A Sign of 473 The "Keyhole": A Sign of Herniation of a Trapped Fourth Ventricle and Other Posterior Fossa Cysts Barbara J. Wolfson' Eric N. Faerber' Raymond C. Truex, Jr. 2 When a cystic structure in the posterior

More information

Ventriculus Terminalis of the Conus Medullaris: MR Imaging in Four Patients with Congenital Dilatation

Ventriculus Terminalis of the Conus Medullaris: MR Imaging in Four Patients with Congenital Dilatation 733 Ventriculus Terminalis of the Conus Medullaris: MR Imaging in Four Patients with Congenital Dilatation Robert Sigal 1 2 Alban Denys 2 Philippe Halimi 2 Lorraine Shapeero 1 3 Dominique Doyon 2 Frank

More information

Surgical Neurology International

Surgical Neurology International Surgical Neurology International OPEN ACCESS For entire Editorial Board visit : http://www.surgicalneurologyint.com Editor: James I. Ausman, MD, PhD University of California, Los Angeles, CA, USA Original

More information

Department of Cognitive Science UCSD

Department of Cognitive Science UCSD Department of Cognitive Science UCSD Verse 1: Neocortex, frontal lobe, Brain stem, brain stem, Hippocampus, neural node, Right hemisphere, Pons and cortex visual, Brain stem, brain stem, Sylvian fissure,

More information

Djamila Kafoufi Al Galaa Military Hospital Cairo

Djamila Kafoufi Al Galaa Military Hospital Cairo Djamila Kafoufi Al Galaa Military Hospital Cairo Herniation cerebellar tonsils below the foramen magnum, Hans Chiari 4 types Chiari I less than 5mm,HDC rare,syringomyelia often present. Chiari II,protrusion

More information

Neuroanatomy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Dr Maha ELBeltagy

Neuroanatomy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Dr Maha ELBeltagy Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Development of the Central Nervous System Development of the nervous system Development

More information

Chapter 5: Fetal Central Nervous System 71

Chapter 5: Fetal Central Nervous System 71 71 Chapter 5 Fetal Central Nervous System Embryology NEURULATION begins with the formation of the neural plate, the neural folds and their ultimate fusion and closure as the NEURAL TUBE. NEURAL PLATE -

More information

Ventricles, CSF & Meninges. Steven McLoon Department of Neuroscience University of Minnesota

Ventricles, CSF & Meninges. Steven McLoon Department of Neuroscience University of Minnesota Ventricles, CSF & Meninges Steven McLoon Department of Neuroscience University of Minnesota 1 Coffee Hour Thursday (Sept 14) 8:30-9:30am Surdyk s Café in Northrop Auditorium Stop by for a minute or an

More information

A review of the disagreements in the prevalence and treatment of the tethered cord syndromes with chiari 1 malformations

A review of the disagreements in the prevalence and treatment of the tethered cord syndromes with chiari 1 malformations SNI: Spine OPEN ACCESS For entire Editorial Board visit : http://www.surgicalneurologyint.com Editor: Nancy E. Epstein, MD Winthrop Hospital, Mineola, NY, USA Review Article A review of the disagreements

More information

Medical Neuroscience Tutorial Notes

Medical Neuroscience Tutorial Notes Medical Neuroscience Tutorial Notes Blood Supply to the Brain MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning

More information

NEURO IMAGING 2. Dr. Said Huwaijah Chairman of radiology Dep, Damascus Univercity

NEURO IMAGING 2. Dr. Said Huwaijah Chairman of radiology Dep, Damascus Univercity NEURO IMAGING 2 Dr. Said Huwaijah Chairman of radiology Dep, Damascus Univercity I. EPIDURAL HEMATOMA (EDH) LOCATION Seventy to seventy-five percent occur in temporoparietal region. CAUSE Most likely caused

More information

International Journal of Pharma and Bio Sciences

International Journal of Pharma and Bio Sciences Original Research Article Anatomy and Allied sciences International Journal of Pharma and Bio Sciences ISSN 0975-6299 SCREENING FOR ANOMALIES IN OCCIPITO-CERVICAL JUNCTION USING CRANIOMETRY IN COMPUTED

More information

Multiple, subcortical, often round hypodensities that enhance with contrast.

