Reward prediction based on stimulus categorization in. primate lateral prefrontal cortex

Size: px
Start display at page:

Download "Reward prediction based on stimulus categorization in. primate lateral prefrontal cortex"

Transcription

1 Reward prediction based on stimulus categorization in primate lateral prefrontal cortex Xiaochuan Pan, Kosuke Sawa, Ichiro Tsuda, Minoro Tsukada, Masamichi Sakagami Supplementary Information This PDF file includes Supplementary Figure 1 TO 8 Supplementary Table 1 and 2

2 Supplementary Figure 1 a Spikes s 1 c R type n = 17 Non-preferred reward 5 5 1, Τime from first cue onset (ms) R type n = 34 Monkey Z SPAT order in block b d R type n = SPAT order in block R type n = 27 Monkey H Monkey T Non-preferred reward SPAT order in block Supplementary Figure 1 Population histagrom of R type neurons and the averaged activity in the first cue period as a function of SPAT order in block. (a) Population histogram of all R type neurons from the three monkeys, which was sorted by preferred reward condition (orange curve) and non-preferred reward condition (blue curve). (b) (d) the activity of R type neurons in the first cue was plotted as a function of SPAT order for the three monkey: (b) Monkey H, (c) Monkey Z and (d) Monkey T. Activity was sorted by two conditions: preferred reward condition (orange curve) and non-preferred reward condition (blue curve). The statistical significance was checked by Mann-Whitney test (two-tailed, p<.1). Error bars indicate s.e.m.

3 Supplementary Figure 2 a Large reward preferred group Spikes s n = 49 Large rew, pref. stim Large rew, non. stim Small rew, pref. stim Small rew, non. stim 5 5 1, Time from first cue onset (ms) b 6 Small reward preferred group N=27 Spikes s , Time from first cue onset (ms)

4 Supplementary Figure 2 c Monkey H d Monkey Z Spikes s n = n = , Time from first cue onset (ms) 5 5 1, Time from first cue onset (ms) e Spikes s n = 2 Monkey T Pref. rew, pref. stim Pref. rew, non. stim Non. rew, pref. stim Non. rew, non. stim 5 5 1, Time from first cue onset (ms) Supplementary Figure 2 Population histogram of neurons. (a) (b) The population histogram of neurons separated into two subgroups: one preferred the large reward (a) and the other preferred the small reward (b). All trials were sorted by four conditions: large reward with preferred stimulus (solid orange curve), large reward with non-preferred stimulus (dashed orange curve), small reward with preferred stimulus (solid blue curve) and small reward with non-preferred stimulus (dashed blue curve). (c) (e) The population histogram of cells for the three monkeys, respectively: (c) Monkey H, (d) Monkey Z and (e) Monkey T. Trials from each neuron were sorted by four conditions: preferred reward condition and preferred stimulus (solid orange curve), preferred reward condition and non-preferred stimulus (dashed orange curve), non-preferred reward condition and preferred stimulus (solid blue curve) and non-preferred reward condition and non-preferred stimulus (dashed blue curve). The black line marks the time of first cue onset. The gray area indicates the first cue period that was used for analysis of neuronal activities (Monkey H and Z, 1 4ms from the first cue onset, and Monkey T, 1 5ms from the first cue onset).

5 Supplementary Figure 3 a b c n = n = 31 Monkey H Monkey Z Monkey T Preferred stimulus Preferred stimulus Preferred stimulus Non-preferred reward n = d e f n = n = 2 n = Non-preferred stimulus Non-preferred stimulus Non-preferred stimulus Non-preferred reward SPAT order in block SPAT order in block SPAT order in block Supplementary Figure 3 Averaged activity of neurons in the first cue period is plotted as a function of SPAT order in blocks. (a) (c) The activity based on the preferred stimulus for the three monkeys. (d) (f) The activity based on the non-preferred stimulus for the three monkeys, respectively. The orange curves indicate the data from the preferred reward condition, and the blue curves represent the data from the non-preferred reward condition. The statistical significance was checked by Mann-Whitney test (two-tailed, p<.5, p<.1). Error bars indicate s.e.m.

6 Supplementary Figure 4 a Monkey H b Monkey T Correct rate ABC sequence Large reward Small reward ABC sequence Large reward Small reward BCA sequence BCA sequence Correct rate CAB sequence 1. CAB sequence Correct rate SPAT order in block SPAT order in block Supplementary Figure 4 The correct rate of the first choice in SPATs with three sequences: ABC sequence (upper panel), BCA sequence (middle panel) and CAB sequence (bottom panel). (a) The data from Monkey H (left column) and (b) from Monkey T (right column). The orange curves indicate the correct rates in large reward trials, and the blue curves in small reward trials. Two monkeys showed similar reward modulated behavior with three sequences. After reward instruction trials, the correct rate in large reward condition is significantly higher than that in small reward condition from the first SPATs with all three sequences (Mann-Whitney test, two-tailed, p<.5, p<.1). Error bars: s.e.m.

7 Supplementary Figure 5 a Monkey H b Monkey T ABC sequence ABC sequence R type n = 21 Non-preferred reward R type n = 24 Non-preferred reward BCA sequence BCA sequence CAB sequence SPAT order in block CAB sequence SPAT order in block Supplementary Figure 5 Averaged activity of R type neurons in the first cue period is plotted as a function of SPAT order in blocks with three sequences. (a) The data from Monkey H with three sequences (upper panel: ABC sequence, middle panel: BCA sequence and bottom panel: CAB sequence). (b) The data from Monkey T with three sequences (upper panel: ABC sequence, middle panel: BCA sequence and bottom panel: CAB sequence). Activity was sorted by two reward conditions: preferred reward (orange curves) and non-preferred reward (blue curves). The statistical significance was checked by Mann-Whitney test (two-tailed, p<.5, p<.1). Error bars: s.e.m.

