Rewiring of hindlimb corticospinal neurons after spinal cord injury

Size: px
Start display at page:

Download "Rewiring of hindlimb corticospinal neurons after spinal cord injury"

Transcription

1 Rewiring of hindlimb corticospinal neurons after spinal cord injury Arko Ghosh, Florent Haiss, Esther Sydekum, Regula Schneider, Miriam Gullo, Matthias T. Wyss, Thomas Mueggler, Christof Baltes, Markus Rudin, Bruno Weber and Martin E. Schwab

2 Dorsal Rostral Supplementary Figure 1. The injury site. A snapshot of a reconstructed lesion site. In grey the lesion, in green the section outline and in red the visible grey matter. Insert: dark field image of a section at the epicenter of injury.

3

4

5

6

7 Imaging Hindlimb Forelimb VSD imaging BOLD-fMRI Retrograde labelling Hindlimb corticospinal neuron also projecting to forelimb Hindlimb corticospinal neuron with no projections to forelimb Intact a FL M1 FL S1 HL II/III V b One week after thoracic spinal cord injury b II/III V b Three weeks or later after thoracic spinal cord injury c II/III V b Supplementary Figure 6. Legend on next page.

8 Supplementary Figure 6. A schematic summary of the main findings presented in this paper. a: In intact animals the BOLD forelimb (FL) and hindlimb (HL) sensory representations are well separated (shown in dark red and blue). In the forelimb area, sensory and motor functions are spatially separated whereas in the hindlimb area they completely overlap (forelimb M1, under the hashed area). The VSD reveals response (shown in a lighter color) to forepaw stimulation involves forelimb M1 in addition to forelimb S1. Hindlimb corticospinal neurons originate from the hindlimb sensory motor area. The neurons are shown as a layer of droplets in the output lamina Vb. Their axons are shown as red lines on the schematic dorsal view of the rat brain and spinal cord. b: After thoracic injury, the injured hindlimb corticospinal neurons rewire to the forelimb (shown as droplets with blue borders, and their axons on the dorsal view of the spinal cord) in an environment of changing forelimb representations. One week after injury there is increased forelimb sensory motor excitability that is also reflected by faster responses to forelimb stimulation in axotomised hindlimb corticospinal neurons (shown as curved blue arrows, the exact pathways that lead to this activation are uncertain). c: The neurons in proximity to the forelimb area are more likely to remain rewired at longer time points after injury. The exact nature of response of the re wired hindlimb corticospinal neurons to forelimb input and the responses of axotomised hindlimb neurons at longer time points after injury are unknown due to technical limitations. Dotted red boundary depicts original hindlimb sensory motor representation (in b and c). Cortical layers Vb and II/III are indicated on the figure.

9 Supplementary Notes on Electrophysiology Notes on the electrophysiological method to record action potentials from passing through CST Background In 1937 Edgar Adrian detected action potentials in the CST passing through the brainstem prior to entering the spinal cord 1. In his experiments, action potentials were elicited in response to pinching the cat s forepaw. The subsequent years saw several studies devoted to the understanding of sensory input to the motor cortex (leading up to the experiments by Asanuma and Colleagues 2 ). Since Adrian s demonstration and the subsequent experiments by John Swett and colleagues 3, the method of recording corticospinal cells in the cortex itself took precedence over using Adrian s method to record from the CST as it passes through the brainstem or spinal cord 4. However, descending volleys detected by placing epidural electrodes in proximity to the CST is frequently measured in humans to assess corticospinal function 5. As we were interested in both the timing and extent of corticospinal excitation in response to peripheral stimulation we recorded action potentials from the Hindlimb CST. Reasoning Hindlimb CST Our recording site was at T-7 CST in the dorsal funiculus. In this segment majority (> 95 %) of the axons continue to descend and then run through T-8. The site is about 6 segments lower than the lowest spinal segment that is involved in forelimb function 6. Below T-7, the spinal segments are primarily involved in hindlimb and tail functions. The extent of penetration of the CST in rodents, however, is far less in the lower segments involved in tail function. Therefore, we can state the following regarding the CST passing through T-7: 1) except a rare few axons, none target forelimb spinal segments, 2) majority of the axons are involved in hindlimb functions. Moreover, after axotomy at T-8 the progressive retraction of the injured corticospinal axons rarely reaches as far as T-7 at one week after injury 7. Verification of CST recording Supplementary figure 5 shows the three approaches used to verify that our recording was from the CST passing through T-7. Upon cortical ablation that included the hindlimb area, the CST responses to forelimb or hindlimb inputs were eliminated. Next, visualization of the tract left by the DiI coated electrode in the spinal cord showed the presence of the electrode in the CST. Finally, microstimulation of the hindlimb cortex (2 mm lateral, 2 mm posterior to bregma), which is expected to activate the CST both directly and synaptically 4, led to a large increase in the number of action potentials within a short time. The hindlimb cortex was stimulated at a depth of 1.2 mm with a single biphasic pulse lasting 0.5 msec at µa.