Multiple, subcortical, often round hypodensities that enhance with contrast. 2 Postinfectious Encephalomyelitis (ADEM) Inflammation Definition " Epidemiology Frequency: 1 2:100 000 Peak age: 3 5 years The disorder can manifest itself at any age. " Etiology, pathophysiology, pathogenesis

More information

Decompression of the spinal subarachnoid space as a solution for syringomyelia without Chiari malformation

Decompression of the spinal subarachnoid space as a solution for syringomyelia without Chiari malformation (2002) 40, 501 ± 506 ã 2002 International Society All rights reserved 1362 ± 4393/02 $25.00 www.nature.com/sc Original Article Decompression of the spinal subarachnoid space as a solution for syringomyelia

More information

Ligaments of the vertebral column:

Ligaments of the vertebral column: In the last lecture we started talking about the joints in the vertebral column, and we said that there are two types of joints between adjacent vertebrae: 1. Between the bodies of the vertebrae; which

More information

Brainstem and Cerebellum

Brainstem and Cerebellum Brainstem and Cerebellum Lecture two Objectives: 1. Identify radiological anatomy of brain stem and cerebellum. 2. Compares CT and MRI imaging of brain stem and cerebellum. 3. Recognize the imaging findings

More information

Lecture 4 The BRAINSTEM Medulla Oblongata

Lecture 4 The BRAINSTEM Medulla Oblongata Lecture 4 The BRAINSTEM Medulla Oblongata Introduction to brainstem 1- Medulla oblongata 2- Pons 3- Midbrain - - - occupies the posterior cranial fossa of the skull. connects the narrow spinal cord

More information

1 Normal Anatomy and Variants

1 Normal Anatomy and Variants 1 Normal Anatomy and Variants 1.1 Normal Anatomy MR Technique. e standard MR protocol for a routine evaluation of the spine always comprises imaging in sagittal and axial planes, while coronal images are

More information

Chiari bridges review Chiari Treatments & Potential Pitfalls

Chiari bridges review Chiari Treatments & Potential Pitfalls Chiari bridges review Chiari Treatments & Potential Pitfalls Once diagnosed, you will usually be referred to a specialist (not a Chiari Specialist, but an everyday, run-of-the-mill neurologist or neurosurgeon).

More information

CNS Embryology 5th Menstrual Week (Dorsal View)

CNS Embryology 5th Menstrual Week (Dorsal View) Imaging of the Fetal Brain; Normal & Abnormal Alfred Abuhamad, M.D. Eastern Virginia Medical School CNS Embryology 5th Menstrual Week (Dorsal View) Day 20 from fertilization Neural plate formed in ectoderm

More information

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system:

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system: Central Nervous System (CNS) -> brain and spinal cord Major Divisions of the nervous system: Afferent (sensory input) -> cell bodies outside of the central nervous system (CNS), carry info into the CNS

More information

Head CT Scan Interpretation: A Five-Step Approach to Seeing Inside the Head Lawrence B. Stack, MD

Head CT Scan Interpretation: A Five-Step Approach to Seeing Inside the Head Lawrence B. Stack, MD Head CT Scan Interpretation: A Five-Step Approach to Seeing Inside the Head Lawrence B. Stack, MD Five Step Approach 1. Adequate study 2. Bone windows 3. Ventricles 4. Quadrigeminal cistern 5. Parenchyma

More information

First described in 1844 by Rokitansky, whose findings. Morphometry of the outlet of the foramen magnum in crania with atlantooccipital fusion

First described in 1844 by Rokitansky, whose findings. Morphometry of the outlet of the foramen magnum in crania with atlantooccipital fusion J Neurosurg Spine 15:55 59, 2011 Morphometry of the outlet of the foramen magnum in crania with atlantooccipital fusion Laboratory investigation R. Shane Tubbs, M.S., P.A.-C., Ph.D., 1 Jeffrey R. Lancaster,