8 Supplementary Figure 6 Spikes s a Monkey H ABC sequence n = 14 Pref. rew, pref. stim Pref. rew, non. stim Non. rew, pref. stim Non. rew, non. stim b Monkey T ABC sequence n = , 5 1, 8 BCA sequence BCA sequence Spikes s , 5 1, 8 CAB sequence 4 CAB sequence Spikes s , Time from the cue onset (ms) 5 1,

9 Supplementary Figure 6 c Category index between ABC and CAB sequences Category index between ABC and BCA sequences Supplementary Figure 6 Population histograms of neurons with three sequences and scatter diagram of category index. (a) Histogram of Monkey H with three sequences: ABC (upper panel), BCA (middle panel) and CAB (bottom panel) sequences. (b) Histograms of Monkey T with three sequences: ABC (upper panel), BCA (middle panel) and CAB (bottom panel) sequences. Figure formats and labels are the same as in Supplementary Fig. 3. (c) The scatter diagram of category index between ABC and BCA sequence versus category index between ABC and CAB sequences.

10 Supplementary Figure 7 Monkey H a ABC sequence BCA sequence CAB sequence b Preferred stimulus Preferred stimulus Preferred stimulus n = 14 Non-preferred stimulus n = 14 Non-preferred reward Non-preferred reward Non-preferred stimulus Non-preferred stimulus SPAT order in block SPAT order in block SPAT order in block

11 Supplementary Figure 7 c d ABC sequence Preferred stimulus BCA sequence Preferred stimulus CAB sequence Preferred stimulus Non-preferred stimulus Non-preferred stimulus Non-preferred stimulus n = 16 n = 16 Non-preferred reward Monkey T SPAT order in block SPAT order in block SPAT order in block Supplementary Figure 7 Averaged activity of neurons in the first cue period is plotted as a function of SPAT order with three sequences. (a). The data of Monkey H for the preferred stimulus with three sequences (ABC sequence: left column, BCA sequence: middle column and CAB sequence: right column). (b) The data of Monkey H for the non-preferred stimulus with three sequences (ABC sequence: left column, BCA sequence: middle column and CAB sequence: right column). (c) The data of Monkey T for the preferred stimulus with three sequences (ABC sequence: left column, BCA sequence: middle column and CAB sequence: right column). (d) The data of Monkey T for the non-preferred stimulus with the three sequences (ABC sequence: left column, BCA sequence: middle column and CAB sequence: right column). Activity was sorted by two reward conditions: preferred reward (orange curves) and non-preferred reward (blue curves). The statistical significance was checked by Mann-Whitney test (two-tailed, p<.5, p<.1). Error bars: s.e.m.

12 Supplementary Figure 8 a The MRI image of the brain surface and outlines of the grid Center line of the chamber The schematic of the grid 1mm 1mm 1mm Lateral Middle X X 4 mm Principal sulcus Arcuate sulcus 3 mm 1mm 1mm 1mm

13 Supplementary Figure 8 b Right Hemiphere Monkey H Left Hemiphere Arcuate sulcus Principal sulcus c Monkey Z Right Hemiphere Arcuate sulcus Left Hemiphere Principal sulcus d Monkey T Arcuate sulcus Left Hemiphere Principal sulcus Recorded track One R type cell Two R type cells Three R type cells One cell Two cells Three cells 1mm

14 Supplementary Figure 8 Anatomical location of recording sites and the distribution of R type and neurons in LPFCs for the three monkeys. (a) The MRI image of the brain surface of Monkey H's left hemisphere with the chamber's position (left figure). The length of the chamber (posterior-anterior direction) was 4 mm, and the width (middle-lateral direction) was 3 mm. In order to get the brain surface image relative to the chamber position, a grid (the same size as the chamber, as indicated by right figure) was installed on the chamber during scanning image. The black thick lines in the grid indicate walls that were filled with magnevist liquid inside (enhance the MRI signal, corresponding to the black outlines in the image figure). The surface MRI image was oriented 25 degree; parallel to the chamber's orientation (middle-lateral direction). The red mark "x" in the image figure indicates the center position of the chamber. (b) (d) The distribution of recording sites and R and s in Monkey H (b), Monkey Z (c) and Monkey T (d). The empty black: recorded sites at which no reward-related neurons were found; the filled red circle and the empty blue triangle: recording sites at which R and neurons were found.

15 Supplementary Table 1 The correct rates in first SPATs and later trials First SPATs Later trials Large reward Small reward Large reward Small reward (mean ± sem) (mean ± sem) (mean ± sem) (mean ± sem) Monkey H 94.4% ±.7% 81.5% ± 1.6% 93.5% ±.7% 83.3% ± 1% Monkey Z 81.2% ± 2.2% 69.6% ± 2.3% 85.6% ± 1% 67.7% ± 1.3% Monkey T 92.4% ± 1.2% 77.9% ± 1.8% 84.8% ± 1% 69.8% ± 1% This table shows the performance in first sequential paired-association trials (SPATs) (the first trials just after reward instruction in blocks) and later trials (including all remaining trials in blocks) for three monkeys (H, Z and T). A two-way ANOVA (trial order (first: later) vs. reward (large: small)) revealed that Monkey H had a significant main effect of reward on performance (p<.1), there was no significant main effect of trial order (p>.2) and no interaction (p>.6); Monkey Z had a significant main effect of reward (p<.1), there was no significant main effect of trial order (p>.4) and no interaction (p>.8); Monkey T showed both a main effect of reward (p<.1) and a main effect of trial order (p<.1), but no interaction (p>.3).