10 Anesthesia There is extensive discussion in the initial study by Adrian on the impact of anesthesia on CST responses to forelimb sensory input. The anesthesia per say did not determine the presence or absence of responses but the depth did. In our study the blood pressure and heart rate was monitored to ensure the animal was stable under Urethane anesthesia. Urethane is a widely used anesthetic 8. In more recent studies, this anesthetic 9, 10 has been used extensively to record sensory responses in the cortex and more importantly from deep cortical neurons 11. Sensory stimulation threshold In cats, both cutaneous and deep receptors result in activation of corticospinal cells 3. In rodents the threshold of CST activation in response to peripheral input remains unknown. In order to detect the sensory evoked potentials in the hindlimb CST, we stimulated the forepaw with a single current pulse of 6 ma lasting for 1 ms. Stimulation in this range has been used before to elicit action potentials in corticospinal neurons 12. At this amplitude all categories of A and C fibers innervating the paw are expected to be activated. This stimulation intensity therefore allows us to address if sensations from the paw, irrespective of its form, activate corticospinal cells. At currents as low as used in Voltage Sensitive Dye experiments, the signal to noise ratio was much lower resulting in longer acquisition times and the method was now highly sensitive to the position of the electrode in the CST due to the smaller number of axons activated. Using high current we were able to attain more consistent responses whose alteration after injury could be meaningfully interpreted.

11 Associated References: 1. Adrian, E.D. & Moruzzi, G. Impulses in the pyramidal tract. J Physiol 97, (1939). 2. Asanuma, H. Functional role of sensory inputs to the motor cortex. Prog Neurobiol 16, (1981). 3. Swett, J.E. & Bourassa, C.M. Short latency activation of pyramidal tract cells by Group I afferent volleys in the cat. J Physiol 189, (1967). 4. Jankowska, E., Padel, Y. & Tanaka, R. The mode of activation of pyramidal tract cells by intracortical stimuli. J Physiol 249, (1975). 5. Di Lazzaro, V., et al. Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans. Neurol Res 25, (2003). 6. McKenna, J.E., Prusky, G.T. & Whishaw, I.Q. Cervical motoneuron topography reflects the proximodistal organization of muscles and movements of the rat forelimb: a retrograde carbocyanine dye analysis. J Comp Neurol 419, (2000). 7. Seif, G.I., Nomura, H. & Tator, C.H. Retrograde axonal degeneration "dieback" in the corticospinal tract after transection injury of the rat spinal cord: a confocal microscopy study. J Neurotrauma 24, (2007). 8. Koblin, D.D. Urethane: help or hindrance? Anesth Analg 94, (2002). 9. Simons, D.J., Carvell, G.E., Hershey, A.E. & Bryant, D.P. Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia. Exp Brain Res 91, (1992). 10. Yu, X.J., Xu, X.X., He, S. & He, J. Change detection by thalamic reticular neurons. Nat Neurosci 12, (2009). 11. Helmchen, F., Svoboda, K., Denk, W. & Tank, D.W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2, (1999). 12. McComas, A.J. & Wilson, P. An investigation of pyramidal tract cells in the somatosensory cortex of the rat. J Physiol 194, (1968).

Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit. Supplementary Information. Adam W. Hantman and Thomas M.

Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit. Supplementary Information. Adam W. Hantman and Thomas M. Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit Supplementary Information Adam W. Hantman and Thomas M. Jessell Supplementary Results Characterizing the origin of primary

More information

Cortical Control of Movement

Cortical Control of Movement Strick Lecture 2 March 24, 2006 Page 1 Cortical Control of Movement Four parts of this lecture: I) Anatomical Framework, II) Physiological Framework, III) Primary Motor Cortex Function and IV) Premotor

More information

Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements

Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements Y. Isomura et al. 1 Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements Yoshikazu Isomura, Rie Harukuni, Takashi Takekawa, Hidenori Aizawa & Tomoki Fukai

More information

THE CENTRAL NERVOUS SYSTE M

THE CENTRAL NERVOUS SYSTE M THE CENTRAL NERVOUS SYSTE M Structure and Functio n THIRD EDITIO N PER BRODAL A Brief Survey, x i Studying the Structures and Function of the Nervous System, xii i Animal Experiments Crucial for Progress,

More information

Lateral view of human brain! Cortical processing of touch!