More information

Superior View of the Skull (Norma Verticalis) Anteriorly the frontal bone articulates with the two parietal bones AT THE CORONAL SUTURE

Superior View of the Skull (Norma Verticalis) Anteriorly the frontal bone articulates with the two parietal bones AT THE CORONAL SUTURE Superior View of the Skull (Norma Verticalis) Anteriorly the frontal bone articulates with the two parietal bones AT THE CORONAL SUTURE 1 The two parietal bones articulate in the midline AT THE SAGITTAL

More information

The MRI in Arnold-Chiari Syndrome I and Idiopathic Syringomyelia

The MRI in Arnold-Chiari Syndrome I and Idiopathic Syringomyelia The MRI in Arnold-Chiari Syndrome I and Idiopathic Syringomyelia Author: Miguel B. Royo Salvador, MD, PhD Introduction Magnetic resonance imaging (MRI) is a crucial diagnostic tool for men, women, and

More information

Han-Sung Kwon M.D. Department of Obstetrics and Gynecology Konkuk University School of Medicine Seoul, Korea

Han-Sung Kwon M.D. Department of Obstetrics and Gynecology Konkuk University School of Medicine Seoul, Korea Han-Sung Kwon M.D. Department of Obstetrics and Gynecology Konkuk University School of Medicine Seoul, Korea Embryologic features of the developing hindbrain Embryologic features of the developing hindbrain

More information

The Role of Cine Flow Magnetic Resonance Imaging in Patients with Chiari 0 Malformation

The Role of Cine Flow Magnetic Resonance Imaging in Patients with Chiari 0 Malformation DOI: 10.5137/1019-5149.JTN.19049-16.2 Received: 11.11.2016 / Accepted: 14.12.2016 Published Online: 16.01.2017 Original Investigation The Role of Cine Flow Magnetic Resonance Imaging in Patients with Chiari

More information

Cranial Vertebral Junction Anatomy and Pathology

Cranial Vertebral Junction Anatomy and Pathology Cranial Vertebral Junction Anatomy and Pathology October 2016 Mary Scanlon MD FACR Goals and Objective Goal-Understand CVJ anatomy & pathology Objective-After attending this lecture you will be able to

More information

IIH, previously known as pseudotumor cerebri, is a syndrome

IIH, previously known as pseudotumor cerebri, is a syndrome ORIGINAL RESEARCH A.H. Aiken J.A. Hoots A.M. Saindane P.A. Hudgins Incidence of Cerebellar Tonsillar Ectopia in Idiopathic Intracranial Hypertension: A Mimic of the Chiari I Malformation BACKGROUND AND

More information

BIOL Dissection of the Sheep and Human Brain

BIOL Dissection of the Sheep and Human Brain BIOL 2401 Dissection of the Sheep and Human Brain Laboratory Objectives After completing this lab, you should be able to: Identify the main structures in the sheep brain and to compare them with those

More information

MR Evaluation of Chiari I Malformations at 0.15 T

MR Evaluation of Chiari I Malformations at 0.15 T 203 MR Evaluation of Chiari I Malformations at 0.15 T Efstathios Spinos 1 D. Wayne Laster 1 Dixon M. Moody1 Marshall R. all 1 Richard L. Witcofski 1 David L. Kelly, Jr. 2 Twelve patients with known or

More information

Spinal Imaging. Bearbeitet von Herwig Imhof. 1. Auflage Taschenbuch. 312 S. Paperback ISBN Format (B x L): 12,5 x 19 cm

Spinal Imaging. Bearbeitet von Herwig Imhof. 1. Auflage Taschenbuch. 312 S. Paperback ISBN Format (B x L): 12,5 x 19 cm Spinal Imaging Bearbeitet von Herwig Imhof 1. Auflage 2007. Taschenbuch. 312 S. Paperback ISBN 978 3 13 144071 6 Format (B x L): 12,5 x 19 cm Weitere Fachgebiete > Medizin > Sonstige Medizinische Fachgebiete