16 Supplementary Table 2 The correct rates of first SPATs in switched-reward condition and constant-reward conditions Switched-reward condition Constant-reward condition Large reward Small reward Large reward Small reward (mean ± sem) (mean ± sem) (mean ± sem) (mean ± sem) Monkey H 94.1% ±.9% 83.2% ± 1.4% 95.2% ±.8% 76.4% ± 3.1% Monkey Z 84.3% ± 2.1% 68.7% ± 2.4% 8.3% ± 5.9% 62.2% ± 6.7% Monkey T 92.3% ± 1.3% 78.5% ± 2.2% 9.4% ± 2.8% 84.% ± 3.1% The table shows the performance of first sequential paired-association trials (SPATs) in switched-reward condition (the stimulus-reward contingency was reversed between two consecutive blocks) and constant-reward condition (the stimulus-reward contingency was remained between two consecutive blocks). The statistic significance was checked between large reward and small reward trials by two-tailed t-test (: p<.1; : p<.5).

Double dissociation of value computations in orbitofrontal and anterior cingulate neurons

Double dissociation of value computations in orbitofrontal and anterior cingulate neurons Supplementary Information for: Double dissociation of value computations in orbitofrontal and anterior cingulate neurons Steven W. Kennerley, Timothy E. J. Behrens & Jonathan D. Wallis Content list: Supplementary

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

Supplementary Information. Gauge size. midline. arcuate 10 < n < 15 5 < n < 10 1 < n < < n < 15 5 < n < 10 1 < n < 5. principal principal

Supplementary Information. Gauge size. midline. arcuate 10 < n < 15 5 < n < 10 1 < n < < n < 15 5 < n < 10 1 < n < 5. principal principal Supplementary Information set set = Reward = Reward Gauge size Gauge size 3 Numer of correct trials 3 Numer of correct trials Supplementary Fig.. Principle of the Gauge increase. The gauge size (y axis)

More information

Supplementary Material for

Supplementary Material for Supplementary Material for Selective neuronal lapses precede human cognitive lapses following sleep deprivation Supplementary Table 1. Data acquisition details Session Patient Brain regions monitored Time

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Atlas representations of the midcingulate (MCC) region targeted in this study compared against the anterior cingulate (ACC) region commonly reported. Coronal sections are shown on

More information

Supplementary Figure 1. Recording sites.

Supplementary Figure 1. Recording sites. Supplementary Figure 1 Recording sites. (a, b) Schematic of recording locations for mice used in the variable-reward task (a, n = 5) and the variable-expectation task (b, n = 5). RN, red nucleus. SNc,

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Trial structure for go/no-go behavior

Nature Neuroscience: doi: /nn Supplementary Figure 1. Trial structure for go/no-go behavior Supplementary Figure 1 Trial structure for go/no-go behavior a, Overall timeline of experiments. Day 1: A1 mapping, injection of AAV1-SYN-GCAMP6s, cranial window and headpost implantation. Water restriction

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Data 1 Description: Summary datasheets showing the spatial

More information

Theta sequences are essential for internally generated hippocampal firing fields.

Theta sequences are essential for internally generated hippocampal firing fields. Theta sequences are essential for internally generated hippocampal firing fields. Yingxue Wang, Sandro Romani, Brian Lustig, Anthony Leonardo, Eva Pastalkova Supplementary Materials Supplementary Modeling

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training. Supplementary Figure 1 Behavioral training. a, Mazes used for behavioral training. Asterisks indicate reward location. Only some example mazes are shown (for example, right choice and not left choice maze

More information

Prefrontal Activity During Serial Probe Reproduction Task: Encoding, Mnemonic, and Retrieval Processes

Prefrontal Activity During Serial Probe Reproduction Task: Encoding, Mnemonic, and Retrieval Processes Prefrontal Activity During Serial Probe Reproduction Task: Encoding, Mnemonic, and Retrieval Processes Masato Inoue and Akichika Mikami JN 95:1008-1041, 2006. First published Oct 5, 2005; doi:10.1152/jn.00552.2005

More information

Summary of behavioral performances for mice in imaging experiments.

Summary of behavioral performances for mice in imaging experiments. Supplementary Figure 1 Summary of behavioral performances for mice in imaging experiments. (a) Task performance for mice during M2 imaging experiments. Open triangles, individual experiments. Filled triangles,

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Confirmation that optogenetic inhibition of dopaminergic neurons affects choice

Nature Neuroscience: doi: /nn Supplementary Figure 1. Confirmation that optogenetic inhibition of dopaminergic neurons affects choice Supplementary Figure 1 Confirmation that optogenetic inhibition of dopaminergic neurons affects choice (a) Sample behavioral trace as in Figure 1d, but with NpHR stimulation trials depicted as green blocks

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11239 Introduction The first Supplementary Figure shows additional regions of fmri activation evoked by the task. The second, sixth, and eighth shows an alternative way of analyzing reaction

More information

Supplementary Figure 1

Supplementary Figure 1 8w Pia II/III IV V VI PV EYFP EYFP PV EYFP PV d PV EYFP Supplementary Figure a Spike probability x - PV-Cre d Spike probability x - RS RS b e Spike probability Spike probability.6......8..... FS FS c f

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Lick response during the delayed Go versus No-Go task.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Lick response during the delayed Go versus No-Go task. Supplementary Figure 1 Lick response during the delayed Go versus No-Go task. Trial-averaged lick rate was averaged across all mice used for pyramidal cell imaging (n = 9). Different colors denote different

More information

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Distinct contributions of Na v 1.6 and Na v 1.2 in action potential initiation and backpropagation Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Supplementary figure and legend Supplementary

More information

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections.