Lateral view of human brain! Cortical processing of touch! Lateral view of human brain! Cortical processing of touch! How do we perceive objects held in the hand?! Touch receptors deconstruct objects to detect local features! Information is transmitted in parallel

More information

Table of Contents: Chapter 1 The organization of the spinal cord Charles Watson and Gulgun Kayalioglu

Table of Contents: Chapter 1 The organization of the spinal cord Charles Watson and Gulgun Kayalioglu Table of Contents: Chapter 1 The organization of the spinal cord Charles Watson and Gulgun Kayalioglu The gross anatomy of the spinal cord Spinal cord segments Spinal nerves Spinal cord gray and white

More information

STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM

STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM STRUCTURAL ORGANIZATION OF THE BRAIN The central nervous system (CNS), consisting of the brain and spinal cord, receives input from sensory neurons and directs

More information

susceptibility of either the axons in the dorsal and ventral roots, or the intramedullary

susceptibility of either the axons in the dorsal and ventral roots, or the intramedullary 213 J. Physiol. (31958) I40, 2I3-2I9 THE SITE OF ACTION OF PROCAINE ON THE ISOLATED SPINAL CORD OF THE FROG BY M. HARMEL AND J. L. MALCOLM From the Department of Physiology, State University of New York,

More information

CHAPTER 10 THE SOMATOSENSORY SYSTEM

CHAPTER 10 THE SOMATOSENSORY SYSTEM CHAPTER 10 THE SOMATOSENSORY SYSTEM 10.1. SOMATOSENSORY MODALITIES "Somatosensory" is really a catch-all term to designate senses other than vision, hearing, balance, taste and smell. Receptors that could

More information

Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis

Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis Kathy Zackowski, PhD, OTR Kennedy Krieger Institute Johns Hopkins University School of Medicine TMS (transcranial

More information

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization Mechanosensation Central Representation of Touch Touch and tactile exploration Vibration and pressure sensations; important for clinical testing Limb position sense John H. Martin, Ph.D. Center for Neurobiology

More information

Water immersion modulates sensory and motor cortical excitability

Water immersion modulates sensory and motor cortical excitability Water immersion modulates sensory and motor cortical excitability Daisuke Sato, PhD Department of Health and Sports Niigata University of Health and Welfare Topics Neurophysiological changes during water

More information

Nervous System C H A P T E R 2

Nervous System C H A P T E R 2 Nervous System C H A P T E R 2 Input Output Neuron 3 Nerve cell Allows information to travel throughout the body to various destinations Receptive Segment Cell Body Dendrites: receive message Myelin sheath

More information

Reflexes. Dr. Baizer

Reflexes. Dr. Baizer Reflexes Dr. Baizer 1 Learning objectives: reflexes Students will be able to describe: 1. The clinical importance of testing reflexes. 2. The essential components of spinal reflexes. 3.The stretch reflex.

More information

HUMAN MOTOR CONTROL. Emmanuel Guigon

HUMAN MOTOR CONTROL. Emmanuel Guigon HUMAN MOTOR CONTROL Emmanuel Guigon Institut des Systèmes Intelligents et de Robotique Université Pierre et Marie Curie CNRS / UMR 7222 Paris, France emmanuel.guigon@upmc.fr e.guigon.free.fr/teaching.html

More information

SOMATOSENSORY SYSTEMS

SOMATOSENSORY SYSTEMS SOMATOSENSORY SYSTEMS Schematic diagram illustrating the neural pathways that convey somatosensory information to the cortex and, subsequently, to the motor system. Double arrows show reciprocal connections.

More information

Uncrossed actions of feline corticospinal tract neurones on lumbar interneurones evoked via ipsilaterally descending pathways

Uncrossed actions of feline corticospinal tract neurones on lumbar interneurones evoked via ipsilaterally descending pathways J Physiol 580.1 (2007) pp 133 147 133 Uncrossed actions of feline corticospinal tract neurones on lumbar interneurones evoked via ipsilaterally descending pathways E. Jankowska and K. Stecina Department

More information

Anatomical Substrates of Somatic Sensation

Anatomical Substrates of Somatic Sensation Anatomical Substrates of Somatic Sensation John H. Martin, Ph.D. Center for Neurobiology & Behavior Columbia University CPS The 2 principal somatic sensory systems: 1) Dorsal column-medial lemniscal system

More information

Neurophysiology of systems

Neurophysiology of systems Neurophysiology of systems Motor cortex (voluntary movements) Dana Cohen, Room 410, tel: 7138 danacoh@gmail.com Voluntary movements vs. reflexes Same stimulus yields a different movement depending on context

More information

Neocortex. Cortical Structures in the Brain. Neocortex Facts. Laminar Organization. Bark-like (cortical) structures: Shepherd (2004) Chapter 12

Neocortex. Cortical Structures in the Brain. Neocortex Facts. Laminar Organization. Bark-like (cortical) structures: Shepherd (2004) Chapter 12 Neocortex Shepherd (2004) Chapter 12 Rodney Douglas, Henry Markram, and Kevan Martin Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Cortical Structures in the Brain Bark-like (cortical) structures:

More information

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. Descending Tracts I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. III: To define the upper and the lower motor neurons. 1. The corticonuclear

More information

Spinal Interneurons. Control of Movement

Spinal Interneurons. Control of Movement Control of Movement Spinal Interneurons Proprioceptive afferents have a variety of termination patterns in the spinal cord. This can be seen by filling physiologically-identified fibers with HRP, so their

More information

Somatosensation. Recording somatosensory responses. Receptive field response to pressure

Somatosensation. Recording somatosensory responses. Receptive field response to pressure Somatosensation Mechanoreceptors that respond to touch/pressure on the surface of the body. Sensory nerve responds propotional to pressure 4 types of mechanoreceptors: Meissner corpuscles & Merkel discs

More information

Variety of muscle responses to tactile stimuli

Variety of muscle responses to tactile stimuli Variety of muscle responses to tactile stimuli Julita Czarkowska-Bauch Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland Abstract. Influences

More information

Lecture VIII. The Spinal Cord, Reflexes and Brain Pathways!

