8/4/2016. MRI for Radiotherapy: MRI Basics. Nuclear Magnetic Resonance. Nuclear Magnetic Resonance. Wilson Miller

Size: px
Start display at page:

Download "8/4/2016. MRI for Radiotherapy: MRI Basics. Nuclear Magnetic Resonance. Nuclear Magnetic Resonance. Wilson Miller"

Transcription

1 MRI for Radiotherap: MRI asics Wilson Miller Universit of Virginia Department of Radiolog & Medical Imaging AAPM 2016 August 4, 2016 Nuclear Magnetic Resonance Magnetic resonance images are created using the magnetic resonance (MR) properties of hdrogen nuclei in fat and water. Magnetiation vector Spinning proton aligned with magnetic field Magnetiation vector points along ais at thermal equilibrium Nuclear Magnetic Resonance When the spins are tipped awa from the longitudinal () direction b a radiofrequenc (RF) electromagnetic pulse, the begin to precess about the ais at the Larmor frequenc (f = 128 MH at 3 Tesla). Flip angle θ < 90 θ Spinning proton precessing about magnetic field Transverse component rotates about the ais 1

2 Nuclear Magnetic Resonance When the spins are tipped awa from the longitudinal () direction b a radiofrequenc (RF) electromagnetic pulse, the begin to precess about the ais at the Larmor frequenc (f = 128 MH at 3.0 Tesla). Flip angle θ = 90 Spinning proton precessing about magnetic field Transverse component rotates about the ais Nuclear Magnetic Resonance The rotating transverse component of the magnetiation induces an oscillating signal in a nearb RF receiver coil. Demodulated signal Flip angle θ = 90 The signal amplitude is proportional to the transverse magnetiation. Transverse component rotates about the ais T1 and T2 relaation An ecitation RF pulse converts longitudinal magnetiation into transverse magnetiation, which then decas with constant T2. The longitudinal magnetiation regrows toward thermal equilibrium with constant T1. After 90 RF pulse T2 deca ~ e t/t2 T1 recover ~ 1 e t/t1 2

3 T1 and T2 relaation An ecitation RF pulse converts longitudinal magnetiation into transverse magnetiation, which then decas with constant T2. The longitudinal magnetiation regrows toward thermal equilibrium with constant T1. Relaation T2 deca ~ e t/t2 T1 recover ~ 1 e t/t1 T1 and T2 relaation T1 and T2 var widel across different tissue tpes, which contributes to the ecellent soft tissue contrast offered b MRI. Relaation T2 deca ~ e t/t2 T1 recover ~ 1 e t/t1 CT vs. MRI Standard planning CT of pelvis Corresponding T2-weighted MRI T Koch et al, in MReadings: MR in RT. siemens.com/magnetom-world-rt 3

4 Contrast Manipulation: and The repetition is the between ecitation RF pulses. Longitudinal magnetiation vs. [s] 90 RF pulse 90 RF pulse controls T1 weighting The echo is the between the ecitation RF pulse and signal acquisition. Transverse magnetiation vs. [ms] 90 RF pulse Readout controls T2 weighting T2-weighted MRI Use >> T1, ~ T2 Signal intensit stratifies according to T2 Longer T2 brighter on image T2 is generall elevated in cancerous tissue T1-weighted MRI Use < T1, short. Inherentl faster than T2-w MRI. Signal intensit stratifies according to T1 Shorter T2 brighter on image T1 is also generall elevated in cancerous tissue 4

5 T1 and T2 weighted MRI of Liver CT T1-weighted MRI T2-weighted MRI Liver metastases appear dark on T1 weighted MRI and bright on T2 weighted MRI Unrecogniable on CT (in this particular case) RN Low, Oncolog (Williston Park), 14(6 Suppl 3):5-14; Contrast-Enhanced MRI Gadolinium-based contrast agents shorten T1 Results in bright signal on T1-weighted MRI Glioblastoma: Post-contrast T1 Delineation of enhancing volume Especiall useful in the brain Leak vasculature in high-grade gliomas T2-weighted MRI can be used for non-enhancing (usu. low grade) gliomas N Joe et al, Radiolog 212: (1999) Magnetic Resonance Imaging Spatial localiation is accomplished b using linearl varing magnetic fields ( gradients ) to map position to resonance frequenc. Z gradient X gradient f f 5