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections. Supplementary Figure 1 Characterization of viral injections. (a) Dorsal view of a mouse brain (dashed white outline) after receiving a large, unilateral thalamic injection (~100 nl); demonstrating that

More information

Flexibility of Sensory Representations in Prefrontal Cortex Depends on Cell Type

Flexibility of Sensory Representations in Prefrontal Cortex Depends on Cell Type Article Flexibility of Sensory Representations in Prefrontal Cortex Depends on Cell Type Cory R. Hussar 1,2 and Tatiana Pasternak 1,2, * 1 Department of Neurobiology and Anatomy 2 Center for Visual Science

More information

CROSSMODAL PLASTICITY IN SPECIFIC AUDITORY CORTICES UNDERLIES VISUAL COMPENSATIONS IN THE DEAF "

CROSSMODAL PLASTICITY IN SPECIFIC AUDITORY CORTICES UNDERLIES VISUAL COMPENSATIONS IN THE DEAF Supplementary Online Materials To complement: CROSSMODAL PLASTICITY IN SPECIFIC AUDITORY CORTICES UNDERLIES VISUAL COMPENSATIONS IN THE DEAF " Stephen G. Lomber, M. Alex Meredith, and Andrej Kral 1 Supplementary

More information

SUPPLEMENTARY INFORMATION Perceptual learning in a non-human primate model of artificial vision

SUPPLEMENTARY INFORMATION Perceptual learning in a non-human primate model of artificial vision SUPPLEMENTARY INFORMATION Perceptual learning in a non-human primate model of artificial vision Nathaniel J. Killian 1,2, Milena Vurro 1,2, Sarah B. Keith 1, Margee J. Kyada 1, John S. Pezaris 1,2 1 Department

More information

Introduction RESEARCH ARTICLE. Masataka Watanabe Æ Kazuo Hikosaka Masamichi Sakagami Æ Shu-ichiro Shirakawa

Introduction RESEARCH ARTICLE. Masataka Watanabe Æ Kazuo Hikosaka Masamichi Sakagami Æ Shu-ichiro Shirakawa Exp Brain Res (25) 166: 263 276 DOI 1.17/s221-5-2358-y RESEARCH ARTICLE Masataka Watanabe Æ Kazuo Hikosaka Masamichi Sakagami Æ Shu-ichiro Shirakawa Functional significance of delay-period activity of

More information

Ventrolateral Prefrontal Neuronal Activity Related to Active Controlled Memory Retrieval in Nonhuman Primates

Ventrolateral Prefrontal Neuronal Activity Related to Active Controlled Memory Retrieval in Nonhuman Primates Cerebral Cortex 2007;17:i27-i40 doi:10.1093/cercor/bhm086 Ventrolateral Prefrontal Neuronal Activity Related to Active Controlled Memory Retrieval in Nonhuman Primates Genevie` ve Cadoret and Michael Petrides

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Drd1a-Cre driven ChR2 expression in the SCN. (a) Low-magnification image of a representative Drd1a-ChR2 coronal brain section (n = 2) showing endogenous tdtomato fluorescence (magenta).

More information

Sum of Neurally Distinct Stimulus- and Task-Related Components.

Sum of Neurally Distinct Stimulus- and Task-Related Components. SUPPLEMENTARY MATERIAL for Cardoso et al. 22 The Neuroimaging Signal is a Linear Sum of Neurally Distinct Stimulus- and Task-Related Components. : Appendix: Homogeneous Linear ( Null ) and Modified Linear

More information

Supplementary Figure 1. Example of an amygdala neuron whose activity reflects value during the visual stimulus interval. This cell responded more

Supplementary Figure 1. Example of an amygdala neuron whose activity reflects value during the visual stimulus interval. This cell responded more 1 Supplementary Figure 1. Example of an amygdala neuron whose activity reflects value during the visual stimulus interval. This cell responded more strongly when an image was negative than when the same

More information

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 1 2 1 3 Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 4 5 6 7 (a) Reconstructions of LII/III GIN-cells with somato-dendritic compartments in orange and axonal arborizations

More information

Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) 108 (b-c) (d) (e) (f) (g)

Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) 108 (b-c) (d) (e) (f) (g) Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) In four mice, cre-dependent expression of the hyperpolarizing opsin Arch in pyramidal cells

More information

From Rule to Response: Neuronal Processes in the Premotor and Prefrontal Cortex

From Rule to Response: Neuronal Processes in the Premotor and Prefrontal Cortex J Neurophysiol 90: 1790 1806, 2003. First published May 7, 2003; 10.1152/jn.00086.2003. From Rule to Response: Neuronal Processes in the Premotor and Prefrontal Cortex Jonathan D. Wallis and Earl K. Miller

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Task timeline for Solo and Info trials.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Task timeline for Solo and Info trials. Supplementary Figure 1 Task timeline for Solo and Info trials. Each trial started with a New Round screen. Participants made a series of choices between two gambles, one of which was objectively riskier

More information

Representation of negative motivational value in the primate

Representation of negative motivational value in the primate Representation of negative motivational value in the primate lateral habenula Masayuki Matsumoto & Okihide Hikosaka Supplementary Figure 1 Anticipatory licking and blinking. (a, b) The average normalized

More information

Supplementary Information

Supplementary Information Supplementary Information D-Serine regulates cerebellar LTD and motor coordination through the 2 glutamate receptor Wataru Kakegawa, Yurika Miyoshi, Kenji Hamase, Shinji Matsuda, Keiko Matsuda, Kazuhisa