Lecture VIII. The Spinal Cord, Reflexes and Brain Pathways! Reflexes and Brain Bio 3411! Monday!! 1! Readings! NEUROSCIENCE 5 th ed: Review Chapter 1 pp. 11-21;!!Read Chapter 9 pp. 189-194, 198! THE BRAIN ATLAS 3 rd ed:! Read pp. 4-17 on class web site! Look at

More information

Cerebral Cortex 1. Sarah Heilbronner

Cerebral Cortex 1. Sarah Heilbronner Cerebral Cortex 1 Sarah Heilbronner heilb028@umn.edu Want to meet? Coffee hour 10-11am Tuesday 11/27 Surdyk s Overview and organization of the cerebral cortex What is the cerebral cortex? Where is each

More information

Short communication RESPONSES OF RED NUCLEUS NEURONS TO PERIPHERAL STIMULATION IN CHLORALOSE ANESTHETIZED CATS. Janusz RAJKOWSKI

Short communication RESPONSES OF RED NUCLEUS NEURONS TO PERIPHERAL STIMULATION IN CHLORALOSE ANESTHETIZED CATS. Janusz RAJKOWSKI ACTA NEUROBIOL. EXP. 1982. 42: 195-201 Short communication RESPONSES OF RED NUCLEUS NEURONS TO PERIPHERAL STIMULATION IN CHLORALOSE ANESTHETIZED CATS Janusz RAJKOWSKI Department of Neurophysiology, Nencki

More information

Plasticity of Cerebral Cortex in Development

Plasticity of Cerebral Cortex in Development Plasticity of Cerebral Cortex in Development Jessica R. Newton and Mriganka Sur Department of Brain & Cognitive Sciences Picower Center for Learning & Memory Massachusetts Institute of Technology Cambridge,

More information

Progress (in Neuroscience) has often been achieved through the resolution of controversies or debates. Brain versus Heart. Localization versus Holism

Progress (in Neuroscience) has often been achieved through the resolution of controversies or debates. Brain versus Heart. Localization versus Holism Progress (in Neuroscience) has often been achieved through the resolution of controversies or debates. Brain versus Heart Localization versus Holism Electrical versus Chemical Fixed versus Plastic Muscles

More information

Circuits & Behavior. Daniel Huber

Circuits & Behavior. Daniel Huber Circuits & Behavior Daniel Huber How to study circuits? Anatomy (boundaries, tracers, viral tools) Inactivations (lesions, optogenetic, pharma, accidents) Activations (electrodes, magnets, optogenetic)

More information

Sensory information processing, somato-sensory systems

Sensory information processing, somato-sensory systems mm? Sensory information processing, somato-sensory systems Recommended literature 1. Kandel ER, Schwartz JH, Jessel TM (2000) Principles of Neural Science, McGraw-Hill, Ch. xx. 2. Berne EM, Levy MN, Koeppen

More information

Neuronal relays in double crossed pathways between feline motor cortex and ipsilateral hindlimb motoneurones

Neuronal relays in double crossed pathways between feline motor cortex and ipsilateral hindlimb motoneurones J Physiol 575.2 (2006) pp 527 541 527 Neuronal relays in double crossed pathways between feline motor cortex and ipsilateral hindlimb motoneurones E. Jankowska 1, K. Stecina 1, A. Cabaj 1, L.-G. Pettersson

More information

MOTOR EVOKED POTENTIALS AND TRANSCUTANEOUS MAGNETO-ELECTRICAL NERVE STIMULATION

MOTOR EVOKED POTENTIALS AND TRANSCUTANEOUS MAGNETO-ELECTRICAL NERVE STIMULATION MOTOR EVOKED POTENTIAS AND TRANSCUTANEOUS MAGNETO-EECTRICA NERVE STIMUATION Hongguang iu, in Zhou 1 and Dazong Jiang Xian Jiaotong University, Xian, People s Republic of China 1 Shanxi Normal University,

More information

Neural Integration I: Sensory Pathways and the Somatic Nervous System

Neural Integration I: Sensory Pathways and the Somatic Nervous System 15 Neural Integration I: Sensory Pathways and the Somatic Nervous System PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Sensory Pathways and

More information

Leah Militello, class of 2018

Leah Militello, class of 2018 Leah Militello, class of 2018 Objectives 1. Describe the general organization of cerebral hemispheres. 2. Describe the locations and features of the different functional areas of cortex. 3. Understand