6 Magnetic Resonance Imaging We sample the NMR signal in the presence of magnetic field gradients, in order to measure the spatial frequenc components of the magnetiation distribution in k space. k 2D k-space amplitudes ift 2D magnitude image Then reconstruct the image b appling the inverse discrete Fourier transform to the k-space data matri. k MRI Pulse Sequences An MRI pulse sequence is the set of instructions given to the scanner, to tell it when to appl the RF pulses, when to turn magnetic field gradients on and off, and when to read out the MR signal, in order to accumulate the k-space data needed to construct an image. Main pulse sequences used for radiotherap applications: Fast spin echo: T2 weighted MRI Spoiled gradient echo: T1 weighted MRI Set of D k-space matrices Fast Spin Echo Pulse Sequence A.k.a. Turbo spin echo. ut, relativel slow Refocus magnetiation for ever k-space line Achieve T2 (or T1) weighting b adjusting and RF EX. REFOC. REFOC. REFOC. EX. REFOC. G SLICE G PHASE G READ ADC 6

7 Spoiled Gradient Echo Pulse Sequence A.k.a. FLASH. Ver fast, use shortest possible. Perfrom new RF ecitation before ever k-space line. Inherentl T1 weighted (because << T1) θ << 90 RF G Z (slice select) G Y (phase encode) G X (freq. encode) ADC Fast Imaging Spoiled gradient-echo pulse sequence (a.k.a. FLASH) T1 weighted Strong, fast gradients (high readout bandwidth) θ << 90 RF G Z (slice select) G Y (phase encode) G X (freq. encode) ADC θ << 90 RF Fast Imaging Spoiled gradient-echo pulse sequence (a.k.a. FLASH) T1 weighted Strong, fast gradients (high readout bandwidth) G Z (slice select) G Y (phase encode) G X (freq. encode) ADC 7

8 θ << 90 RF Fast Imaging Spoiled gradient-echo pulse sequence (a.k.a. FLASH) T1 weighted Strong, fast gradients (high readout bandwidth) Replace Spoilers with Rewinders G Z (slice select) G Y (phase encode) G X (freq. encode) ADC Fast Imaging Stead-state free precession (SSFP, a.k.a. TrueFISP, FIESTA) T2/T1 weighted; highest possible SNR for short Tradeoff: banding artifacts in regions of field nonuniformit θ << 90 RF Replace Spoilers with Rewinders G Z (slice select) G Y (phase encode) G X (freq. encode) ADC Diffusion Weighted MRI Use magnetic field gradients to encode displacement (changes in position over some interval) Measures random rownian motion of individual water molecules. Apparent diffusion coefficient (ADC) Sensitive to tissue organiation on microscopic scale. Higher cellularit lower ADC Necrosis higher ADC 8

9 G G G No displacement 9

10 G No displacement G G 10

11 G Displacement G Displacement G S b ADC 1 S 0 e Use this equation to etract ADC (Apparent Diffusion Coefficient) So-called b value can be calculated from gradient waveform S 0 S 1 11

12 Diffusion Weighted MRI Mucoepidermoid carcinoma of the right parotid gland Enhancing outer region T2 Post-contrast T1 ADC map Nonenhancing inner region Nonenhancing part of lesion is bright on T2 and ADC Histopatholog confirms low cellularit and necrosis Abdel Raek et al, Acta Radiologica 2008 Geometric Distortion ecause the spatial position is encoded into the resonance frequenc, MRI suffers geometric distortion in the presence of magnetic field nonuniformities. Scanner-related distortion Warps image at edges of large FOV Correctable using built-in tools on scanner Subject-related distortion Primaril due to magnetic field disturbances at air-tissue interfaces Minimiation strategies: use high readout bandwidth, refocusing RF pulses (e.g. fast spin echo) Worst in echo planar imaging (EPI) Scanner-Related Distortion Arises from gradient nonlinearit near the edges of the maimum field-of-view cm 10 cm 12