More information

A case report on result of posterior fossa decompression on syringomyelia in a case of chiary type I malformation

A case report on result of posterior fossa decompression on syringomyelia in a case of chiary type I malformation Romanian Neurosurgery Volume XXXII Number 1 2018 January-March Article A case report on result of posterior fossa decompression on syringomyelia in a case of chiary type I malformation Asheesh Kumar Gupta,

More information

SKULL AS A WHOLE + ANTERIOR CRANIAL FOSSA

SKULL AS A WHOLE + ANTERIOR CRANIAL FOSSA SKULL AS A WHOLE + ANTERIOR CRANIAL FOSSA LEARNING OBJECTIVES At the end of this lecture, the student should be able to know: Parts of skeleton (axial and appendicular) Parts of skull Sutures of skull

More information

Upward spinal coning: impaction of occult spinal tumours following relief of hydrocephalus

Upward spinal coning: impaction of occult spinal tumours following relief of hydrocephalus Journal of Neurology, Neurosurgery, and Psychiatry 1984;47: 386-390 Upward spinal coning: impaction of occult spinal tumours following relief of hydrocephalus RASHID JOOMA, RICHARD D HAYWARD From the Departments

More information

CT Based Study of Frontal Horn Ratio And Ventricular Index in South Indian Population

CT Based Study of Frontal Horn Ratio And Ventricular Index in South Indian Population IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 16, Issue 7 Ver. VI (July. 2017), PP 55-59 www.iosrjournals.org CT Based Study of Frontal Horn Ratio

More information

Biology 218 Human Anatomy. Adapted from Martini Human Anatomy 7th ed. Chapter 6 The Skeletal System: Axial Division

Biology 218 Human Anatomy. Adapted from Martini Human Anatomy 7th ed. Chapter 6 The Skeletal System: Axial Division Adapted from Martini Human Anatomy 7th ed. Chapter 6 The Skeletal System: Axial Division Introduction The axial skeleton: Composed of bones along the central axis of the body Divided into three regions:

More information

Suboccipital decompression for Chiari malformation associated scoliosis: risk factors and time course of deformity progression

Suboccipital decompression for Chiari malformation associated scoliosis: risk factors and time course of deformity progression J Neurosurg Pediatrics 1:456 460, 2008 Suboccipital decompression for Chiari malformation associated scoliosis: risk factors and time course of deformity progression FRANK J. ATTENELLO, M.S., MATTHEW J.

More information

Comparative study of duraplasty and non duraplasty in Chiari 1 malformation with syringomyleia our institute experience

Comparative study of duraplasty and non duraplasty in Chiari 1 malformation with syringomyleia our institute experience International Journal of Research in Medical Sciences Naik BDBS et al. Int J Res Med Sci. 2017 Apr;5(4):1325-1330 www.msjonline.org pissn 2320-6071 eissn 2320-6012 Original Research Article DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20170976

More information

Multimodal Evaluation Of Cerebrospinal Fluid (csf ) Dynamics Following Extradural Decompression For Chiari I Malformation

Multimodal Evaluation Of Cerebrospinal Fluid (csf ) Dynamics Following Extradural Decompression For Chiari I Malformation Yale University EliScholar A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine January 2015 Multimodal Evaluation Of Cerebrospinal Fluid (csf ) Dynamics

More information

Research Project Veterinary Medicine Utrecht University W.A. Eggelmeijer

Research Project Veterinary Medicine Utrecht University W.A. Eggelmeijer --------------------------------------------------------------------------------------------------------------------------- Prevalence of Chiari-like malformation and Syringomyelia in Cavalier King Charles

More information

MRI and CT of the CNS

MRI and CT of the CNS MRI and CT of the CNS Dr.Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Computed Tomography CT is used for the detection of intracranial lesions. CT relies

More information

Outcome of Two Surgical Options Used in Treatment of Chiari Type-One Malformation

Outcome of Two Surgical Options Used in Treatment of Chiari Type-One Malformation ISPUB.COM The Internet Journal of Neurosurgery Volume 11 Number 1 Outcome of Two Surgical Options Used in Treatment of Chiari Type-One Malformation M G Ammar Citation M G Ammar. Outcome of Two Surgical

More information

CNS Imaging. Dr Amir Monir, MD. Lecturer of radiodiagnosis.