More information

CALLOSAL RESPONSES OF FAST-RHYTHMIC-BURSTING NEURONS DURING SLOW OSCILLATION IN CATS

CALLOSAL RESPONSES OF FAST-RHYTHMIC-BURSTING NEURONS DURING SLOW OSCILLATION IN CATS Neuroscience 147 (2007) 272 276 RAPID REPORT CALLOSAL RESPONSES OF FAST-RHYTHMIC-BURSTING NEURONS DURING SLOW OSCILLATION IN CATS Y. CISSÉ, 1,2 D. A. NITA, 2 M. STERIADE AND I. TIMOFEEV* Department of

More information

Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex

Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex Archives of Disease in Childhood, 1988, 63, 1347-1352 Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex T H H G KOH AND J A EYRE Department of Child Health,

More information

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus Central Visual Pathways V1/2 NEUR 3001 dvanced Visual Neuroscience The Lateral Geniculate Nucleus () is more than a relay station LP SC Professor Tom Salt UCL Institute of Ophthalmology Retina t.salt@ucl.ac.uk

More information

(Received 10 April 1956)

(Received 10 April 1956) 446 J. Physiol. (I956) I33, 446-455 A COMPARISON OF FLEXOR AND EXTENSOR REFLEXES OF MUSCULAR ORIGIN BY M. G. F. FUORTES AND D. H. HUBEL From the Department ofneurophysiology, Walter Reed Army Institute

More information

Peripheral Nervous System

Peripheral Nervous System Peripheral Nervous System 1 Sensory Receptors Sensory Receptors and Sensation Respond to changes (stimuli) in the environment Generate graded potentials that can trigger an action potential that is carried

More information

Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal.

Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal. Dental Neuroanatomy Thursday, February 3, 2011 Suzanne Stensaas, PhD Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal. Resources: Pathway Quiz for HyperBrain Ch. 5 and

More information

Posterior White Column-Medial Lemniscal Pathway

Posterior White Column-Medial Lemniscal Pathway Posterior White Column-Medial Lemniscal Pathway Modality: Discriminative Touch Sensation (include Vibration) and Conscious Proprioception Receptor: Most receptors except free nerve endings Ist Neuron:

More information

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota Brainstem Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Change in Lab Sequence Week of Oct 2 Lab 5 Week of Oct 9 Lab 4 2 Goal Today Know the regions of the brainstem. Know

More information

Embryological origin of thalamus

Embryological origin of thalamus diencephalon Embryological origin of thalamus The diencephalon gives rise to the: Thalamus Epithalamus (pineal gland, habenula, paraventricular n.) Hypothalamus Subthalamus (Subthalamic nuclei) The Thalamus:

More information

Last time we talked about the descending pathways of pain and the ALS. Today we will continue talking about these descending pathways.

Last time we talked about the descending pathways of pain and the ALS. Today we will continue talking about these descending pathways. Last time we talked about the descending pathways of pain and the ALS. Today we will continue talking about these descending pathways. Each higher level will control the level under It. In controlling

More information

Lecture X. Brain Pathways: Movement!

Lecture X. Brain Pathways: Movement! Bio 3411 Readings (background only) Bio 3411 Monday Neuroscience 4 th ed Page(s) Feature 423-451Upper motor control of Brain Stem and Spinal Cord The Brain Atlas 3 rd ed Page(s) Feature 198-199 Vestibular

More information

Lecture X. Brain Pathways: Movement!

Lecture X. Brain Pathways: Movement! Bio 3411 Monday 1 Readings (background only) Neuroscience 5 th ed Page(s) Feature 353-398Upper motor control of Brain Stem and Spinal Cord Neuroscience 4 th ed Page(s) Feature 423-451Upper motor control

More information

Chapter 12b. Overview

Chapter 12b. Overview Chapter 12b Spinal Cord Overview Spinal cord gross anatomy Spinal meninges Sectional anatomy Sensory pathways Motor pathways Spinal cord pathologies 1 The Adult Spinal Cord About 18 inches (45 cm) long

More information

Spinal Cord Tracts DESCENDING SPINAL TRACTS: Are concerned with somatic motor function, modification of ms. tone, visceral innervation, segmental reflexes. Main tracts arise form cerebral cortex and others

More information

CYTOARCHITECTURE OF CEREBRAL CORTEX

CYTOARCHITECTURE OF CEREBRAL CORTEX BASICS OF NEUROBIOLOGY CYTOARCHITECTURE OF CEREBRAL CORTEX ZSOLT LIPOSITS 1 CELLULAR COMPOSITION OF THE CEREBRAL CORTEX THE CEREBRAL CORTEX CONSISTS OF THE ARCHICORTEX (HIPPOCAMPAL FORMA- TION), PALEOCORTEX

More information

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 1 2 1 3 Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 4 5 6 7 (a) Reconstructions of LII/III GIN-cells with somato-dendritic compartments in orange and axonal arborizations

More information

FGF22 signaling regulates synapse formation during postinjury remodeling of the spinal cord