13 Scanner-Related Distortion efore correction After correction Gradient nonlinearit is constant and well characteried b the manufacturer Can be corrected for using integrated scanner software Thank You for staing until the bitter end! 13

1Pulse sequences for non CE MRA

1Pulse sequences for non CE MRA MRI: Principles and Applications, Friday, 8.30 9.20 am Pulse sequences for non CE MRA S. I. Gonçalves, PhD Radiology Department University Hospital Coimbra Autumn Semester, 2011 1 Magnetic resonance angiography

More information

Magnetic Resonance Angiography

Magnetic Resonance Angiography Magnetic Resonance Angiography 1 Magnetic Resonance Angiography exploits flow enhancement of GR sequences saturation of venous flow allows arterial visualization saturation of arterial flow allows venous

More information

6/23/2009. Inversion Recovery (IR) Techniques and Applications. Variations of IR Technique. STIR, FLAIR, TI and TI Null. Applications of IR

6/23/2009. Inversion Recovery (IR) Techniques and Applications. Variations of IR Technique. STIR, FLAIR, TI and TI Null. Applications of IR The Anatomy of Basic R Pulse Sequences Inversion Recovery () Techniques and Applications Chen Lin, PhD Indiana University School of edicine & Clarian Health Partners agnetization Preparation Section Chemical

More information

Fat Suppression in the Abdomen

Fat Suppression in the Abdomen Clinical How I do it? Fat Suppression in the Abdomen Wilhelm Horger Siemens Medical Solutions, Erlangen, Germany Introduction Due to the different chemical environment, hydrogen nuclei in - and in -tissue

More information

Syllabus References. Resources. Video: MRI Introduction

Syllabus References. Resources. Video: MRI Introduction MRI Lesson Outline Syllabus References 9.6.4.2.5 Define precessing and relate the frequency of the precessing to the composition of the nuclei and the strength of the applied external magnetic field 9.6.4.2.6

More information

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine Non Contrast MRA Mayil Krishnam Director, Cardiovascular and Thoracic Imaging University of California, Irvine No disclosures Non contrast MRA-Why? Limitations of CTA Radiation exposure Iodinated contrast

More information

Magnetization Preparation Sequences

Magnetization Preparation Sequences Magnetization Preparation Sequences Acquisition method may not give desired contrast Prep block adds contrast (and/or encoding) MP-RAGE = Magnetization prepared rapid acquisition with gradient echo (Mugler,

More information

Cardiovascular magnetic resonance artefacts

Cardiovascular magnetic resonance artefacts Ferreira et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:41 REVIEW Open Access Cardiovascular magnetic resonance artefacts Pedro F Ferreira 1,2*, Peter D Gatehouse 1,2, Raad H Mohiaddin 1,2

More information

MR Advance Techniques. Vascular Imaging. Class II

MR Advance Techniques. Vascular Imaging. Class II MR Advance Techniques Vascular Imaging Class II 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE In Practice RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE By Atsuya Watanabe, MD, PhD, Director, Advanced Diagnostic Imaging Center and Associate Professor, Department of Orthopedic Surgery, Teikyo

More information

MR imaging techniques

MR imaging techniques Eur Radiol (2002) 12:2866 2882 DOI 10.1007/s00330-002-1428-9 MAGNETIC RESONANCE W. R. Nitz Fast and ultrafast non-echo-planar MR imaging techniques Received: 21 August 2001 Revised: 21 February 2002 Accepted:

More information

How I do it: Non Contrast-Enhanced MR Angiography (syngo NATIVE)