More information

The primate amygdala combines information about space and value

The primate amygdala combines information about space and value The primate amygdala combines information about space and Christopher J Peck 1,8, Brian Lau 1,7,8 & C Daniel Salzman 1 6 npg 213 Nature America, Inc. All rights reserved. A stimulus predicting reinforcement

More information

Supplementary Figure 1. Localization of face patches (a) Sagittal slice showing the location of fmri-identified face patches in one monkey targeted

Supplementary Figure 1. Localization of face patches (a) Sagittal slice showing the location of fmri-identified face patches in one monkey targeted Supplementary Figure 1. Localization of face patches (a) Sagittal slice showing the location of fmri-identified face patches in one monkey targeted for recording; dark black line indicates electrode. Stereotactic

More information

From Biostatistics Using JMP: A Practical Guide. Full book available for purchase here. Chapter 1: Introduction... 1

From Biostatistics Using JMP: A Practical Guide. Full book available for purchase here. Chapter 1: Introduction... 1 From Biostatistics Using JMP: A Practical Guide. Full book available for purchase here. Contents Dedication... iii Acknowledgments... xi About This Book... xiii About the Author... xvii Chapter 1: Introduction...

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL 1 SUPPLEMENTAL MATERIAL Response time and signal detection time distributions SM Fig. 1. Correct response time (thick solid green curve) and error response time densities (dashed red curve), averaged across

More information

Memory-Guided Sensory Comparisons in the Prefrontal Cortex: Contribution of Putative Pyramidal Cells and Interneurons

Memory-Guided Sensory Comparisons in the Prefrontal Cortex: Contribution of Putative Pyramidal Cells and Interneurons The Journal of Neuroscience, February 22, 2012 32(8):2747 2761 2747 Behavioral/Systems/Cognitive Memory-Guided Sensory Comparisons in the Prefrontal Cortex: Contribution of Putative Pyramidal Cells and

More information

Supplemental Information. A Visual-Cue-Dependent Memory Circuit. for Place Navigation

Supplemental Information. A Visual-Cue-Dependent Memory Circuit. for Place Navigation Neuron, Volume 99 Supplemental Information A Visual-Cue-Dependent Memory Circuit for Place Navigation Han Qin, Ling Fu, Bo Hu, Xiang Liao, Jian Lu, Wenjing He, Shanshan Liang, Kuan Zhang, Ruijie Li, Jiwei

More information

Short- and long-lasting consequences of in vivo nicotine treatment

Short- and long-lasting consequences of in vivo nicotine treatment Short- and long-lasting consequences of in vivo nicotine treatment on hippocampal excitability Rachel E. Penton, Michael W. Quick, Robin A. J. Lester Supplementary Figure 1. Histogram showing the maximal

More information

Nature Neuroscience: doi: /nn.4642

Nature Neuroscience: doi: /nn.4642 Supplementary Figure 1 Recording sites and example waveform clustering, as well as electrophysiological recordings of auditory CS and shock processing following overtraining. (a) Recording sites in LC

More information

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547 Supplementary Figure 1 Characterization of the Microfetti mouse model. (a) Gating strategy for 8-color flow analysis of peripheral Ly-6C + monocytes from Microfetti mice 5-7 days after TAM treatment. Living

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Miniature microdrive, spike sorting and sleep stage detection. a, A movable recording probe with 8-tetrodes (32-channels). It weighs ~1g. b, A mouse implanted with 8 tetrodes in

More information

Specimen. Humeral Head. Femoral Head. Objective. Femoral Condyle (medial) Supplementary Figure 1

Specimen. Humeral Head. Femoral Head. Objective. Femoral Condyle (medial) Supplementary Figure 1 A B Specimen Humeral Head 2 1 µm 76 µm Femoral Head Objective Femoral Condyle (medial) Supplementary Figure 1 A Femoral Head Global Cell Density Superficial Cell Density Cell Number at 1 µm Nuclei /.1

More information

Quantitative Comparison Between Neural Response in Macaque Inferotemporal Cortex and Behavioral Discrimination of Photographic Images

Quantitative Comparison Between Neural Response in Macaque Inferotemporal Cortex and Behavioral Discrimination of Photographic Images J Neurophysiol 98: 263 277, 27. First published June 27, 27; doi:.52/jn.6.27. Quantitative Comparison etween Neural Response in Macaque Inferotemporal Cortex and ehavioral Discrimination of Photographic

More information

Two distinct mechanisms for experiencedependent

Two distinct mechanisms for experiencedependent SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41593-018-0150-0 In the format provided by the authors and unedited. Two distinct mechanisms for experiencedependent homeostasis Michelle C.

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Distribution of starter cells for RV-mediated retrograde tracing.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Distribution of starter cells for RV-mediated retrograde tracing. Supplementary Figure 1 Distribution of starter cells for RV-mediated retrograde tracing. Parcellation of cortical areas is based on Allen Mouse Brain Atlas and drawn to scale. Thick white curves, outlines

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo. Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from

More information

Supporting Information Figure S1. Study day diagram. The MRI scans were more frequent for

Supporting Information Figure S1. Study day diagram. The MRI scans were more frequent for ASSOCIATED CONTENT Supporting Information. Supporting Information Figure S1. Study day diagram. The MRI scans were more frequent for the first half an hour when gastric emptying was expected to be faster.

More information

Attention Response Functions: Characterizing Brain Areas Using fmri Activation during Parametric Variations of Attentional Load

Attention Response Functions: Characterizing Brain Areas Using fmri Activation during Parametric Variations of Attentional Load Attention Response Functions: Characterizing Brain Areas Using fmri Activation during Parametric Variations of Attentional Load Intro Examine attention response functions Compare an attention-demanding

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse.