CNS Imaging. Dr Amir Monir, MD. Lecturer of radiodiagnosis. CNS Imaging Dr Amir Monir, MD Lecturer of radiodiagnosis www.dramir.net Types of radiological examinations you know Plain X ray X ray with contrast GIT : barium (swallow, meal, follow through, enema) ERCP

More information

Gross Organization I The Brain. Reading: BCP Chapter 7

Gross Organization I The Brain. Reading: BCP Chapter 7 Gross Organization I The Brain Reading: BCP Chapter 7 Layout of the Nervous System Central Nervous System (CNS) Located inside of bone Includes the brain (in the skull) and the spinal cord (in the backbone)

More information

What Every Spine Surgeon Should Know About Neurosurgical Issues

What Every Spine Surgeon Should Know About Neurosurgical Issues What Every Spine Surgeon Should Know About Neurosurgical Issues Amer Samdani, MD Chief of Surgery Shriners Hospitals for Children Philadelphia, PA Objectives Main intraspinal lesions Chiari malformation

More information

TRANSVERSE SECTION PLANE Scalp 2. Cranium. 13. Superior sagittal sinus

TRANSVERSE SECTION PLANE Scalp 2. Cranium. 13. Superior sagittal sinus TRANSVERSE SECTION PLANE 1 1. Scalp 2. Cranium 3. Superior sagittal sinus 4. Dura mater 5. Falx cerebri 6. Frontal lobes of the cerebrum 7. Middle meningeal artery 8. Cortex, grey matter 9. Cerebral vessels

More information

Dissection of the Sheep Brain

Dissection of the Sheep Brain Dissection of the Sheep Brain Laboratory Objectives After completing this lab, you should be able to: 1. Identify the main structures in the sheep brain and to compare them with those of the human brain.

More information

5.5. RETROSIGMOID APPROACH

5.5. RETROSIGMOID APPROACH 5.5. RETROSIGMOID APPROACH The retrosigmoid approach provides good access to the cerebellopontine angle. It is by far simpler and faster with much less need for bone removal than other more extensive lateral

More information

Chiari III Joseph Junewick, MD FACR

Chiari III Joseph Junewick, MD FACR Chiari III Joseph Junewick, MD FACR 07/02/2010 History Newborn with suboccipital mass. Diagnosis Chiari III Additional Clinical Surgery-Skin covered suboccipital cystic mass confined by the dura. Pathology-Leptomeningeal

More information

Are evoked potentials clinically useful in the study of patients with Chiari malformation Type 1?

Are evoked potentials clinically useful in the study of patients with Chiari malformation Type 1? clinical article J Neurosurg 126:606 619, 2017 Are evoked potentials clinically useful in the study of patients with Chiari malformation Type 1? Dulce Moncho, MD, 1,3 Maria A. Poca, MD, PhD, 2,3 Teresa

More information

The Chiari malformation I (CM I) is a disorder that has been

The Chiari malformation I (CM I) is a disorder that has been DOI: 10.5137/1019-5149.JTN.18349-16.1 Received: 31.05.2016 / Accepted: 01.07.2016 Published Online: 22.08.2016 Original Investigation Are Herniated Cerebellar Tonsils the Main Culprit of Chiari Malformation

More information

Involvement of the spine is common in rheumatoid. Incidence been reported to be 85% radiologically but only 30% have neurological signs and symptoms.