How I do it: Non Contrast-Enhanced MR Angiography (syngo NATIVE) Clinical How-I-do-it Cardiovascular How I do it: Non Contrast-Enhanced MR Angiography (syngo NATIVE) Manuela Rick, Nina Kaarmann, Peter Weale, Peter Schmitt Siemens Healthcare, Erlangen, Germany Introduction

More information

Table 1. Summary of PET and fmri Methods. What is imaged PET fmri BOLD (T2*) Regional brain activation. Blood flow ( 15 O) Arterial spin tagging (AST)

Table 1. Summary of PET and fmri Methods. What is imaged PET fmri BOLD (T2*) Regional brain activation. Blood flow ( 15 O) Arterial spin tagging (AST) Table 1 Summary of PET and fmri Methods What is imaged PET fmri Brain structure Regional brain activation Anatomical connectivity Receptor binding and regional chemical distribution Blood flow ( 15 O)

More information

*smith&nephew. MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG. Knee Implants

*smith&nephew. MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG. Knee Implants Knee Implants MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG Knee Implants *smith&nephew Supporting healthcare professionals for over 150 years Summary All knee implants of Smith

More information

Repeatability of 2D FISP MR Fingerprinting in the Brain at 1.5T and 3.0T

Repeatability of 2D FISP MR Fingerprinting in the Brain at 1.5T and 3.0T Repeatability of 2D FISP MR Fingerprinting in the Brain at 1.5T and 3.0T Guido Buonincontri 1,2, Laura Biagi 1,3, Alessandra Retico 2, Michela Tosetti 1,3, Paolo Cecchi 4, Mirco Cosottini 1,4,5, Pedro

More information

Personal use only. MRI Metal Artifact Reduction: Shoulder Implants and Arthroplasty. Reto Sutter, MD

Personal use only. MRI Metal Artifact Reduction: Shoulder Implants and Arthroplasty. Reto Sutter, MD MRI Metal Artifact Reduction: Shoulder Implants and Arthroplasty Reto Sutter, MD University Hospital Balgrist Zurich University of Zurich Cor PD fat sat 56-year old male patient with positive lift-off

More information

Assessment of Adipose Tissue from Whole Body 3T MRI Scans

Assessment of Adipose Tissue from Whole Body 3T MRI Scans Assessment of Adipose Tissue from Whole Body 3T MRI Scans Ting Song 1, Jing An 2, Qun Chen 2, Vivian Lee 2, Andrew Laine 1 1 Department of Biomedical Engineering, Columbia University, New York, NY, USA

More information

P2 Visual - Perception

P2 Visual - Perception P2 Visual - Perception 2014 SOSE Neuroimaging of high-level visual functions gyula.kovacs@uni-jena.de 11/09/06 Functional magnetic resonance imaging (fmri) The very basics What is fmri? What is MRI? The

More information

Cardiovascular MR Imaging at 3 T: Opportunities, Challenges, and Solutions 1

Cardiovascular MR Imaging at 3 T: Opportunities, Challenges, and Solutions 1 TECHNICAL ADVANCEMENTS IN CARDIAC MR IMAGING 1612 Cardiovascular MR Imaging at 3 T: Opportunities, Challenges, and Solutions 1 Prabhakar Rajiah, MD, FRCR Michael A. Bolen, MD Abbreviations: BOLD = blood

More information

Basics of MRI Part I

Basics of MRI Part I Basics of MRI Part I Mathew J. Dixon, D.O. Chairman Department of Radiology Memorial Health University Medical Center Savannah, GA Objectives Brief History Concept of MRI Creation of a Magnetic Field Concepts

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging Magnetic Resonance Imaging The purpose of structured education is to provide the opportunity for individuals to develop mastery of discipline-specific knowledge that, when coupled with selected clinical

More information

*smith&nephew. MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG. Shoulder Implants

*smith&nephew. MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG. Shoulder Implants Shoulder Implants MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG Shoulder Implants *smith&nephew Supporting healthcare professionals for over 150 years Summary All shoulder implants

More information

Disclosures. Diffusion and Perfusion Imaging in the Head and Neck. Learning objectives ???