FGF22 signaling regulates synapse formation during postinjury remodeling of the spinal cord Manuscript EMBO-2014-90578 FGF22 signaling regulates synapse formation during postinjury remodeling of the spinal cord Anne Jacobi, Kristina Loy, Anja M Schmalz, Mikael Hellsten, Hisashi Umemori, Martin

More information

Electrical recording with micro- and macroelectrodes from the cerebellum of man

Electrical recording with micro- and macroelectrodes from the cerebellum of man Electrical recording with micro- and macroelectrodes from the cerebellum of man D. GRAHAM SLAUGHTER, M.D., BLAINE S. NASHOLD, Jn., M.D., AND GEORGE G. SOMJEN, M.D. The Division of Neurosurgery, and the

More information

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Distinct contributions of Na v 1.6 and Na v 1.2 in action potential initiation and backpropagation Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Supplementary figure and legend Supplementary

More information

The Cerebellum. Outline. Lu Chen, Ph.D. MCB, UC Berkeley. Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning

The Cerebellum. Outline. Lu Chen, Ph.D. MCB, UC Berkeley. Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning The Cerebellum Lu Chen, Ph.D. MCB, UC Berkeley 1 Outline Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning 2 Overview Little brain 10% of the total volume of the brain,

More information

Internship Research Paper. Locomotion and Motor Neuron Plasticity after Incomplete Spinal Cord Injury. Completed at St.

Internship Research Paper. Locomotion and Motor Neuron Plasticity after Incomplete Spinal Cord Injury. Completed at St. Internship Research Paper Locomotion and Motor Neuron Plasticity after Incomplete Spinal Cord Injury Completed at St. Joseph s Hospital Barrow Neurological Institute Dr. Thomas Hamm By Anivarya Kumar Introduction

More information

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:.

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. Cortical Organization Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. 2. Secondary cortex: located immediately adjacent to primary cortical areas,

More information

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington Motor systems... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington 1 Descending pathways: CS corticospinal; TS tectospinal; RS reticulospinal; VS

More information

Trans-spinal direct current stimulation: a novel tool to promote plasticity in humans

Trans-spinal direct current stimulation: a novel tool to promote plasticity in humans Trans-spinal direct current stimulation: a novel tool to promote plasticity in humans Jean-Charles Lamy, PhD Brain and Spine Institute, Paris 1 Background Grecco et al., J Neuroresto, 2015 2 Background:

More information

NAME: Jason B. Carmel, MD, PhD. TITLE: Instructor in Neurology LOCAL ADDRESS: Division of Pediatric Neurology, Harkness Pavilion, 5th Floor

NAME: Jason B. Carmel, MD, PhD. TITLE: Instructor in Neurology LOCAL ADDRESS: Division of Pediatric Neurology, Harkness Pavilion, 5th Floor NAME: Jason B. Carmel, MD, PhD TITLE: Instructor in Neurology LOCAL ADDRESS: Division of Pediatric Neurology, Harkness Pavilion, 5th Floor 180 Fort Washington Avenue, New York, NY 10032 EMAIL ADDRESS jcarmel@neuro.columbia.edu

More information

Neurons and Perception March 17, 2009

Neurons and Perception March 17, 2009 Neurons and Perception March 17, 2009 John Maunsell Maier, A., WIlke, M., Aura, C., Zhu, C., Ye, F.Q., Leopold, D.A. (2008) Divergence of fmri and neural signals in V1 during perceptual suppression in

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Splenic atrophy and leucopenia caused by T3 SCI.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Splenic atrophy and leucopenia caused by T3 SCI. Supplementary Figure 1 Splenic atrophy and leucopenia caused by T3 SCI. (a) Gross anatomy of representative spleens from control and T3 SCI mice at 28 days post-injury. (b and c) Hematoxylin and eosin

More information

Arterial Blood Supply

Arterial Blood Supply Arterial Blood Supply Brain is supplied by pairs of internal carotid artery and vertebral artery. The four arteries lie within the subarachnoid space Their branches anastomose on the inferior surface of

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Distribution of starter cells for RV-mediated retrograde tracing.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Distribution of starter cells for RV-mediated retrograde tracing. Supplementary Figure 1 Distribution of starter cells for RV-mediated retrograde tracing. Parcellation of cortical areas is based on Allen Mouse Brain Atlas and drawn to scale. Thick white curves, outlines

More information

Medical Neuroscience Tutorial

Medical Neuroscience Tutorial Pain Pathways Medical Neuroscience Tutorial Pain Pathways MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. NCC3. Genetically determined circuits are the foundation

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/3/e1600955/dc1 Supplementary Materials for Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits Chi Lu, Seongjun

More information

Anatomy of the Spinal Cord

Anatomy of the Spinal Cord Spinal Cord Anatomy of the Spinal Cord Anatomy of the Spinal Cord Posterior spinal arteries Lateral corticospinal tract Dorsal column Spinothalamic tract Anterior spinal artery Anterior white commissure