Involvement of the spine is common in rheumatoid. Incidence been reported to be 85% radiologically but only 30% have neurological signs and symptoms. RHEUMATOID SPINE Involvement of the spine is common in rheumatoid. Incidence been reported to be 85% radiologically but only 30% have neurological signs and symptoms. When neurology is present it may manifest

More information

MR Imaging of Hindbrain Deformity in Chiari II Patients with and Without Symptoms of Brainstem Compression

MR Imaging of Hindbrain Deformity in Chiari II Patients with and Without Symptoms of Brainstem Compression 293 MR Imaging of Hindbrain Deformity in Chiari II Patients with and Without Symptoms of Brainstem Compression John T. Curnes 2 W. Jerry Oakes 3 Orest B. Boyko We examined the MR appearance of the hindbrain

More information

Prevalance of neural axis abnormalities in patients with infantile idiopathic scoliosis

Prevalance of neural axis abnormalities in patients with infantile idiopathic scoliosis Washington University School of Medicine Digital Commons@Becker Open Access Publications 12-1-2002 Prevalance of neural axis abnormalities in patients with infantile idiopathic scoliosis Matthew B. Dobbs

More information

Pathological reaction to disease

Pathological reaction to disease Chapter1 Pathological reaction to disease Normal anatomy Figures 1.1 1.6 2 4 Brain swelling and internal herniation Figures 1.7 1.15 5 9 Epilepsy Figures 1.16 1.18 9 10 Cerebellar atrophy Figures 1.19

More information

Human Anatomy and Physiology - Problem Drill 07: The Skeletal System Axial Skeleton

Human Anatomy and Physiology - Problem Drill 07: The Skeletal System Axial Skeleton Human Anatomy and Physiology - Problem Drill 07: The Skeletal System Axial Skeleton Question No. 1 of 10 Which of the following statements about the axial skeleton is correct? Question #01 A. The axial

More information

CT - Brain Examination

CT - Brain Examination CT - Brain Examination Submitted by: Felemban 1 CT - Brain Examination The clinical indication of CT brain are: a) Chronic cases (e.g. headache - tumor - abscess) b) ER cases (e.g. trauma - RTA - child

More information

Body position and eerebrospinal fluid pressure. Part 2' Clinical studies on orthostatic pressure and the hydrostatic indifferent point

Body position and eerebrospinal fluid pressure. Part 2' Clinical studies on orthostatic pressure and the hydrostatic indifferent point Body position and eerebrospinal fluid pressure Part 2' Clinical studies on orthostatic pressure and the hydrostatic indifferent point BJORN MAGNAES, M.D. Department of Neurosurgery, Rikshospitalet, Oslo

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

Anatomy of the Nervous System. Brain Components

Anatomy of the Nervous System. Brain Components Anatomy of the Nervous System Brain Components NERVOUS SYSTEM INTRODUCTION Is the master system of human body, controlling the functions of rest of the body systems Nervous System CLASSIFICATION A. Anatomical

More information

The dura is sensitive to stretching, which produces the sensation of headache.

The dura is sensitive to stretching, which produces the sensation of headache. Dural Nerve Supply Branches of the trigeminal, vagus, and first three cervical nerves and branches from the sympathetic system pass to the dura. Numerous sensory endings are in the dura. The dura is sensitive

More information

The Chiari I malformation, defined by the aberrant position

The Chiari I malformation, defined by the aberrant position METHODOLOGIC PERSPECTIVES S. Hentschel K.-A. Mardal A.E. Løvgren S. Linge V. Haughton Characterization of Cyclic CSF Flow in the Foramen Magnum and Upper Cervical Spinal Canal with MR Flow Imaging and

More information

Cranio-cervical decompression. Information for patients Neurosurgery

Cranio-cervical decompression. Information for patients Neurosurgery Cranio-cervical decompression Information for patients Neurosurgery page 2 of 12 What is a cranio-cervical decompression? A cranio-cervical decompression is an operation involving the back of the head

More information

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Objectives By the end of the lecture, you should be able to: List the parts of the nervous system. List the function of the nervous system.

More information

Brainstem. By Dr. Bhushan R. Kavimandan

Brainstem. By Dr. Bhushan R. Kavimandan Brainstem By Dr. Bhushan R. Kavimandan Development Ventricles in brainstem Mesencephalon cerebral aqueduct Metencephalon 4 th ventricle Mylencephalon 4 th ventricle Corpus callosum Posterior commissure

More information