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse. Supplementary Figure 1 Activity in turtle dorsal cortex is sparse. a. Probability distribution of firing rates across the population (notice log scale) in our data. The range of firing rates is wide but

More information

The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses

The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses Jeremy R. Reynolds 1 *, Randall C. O Reilly 2, Jonathan D. Cohen 3, Todd S. Braver 4 1 Department of Psychology,

More information

B220 CD4 CD8. Figure 1. Confocal Image of Sensitized HLN. Representative image of a sensitized HLN

B220 CD4 CD8. Figure 1. Confocal Image of Sensitized HLN. Representative image of a sensitized HLN B220 CD4 CD8 Natarajan et al., unpublished data Figure 1. Confocal Image of Sensitized HLN. Representative image of a sensitized HLN showing B cell follicles and T cell areas. 20 µm thick. Image of magnification

More information

Structural basis for the role of inhibition in facilitating adult brain plasticity

Structural basis for the role of inhibition in facilitating adult brain plasticity Structural basis for the role of inhibition in facilitating adult brain plasticity Jerry L. Chen, Walter C. Lin, Jae Won Cha, Peter T. So, Yoshiyuki Kubota & Elly Nedivi SUPPLEMENTARY FIGURES 1-6 a b M

More information

Reward-Dependent Modulation of Working Memory in Lateral Prefrontal Cortex

Reward-Dependent Modulation of Working Memory in Lateral Prefrontal Cortex The Journal of Neuroscience, March 11, 29 29(1):3259 327 3259 Behavioral/Systems/Cognitive Reward-Dependent Modulation of Working Memory in Lateral Prefrontal Cortex Steven W. Kennerley and Jonathan D.

More information

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Supplementary Information Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Rogier Min and Thomas Nevian Department of Physiology, University of Berne, Bern, Switzerland

More information

Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke

Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke SUPPLEMENTARY INFORMATION doi:10.1038/nature09511 Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke Pre Post 7-days Systolic Diastolic BPM Systolic Diastolic BPM Systolic

More information

Peripheral facial paralysis (right side). The patient is asked to close her eyes and to retract their mouth (From Heimer) Hemiplegia of the left side. Note the characteristic position of the arm with

More information

Supplementary Information for Correlated input reveals coexisting coding schemes in a sensory cortex

Supplementary Information for Correlated input reveals coexisting coding schemes in a sensory cortex Supplementary Information for Correlated input reveals coexisting coding schemes in a sensory cortex Luc Estebanez 1,2 *, Sami El Boustani 1 *, Alain Destexhe 1, Daniel E. Shulz 1 1 Unité de Neurosciences,

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Overlap between default mode network (DMN) and movie/recall maps.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Overlap between default mode network (DMN) and movie/recall maps. Supplementary Figure 1 Overlap between default mode network (DMN) and movie/recall maps. We defined the DMN for each individual using the posterior medial cortex ROI as a seed for functional connectivity

More information

Supplemental Information. Dorsal Raphe Dual Serotonin-Glutamate Neurons. Drive Reward by Establishing Excitatory Synapses

Supplemental Information. Dorsal Raphe Dual Serotonin-Glutamate Neurons. Drive Reward by Establishing Excitatory Synapses Cell Reports, Volume 26 Supplemental Information Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons Hui-Ling Wang, Shiliang

More information

Orbitofrontal cortical activity during repeated free choice

Orbitofrontal cortical activity during repeated free choice J Neurophysiol 107: 3246 3255, 2012. First published March 14, 2012; doi:10.1152/jn.00690.2010. Orbitofrontal cortical activity during repeated free choice Michael Campos, Kari Koppitch, Richard A. Andersen,

More information

Attentional Changes in Either Criterion or Sensitivity Are Associated with Robust Modulations in Lateral Prefrontal Cortex

Attentional Changes in Either Criterion or Sensitivity Are Associated with Robust Modulations in Lateral Prefrontal Cortex Article Attentional Changes in Either Criterion or Sensitivity Are Associated with Robust Modulations in Lateral Prefrontal Cortex Highlights d Two behavioral components of visuospatial attention were

More information

Rachael E. Jack, Caroline Blais, Christoph Scheepers, Philippe G. Schyns, and Roberto Caldara

Rachael E. Jack, Caroline Blais, Christoph Scheepers, Philippe G. Schyns, and Roberto Caldara Current Biology, Volume 19 Supplemental Data Cultural Confusions Show that Facial Expressions Are Not Universal Rachael E. Jack, Caroline Blais, Christoph Scheepers, Philippe G. Schyns, and Roberto Caldara

More information

Supplementary Information

Supplementary Information Supplementary Information The neural correlates of subjective value during intertemporal choice Joseph W. Kable and Paul W. Glimcher a 10 0 b 10 0 10 1 10 1 Discount rate k 10 2 Discount rate k 10 2 10

More information

Attentional Modulation of Firing Rate Varies with Burstiness across Putative Pyramidal Neurons in Macaque Visual Area V4

Attentional Modulation of Firing Rate Varies with Burstiness across Putative Pyramidal Neurons in Macaque Visual Area V4 The Journal of Neuroscience, July 27, 2011 31(30):10983 10992 10983 Behavioral/Systems/Cognitive Attentional Modulation of Firing Rate Varies with Burstiness across Putative Pyramidal Neurons in Macaque

More information

Behavioral generalization

Behavioral generalization Supplementary Figure 1 Behavioral generalization. a. Behavioral generalization curves in four Individual sessions. Shown is the conditioned response (CR, mean ± SEM), as a function of absolute (main) or