More information

Wilder Penfield in the age of YouTube: Visualizing the sequential activation of sensorimotor areas across neocortex

Wilder Penfield in the age of YouTube: Visualizing the sequential activation of sensorimotor areas across neocortex Final Draft (15 November 2007) of Preview for Neuron 65 words in abstract, 1360 words in narrative, 1 figure, and 34 references Wilder Penfield in the age of YouTube: Visualizing the sequential activation

More information

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

SUPPLEMENTARY INFORMATION. Supplementary Figure 1 SUPPLEMENTARY INFORMATION Supplementary Figure 1 The supralinear events evoked in CA3 pyramidal cells fulfill the criteria for NMDA spikes, exhibiting a threshold, sensitivity to NMDAR blockade, and all-or-none

More information

Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department

Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department Learning Objectives Define Electrodiagnosis and its theoretical background. Describe the anatomical and functional

More information

ANAT2010. Concepts of Neuroanatomy (II) S2 2018

ANAT2010. Concepts of Neuroanatomy (II) S2 2018 ANAT2010 Concepts of Neuroanatomy (II) S2 2018 Table of Contents Lecture 13: Pain and perception... 3 Lecture 14: Sensory systems and visual pathways... 11 Lecture 15: Techniques in Neuroanatomy I in vivo

More information

211MDS Pain theories

211MDS Pain theories 211MDS Pain theories Definition In 1986, the International Association for the Study of Pain (IASP) defined pain as a sensory and emotional experience associated with real or potential injuries, or described

More information

ANALYSIS OF RESIDUAL WEIGHT DISCRIMINATORY ABILITY AND EVOKED CORTICAL POTENTIALS FOLLOWING SECTION OF DORSAL COLUMNS IN MONKEYSI,2

ANALYSIS OF RESIDUAL WEIGHT DISCRIMINATORY ABILITY AND EVOKED CORTICAL POTENTIALS FOLLOWING SECTION OF DORSAL COLUMNS IN MONKEYSI,2 ANALYSIS OF RESIDUAL WEIGHT DISCRIMINATORY ABILITY AND EVOKED CORTICAL POTENTIALS FOLLOWING SECTION OF DORSAL COLUMNS IN MONKEYSI,2 By JUNE L. DEVITO, T. C. RUCH AND H. D. PATTON Department of Physiology

More information

Pain and Temperature Objectives

Pain and Temperature Objectives Pain and Temperature Objectives 1. Describe the types of sensory receptors that transmit pain and temperature. 2. Understand how axon diameter relates to transmission of pain and temp information. 3. Describe

More information

Crossed flexor reflex responses and their reversal in freely walking cats

Crossed flexor reflex responses and their reversal in freely walking cats Brain Research, 197 (1980) 538-542 0 Elsevier/North-Holland Biomedical Press Crossed flexor reflex responses and their reversal in freely walking cats J. DUYSENS*, G. E. LOEB and B. J. WESTON Laboratory

More information

Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin

Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin Keywords: Cerebellum, Motor cortex, Motor control 8334 Journal of Physiology (1999), 514.2, pp. 551 566 551 Topographical organization of projections to cat motor cortex from nucleus interpositus anterior

More information

Lecturer. Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014

Lecturer. Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014 Lecturer Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014 Dorsal root: The dorsal root carries both myelinated and unmyelinated afferent fibers to the spinal cord. Posterior gray column: Long

More information

CROSSMODAL PLASTICITY IN SPECIFIC AUDITORY CORTICES UNDERLIES VISUAL COMPENSATIONS IN THE DEAF "

CROSSMODAL PLASTICITY IN SPECIFIC AUDITORY CORTICES UNDERLIES VISUAL COMPENSATIONS IN THE DEAF Supplementary Online Materials To complement: CROSSMODAL PLASTICITY IN SPECIFIC AUDITORY CORTICES UNDERLIES VISUAL COMPENSATIONS IN THE DEAF " Stephen G. Lomber, M. Alex Meredith, and Andrej Kral 1 Supplementary

More information

Lecture XIII. Brain Diseases I - Parkinsonism! Brain Diseases I!

Lecture XIII. Brain Diseases I - Parkinsonism! Brain Diseases I! Lecture XIII. Brain Diseases I - Parkinsonism! Bio 3411! Wednesday!! Lecture XIII. Brain Diseases - I.! 1! Brain Diseases I! NEUROSCIENCE 5 th ed! Page!!Figure!!Feature! 408 18.9 A!!Substantia Nigra in

More information

The Journal of Physiology

The Journal of Physiology J Physiol 593.4 (2015) pp 947 966 947 Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations F. Bolzoni 1,2 and E. Jankowska

More information

Sensory coding and somatosensory system

Sensory coding and somatosensory system Sensory coding and somatosensory system Sensation and perception Perception is the internal construction of sensation. Perception depends on the individual experience. Three common steps in all senses

More information

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D.