Disclosures. Diffusion and Perfusion Imaging in the Head and Neck. Learning objectives ??? Disclosures No relevant financial disclosures Diffusion and Perfusion Imaging in the Head and Neck Ashok Srinivasan, MD Associate Professor Director of Neuroradiology University of Michigan Health System

More information

Tissue-engineered medical products Evaluation of anisotropic structure of articular cartilage using DT (Diffusion Tensor)-MR Imaging

Tissue-engineered medical products Evaluation of anisotropic structure of articular cartilage using DT (Diffusion Tensor)-MR Imaging Provläsningsexemplar / Preview TECHNICAL REPORT ISO/TR 16379 First edition 2014-03-01 Tissue-engineered medical products Evaluation of anisotropic structure of articular cartilage using DT (Diffusion Tensor)-MR

More information

Clinical Applications

Clinical Applications C H A P T E R 16 Clinical Applications In selecting pulse sequences and measurement parameters for a specific application, MRI allows the user tremendous flexibility to produce variations in contrast between

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging STRUCTURED SELF ASSESSMENT CONTENT SPECIFICATIONS ARRT BOARD APPROVED: PENDING IMPLEMENTATION DATE: JANUARY 1, 2018 Magnetic Resonance Imaging The purpose of continuing qualifications requirements (CQR)

More information

MRI Physics: Basic to Advanced

MRI Physics: Basic to Advanced Annual Meeting of the American Society of Neuroimaging MRI Physics: Basic to Advanced Mike Moseley, PhD Department of Radiology Stanford University CA 94305-5488 USA http://www-radiology.stanford.edu moseley@stanford.edu

More information

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal Magnetic Resonance Imaging Protons aligned with B0 magnetic filed Longitudinal magnetization - T1 relaxation Transverse magnetization - T2 relaxation Signal measured in the transverse plane Basics of MRI

More information

3D high-resolution MR imaging can provide reliable information

3D high-resolution MR imaging can provide reliable information Published April 11, 2013 as 10.3174/ajnr.A3472 ORIGINAL RESEARCH HEAD & NECK High-Resolution MRI of the Intraparotid Facial Nerve Based on a Microsurface Coil and a 3D Reversed Fast Imaging with Steady-State

More information

High Field MR of the Spine

High Field MR of the Spine Department of Radiology University of California San Diego 3T for MR Applications Advantages High Field MR of the Spine Increased signal-to-noise Better fat suppression Increased enhancement with gadolinium

More information

ASL BASICS II. Learning Objectives. Outline. Acquisition. M. A. Fernández-Seara, Ph. D. Arterial spin labeled perfusion MRI: basic theory

ASL BASICS II. Learning Objectives. Outline. Acquisition. M. A. Fernández-Seara, Ph. D. Arterial spin labeled perfusion MRI: basic theory Acquisition ASL BASICS II M. A. Fernández-Seara, Ph. D. Neuroimaging Laboratory Center for Applied Medical Research University of Navarra Pamplona, Spain Outline Arterial spin labeled perfusion MRI: basic

More information

Effect of intravenous contrast medium administration on prostate diffusion-weighted imaging

Effect of intravenous contrast medium administration on prostate diffusion-weighted imaging Effect of intravenous contrast medium administration on prostate diffusion-weighted imaging Poster No.: C-1766 Congress: ECR 2015 Type: Authors: Keywords: DOI: Scientific Exhibit J. Bae, C. K. Kim, S.