More information

Attention: Neural Mechanisms and Attentional Control Networks Attention 2

Attention: Neural Mechanisms and Attentional Control Networks Attention 2 Attention: Neural Mechanisms and Attentional Control Networks Attention 2 Hillyard(1973) Dichotic Listening Task N1 component enhanced for attended stimuli Supports early selection Effects of Voluntary

More information

Representation of Immediate and Final Behavioral Goals in the Monkey Prefrontal Cortex during an Instructed Delay Period

Representation of Immediate and Final Behavioral Goals in the Monkey Prefrontal Cortex during an Instructed Delay Period Cerebral Cortex October 2005;15:1535--1546 doi:10.1093/cercor/bhi032 Advance Access publication February 9, 2005 Representation of Immediate and Final Behavioral Goals in the Monkey Prefrontal Cortex during

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/8/381/ra59/dc1 Supplementary Materials for Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses

More information

Comparison of Associative Learning- Related Signals in the Macaque Perirhinal Cortex and Hippocampus

Comparison of Associative Learning- Related Signals in the Macaque Perirhinal Cortex and Hippocampus Cerebral Cortex May 2009;19:1064--1078 doi:10.1093/cercor/bhn156 Advance Access publication October 20, 2008 Comparison of Associative Learning- Related Signals in the Macaque Perirhinal Cortex and Hippocampus

More information

Prefrontal Neurons of Opposite Spatial Preference Display Distinct Target Selection Dynamics

Prefrontal Neurons of Opposite Spatial Preference Display Distinct Target Selection Dynamics 9520 The Journal of Neuroscience, May 29, 2013 33(22):9520 9529 Behavioral/Cognitive Prefrontal Neurons of Opposite Spatial Preference Display Distinct Target Selection Dynamics Therese Lennert 1 and Julio

More information

Ichiro Tsuda and Motohiko Hatakeyama. Applied Mathematics and Complex Systems Research Group, Department of Mathematics, Graduate School of Science,

Ichiro Tsuda and Motohiko Hatakeyama. Applied Mathematics and Complex Systems Research Group, Department of Mathematics, Graduate School of Science, Making Sense of Internal Logic: Theory and a Case Study Ichiro Tsuda and Motohiko Hatakeyama Applied Mathematics and Complex Systems Research Group, Department of Mathematics, Graduate School of Science,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1139 a d Whisker angle (deg) Whisking repeatability Control Muscimol.4.3.2.1 -.1 8 4-4 1 2 3 4 Performance (d') Pole 8 4-4 1 2 3 4 5 Time (s) b Mean protraction angle (deg) e Hit rate (p

More information

The individual animals, the basic design of the experiments and the electrophysiological

The individual animals, the basic design of the experiments and the electrophysiological SUPPORTING ONLINE MATERIAL Material and Methods The individual animals, the basic design of the experiments and the electrophysiological techniques for extracellularly recording from dopamine neurons were

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Experimental design and workflow utilized to generate the WMG Protein Atlas.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Experimental design and workflow utilized to generate the WMG Protein Atlas. Supplementary Figure 1 Experimental design and workflow utilized to generate the WMG Protein Atlas. (a) Illustration of the plant organs and nodule infection time points analyzed. (b) Proteomic workflow

More information

Neural Basis of Cognitive Control over Movement Inhibition: Human fmri and Primate Electrophysiology Evidence

Neural Basis of Cognitive Control over Movement Inhibition: Human fmri and Primate Electrophysiology Evidence Article Neural Basis of Cognitive Control over Movement Inhibition: Human fmri and Primate Electrophysiology Evidence Highlights d A context-dependent stop-signal task with human fmri and primate neurophysiology

More information

Effects of Amygdala Lesions on Reward-Value Coding in Orbital and Medial Prefrontal Cortex

Effects of Amygdala Lesions on Reward-Value Coding in Orbital and Medial Prefrontal Cortex Article Effects of Amygdala Lesions on Reward-Value Coding in Orbital and Medial Prefrontal Cortex Peter H. Rudebeck, 1, * Andrew R. Mitz, 1 Ravi V. Chacko, 1 and Elisabeth A. Murray 1 1 Section on the

More information

U.S. copyright law (title 17 of U.S. code) governs the reproduction and redistribution of copyrighted material.

U.S. copyright law (title 17 of U.S. code) governs the reproduction and redistribution of copyrighted material. U.S. copyright law (title 17 of U.S. code) governs the reproduction and redistribution of copyrighted material. The Journal of Neuroscience, June 15, 2003 23(12):5235 5246 5235 A Comparison of Primate

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. ACx plasticity is required for fear conditioning.

Nature Neuroscience: doi: /nn Supplementary Figure 1. ACx plasticity is required for fear conditioning. Supplementary Figure 1 ACx plasticity is required for fear conditioning. (a) Freezing time of conditioned and control mice before CS presentation and during CS presentation in a new context. Student s

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Transcriptional program of the TE and MP CD8 + T cell subsets.

Nature Immunology: doi: /ni Supplementary Figure 1. Transcriptional program of the TE and MP CD8 + T cell subsets. Supplementary Figure 1 Transcriptional program of the TE and MP CD8 + T cell subsets. (a) Comparison of gene expression of TE and MP CD8 + T cell subsets by microarray. Genes that are 1.5-fold upregulated

More information

Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex

Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex Yuichi Katori 1,2 *, Kazuhiro Sakamoto 3, Naohiro Saito 4, Jun Tanji 4, Hajime

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature14066 Supplementary discussion Gradual accumulation of evidence for or against different choices has been implicated in many types of decision-making, including value-based decisions

More information

Neural Coding. Computing and the Brain. How Is Information Coded in Networks of Spiking Neurons?