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D. COGNITIVE SCIENCE 107A Motor Systems: Basal Ganglia Jaime A. Pineda, Ph.D. Two major descending s Pyramidal vs. extrapyramidal Motor cortex Pyramidal system Pathway for voluntary movement Most fibers originate

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse.

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse. Supplementary Figure 1 Activity in turtle dorsal cortex is sparse. a. Probability distribution of firing rates across the population (notice log scale) in our data. The range of firing rates is wide but

More information

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of Feedback Ex6 You submitted this quiz on Sun 19 May 2013 9:32 PM IST (UTC +0530). You got a score of 10.00 out of 10.00. Question 1 What is common to Parkinson, Alzheimer and Autism? Electrical (deep brain)

More information

12 Anatomy and Physiology of Peripheral Nerves

12 Anatomy and Physiology of Peripheral Nerves 12 Anatomy and Physiology of Peripheral Nerves Introduction Anatomy Classification of Peripheral Nerves Sensory Nerves Motor Nerves Pathologies of Nerves Focal Injuries Regeneration of Injured Nerves Signs

More information

Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves

Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves Question No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully, (2) Work the problems on paper as needed,

More information

How strong is it? What is it? Where is it? What must sensory systems encode? 9/8/2010. Spatial Coding: Receptive Fields and Tactile Discrimination

How strong is it? What is it? Where is it? What must sensory systems encode? 9/8/2010. Spatial Coding: Receptive Fields and Tactile Discrimination Spatial Coding: Receptive Fields and Tactile Discrimination What must sensory systems encode? How strong is it? What is it? Where is it? When the brain wants to keep certain types of information distinct,

More information

Spatial Coding: Receptive Fields and Tactile Discrimination

Spatial Coding: Receptive Fields and Tactile Discrimination Spatial Coding: Receptive Fields and Tactile Discrimination What must sensory systems encode? How strong is it? What is it? Where is it? When the brain wants to keep certain types of information distinct,

More information

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement?

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement? CASE 48 A 34-year-old woman with a long-standing history of seizure disorder presents to her neurologist with difficulty walking and coordination. She has been on phenytoin for several days after having

More information

Modulation of single motor unit discharges using magnetic stimulation of the motor cortex in incomplete spinal cord injury

Modulation of single motor unit discharges using magnetic stimulation of the motor cortex in incomplete spinal cord injury 1 SHORT REPORT Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Charing Cross Hospital, London W 8RF, UK H C Smith NJDavey D W Maskill P H Ellaway National Spinal

More information

Biomarkers in Schizophrenia

Biomarkers in Schizophrenia Biomarkers in Schizophrenia David A. Lewis, MD Translational Neuroscience Program Department of Psychiatry NIMH Conte Center for the Neuroscience of Mental Disorders University of Pittsburgh Disease Process

More information

Cerebellum: Origins and Development

Cerebellum: Origins and Development Cerebellum: Origins and Development Found in all vertebrates Dorsal lip of developing medulla (rhombencephalon) Near terminations of vestibular (VIII) and lateral line afferents, which sense fluid displacement

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain?

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Postsynaptic potentials small changes in voltage (membrane potential) due to the binding of neurotransmitter. Receptor-gated ion channels ion channels that open or close in response to the binding of a

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 The average sigmoid parametric curves of capillary dilation time courses and average time to 50% peak capillary diameter dilation computed from individual capillary responses averaged

More information

Science and Technology, Japan Science and Technology Agency, Saitama, Japan

Science and Technology, Japan Science and Technology Agency, Saitama, Japan J Neurophysiol 117: 796 87, 217. First published December 14, 216; doi:1.1152/jn.874.216. RESEARCH ARTICLE Control of Movement Muscle afferent excitability testing in spinal root-intact rats: dissociating

More information

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16:

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16: Lesson 33 Lesson Outline: Nervous System Structure and Function Neuronal Tissue Supporting Cells Neurons Nerves Functional Classification of Neuronal Tissue Organization of the Nervous System Peripheral

More information

Spinal Cord Organization. January 12, 2011

Spinal Cord Organization. January 12, 2011 Spinal Cord Organization January 12, 2011 Spinal Cord 31 segments terminates at L1-L2 special components - conus medullaris - cauda equina no input from the face Spinal Cord, Roots & Nerves Dorsal root

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Brown EN, Lydic R, Schiff ND, et al. General anesthesia, sleep,

More information

Strick Lecture 3 March 22, 2017 Page 1

Strick Lecture 3 March 22, 2017 Page 1 Strick Lecture 3 March 22, 2017 Page 1 Cerebellum OUTLINE I. External structure- Inputs and Outputs Cerebellum - (summary diagram) 2 components (cortex and deep nuclei)- (diagram) 3 Sagittal zones (vermal,

More information

General Sensory Pathways of the Trunk and Limbs

General Sensory Pathways of the Trunk and Limbs General Sensory Pathways of the Trunk and Limbs Lecture Objectives Describe gracile and cuneate tracts and pathways for conscious proprioception, touch, pressure and vibration from the limbs and trunk.

More information