Neural Coding. Computing and the Brain. How Is Information Coded in Networks of Spiking Neurons? Neural Coding Computing and the Brain How Is Information Coded in Networks of Spiking Neurons? Coding in spike (AP) sequences from individual neurons Coding in activity of a population of neurons Spring

More information

Montreal Neurological Institute and Department of Psychology, McGill University, Montreal, Quebec H3A 2B4, Canada

Montreal Neurological Institute and Department of Psychology, McGill University, Montreal, Quebec H3A 2B4, Canada The Journal of Neuroscience, January 1995, 15(l): 359-375 Impairments on Nonspatial Self-Ordered and Externally Ordered Working Memory Tasks after Lesions of the Mid-Dorsal Part of the Lateral Frontal

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1 SNARE Probes for FRET/2pFLIM Analysis Used in the Present Study. mturquoise (mtq) and Venus (Ven) are in blue and yellow, respectively. The soluble N-ethylmaleimide-sensitive

More information

Studying animal behavior

Studying animal behavior Studying animal behavior Examination of animal learning and behaviour Analyis and evaluation of the experiments ELUP students Experiment was accomplished by............ Teacher:... Date:... Goals of the

More information

Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn.

Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn. Supplementary Figure 1 SybII and Ceb are sorted to distinct vesicle populations in astrocytes. (a) Exemplary images for cultured astrocytes co-immunolabeled with SybII and Ceb antibodies. SybII accumulates

More information

Aesthetic Response to Color Combinations: Preference, Harmony, and Similarity. Supplementary Material. Karen B. Schloss and Stephen E.

Aesthetic Response to Color Combinations: Preference, Harmony, and Similarity. Supplementary Material. Karen B. Schloss and Stephen E. Aesthetic Response to Color Combinations: Preference, Harmony, and Similarity Supplementary Material Karen B. Schloss and Stephen E. Palmer University of California, Berkeley Effects of Cut on Pair Preference,

More information

Supporting Information

Supporting Information 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Supporting Information Variances and biases of absolute distributions were larger in the 2-line

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/3/114/ra23/dc1 Supplementary Materials for Regulation of Zap70 Expression During Thymocyte Development Enables Temporal Separation of CD4 and CD8 Repertoire Selection

More information

Supporting Information Table of Contents

Supporting Information Table of Contents Supporting Information Table of Contents Supporting Information Figure 1 Page 2 Supporting Information Figure 2 Page 4 Supporting Information Figure 3 Page 5 Supporting Information Figure 4 Page 6 Supporting

More information

Consistency of Encoding in Monkey Visual Cortex

Consistency of Encoding in Monkey Visual Cortex The Journal of Neuroscience, October 15, 2001, 21(20):8210 8221 Consistency of Encoding in Monkey Visual Cortex Matthew C. Wiener, Mike W. Oram, Zheng Liu, and Barry J. Richmond Laboratory of Neuropsychology,

More information

Iontophoresis, physiology and data acquisition

Iontophoresis, physiology and data acquisition Methods: Behavioral training, surgery and electrophysiological recordings were performed as described previously (1) and were in accord with guidelines set by the National Institutes of Health, and approved

More information

Coding of Reward Risk by Orbitofrontal Neurons Is Mostly Distinct from Coding of Reward Value

Coding of Reward Risk by Orbitofrontal Neurons Is Mostly Distinct from Coding of Reward Value Article Coding of Risk by Orbitofrontal Neurons Is Mostly Distinct from Coding of Value Martin O Neill 1, * and Wolfram Schultz 1 1 Department of Physiology, Development, and Neuroscience, University of

More information

Table 1. Summary of PET and fmri Methods. What is imaged PET fmri BOLD (T2*) Regional brain activation. Blood flow ( 15 O) Arterial spin tagging (AST)

Table 1. Summary of PET and fmri Methods. What is imaged PET fmri BOLD (T2*) Regional brain activation. Blood flow ( 15 O) Arterial spin tagging (AST) Table 1 Summary of PET and fmri Methods What is imaged PET fmri Brain structure Regional brain activation Anatomical connectivity Receptor binding and regional chemical distribution Blood flow ( 15 O)

More information

Meaning-based guidance of attention in scenes as revealed by meaning maps

Meaning-based guidance of attention in scenes as revealed by meaning maps SUPPLEMENTARY INFORMATION Letters DOI: 1.138/s41562-17-28- In the format provided by the authors and unedited. -based guidance of attention in scenes as revealed by meaning maps John M. Henderson 1,2 *

More information

Supplemental Figure S1. Expression of Cirbp mrna in mouse tissues and NIH3T3 cells.

Supplemental Figure S1. Expression of Cirbp mrna in mouse tissues and NIH3T3 cells. SUPPLEMENTAL FIGURE AND TABLE LEGENDS Supplemental Figure S1. Expression of Cirbp mrna in mouse tissues and NIH3T3 cells. A) Cirbp mrna expression levels in various mouse tissues collected around the clock

More information

Time Experiencing by Robotic Agents

Time Experiencing by Robotic Agents Time Experiencing by Robotic Agents Michail Maniadakis 1 and Marc Wittmann 2 and Panos Trahanias 1 1- Foundation for Research and Technology - Hellas, ICS, Greece 2- Institute for Frontier Areas of Psychology

More information

9700 BIOLOGY. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

9700 BIOLOGY. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers. CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the May/June 2013 series 9700 BIOLOGY 9700/31 Paper 31 (Advanced Practical Skills 1), maximum raw

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites. Supplementary Figure 1 Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites. Staining with fluorescence antibodies to detect GFP (Green), β-galactosidase (magenta/white). (a, b) Class

More information