More information

DEVELOPMENTS IN THE USE OF DIFFUSION TENSOR IMAGING DATA

DEVELOPMENTS IN THE USE OF DIFFUSION TENSOR IMAGING DATA DEVELOPMENTS IN THE USE OF DIFFUSION TENSOR IMAGING DATA TO INVESTIGATE BRAIN STRUCTURE AND CONNECTIVITY A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy

More information

Master Thesis in Radiation Physics 09/10 Annie Olsson. Supervisors: Frank Risse Lars E. Olsson. Imaging centre AstraZeneca R&D Mölndal

Master Thesis in Radiation Physics 09/10 Annie Olsson. Supervisors: Frank Risse Lars E. Olsson. Imaging centre AstraZeneca R&D Mölndal Determination of a preclinical protocol for quantitative measurements of perfusion and permeability in the rat lung using dynamic contrast enhanced-mri Master Thesis in Radiation Physics 9/1 Annie Olsson

More information

Fully Refocused Gradient Recalled Echo (FRGRE): Factors Affecting Flow and Motion Sensitivity in Cardiac MRI

Fully Refocused Gradient Recalled Echo (FRGRE): Factors Affecting Flow and Motion Sensitivity in Cardiac MRI Journal of Cardiovascular Magnetic Resonance w, 4(2), 211 222 (2002) METHODS Fully Refocused Gradient Recalled Echo (FRGRE): Factors Affecting Flow and Motion Sensitivity in Cardiac MRI Laurie B. Hildebrand

More information

MR Imaging and Spectroscopy of Central Nervous System Infection

MR Imaging and Spectroscopy of Central Nervous System Infection MR Imaging and Spectroscopy of Central Nervous System Infection This page intentionally left blank. MR Imaging and Spectroscopy of Central Nervous System Infection Edited by Rakesh K. Gupta Department

More information

BioMatrix Tuners: CoilShim

BioMatrix Tuners: CoilShim MAGNETOM Vida special issue Head and Neck Imaging Clinical 11 BioMatrix Tuners: CoilShim Miriam R. Keil, Ph.D.; Jörg Rothard; Carmel Hayes, Ph.D. Siemens Healthineers, Erlangen, Germany A cervical spine

More information

DETECTION AND CHARACTERIZATION OF RETINAL DISRUPTION IN MICE USING HIGH ANGULAR RESOLUTION DIFFUSION MICROSCOPY (HARDM)

DETECTION AND CHARACTERIZATION OF RETINAL DISRUPTION IN MICE USING HIGH ANGULAR RESOLUTION DIFFUSION MICROSCOPY (HARDM) DETECTION AND CHARACTERIZATION OF RETINAL DISRUPTION IN MICE USING HIGH ANGULAR RESOLUTION DIFFUSION MICROSCOPY (HARDM) By SAURAV BIMALKUMAR CHANDRA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE

More information

1) Diffusion weighted imaging DWI is a term used to describe moving molecules due to random thermal motion. This motion is restricted by boundaries

1) Diffusion weighted imaging DWI is a term used to describe moving molecules due to random thermal motion. This motion is restricted by boundaries 1) Diffusion weighted imaging DWI is a term used to describe moving molecules due to random thermal motion. This motion is restricted by boundaries such as ligaments, membranes and macro molecules. Diffusion

More information

The physiology of the BOLD signal What do we measure with fmri?

The physiology of the BOLD signal What do we measure with fmri? The physiology of the BOLD signal What do we measure with fmri? Methods and Models in fmri, 10.11.2012 Jakob Heinzle Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University

More information

Real-Time MRI of Joint Movement With TrueFISP

Real-Time MRI of Joint Movement With TrueFISP JOURNAL OF MAGNETIC RESONANCE IMAGING 15:710 715 (2002) Technical Note Real-Time MRI of Joint Movement With TrueFISP Harald H. Quick, MSc, 1 * Mark E. Ladd, PhD, 1 Matthias Hoevel, MD, 2 Silke Bosk, RT,

More information

Advances in MRI for Radiation Therapy

Advances in MRI for Radiation Therapy Advances in MRI for Radiation Therapy Jing Cai, PhD, DABR Associate Professor Department of Radiation Oncology Duke University Medical Center, Durham NC Advances in MRI Structural Imaging Fast Imaging

More information

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA 99. MRA Principles and Carotid MRA As described in Chapter 12, time of flight (TOF) magnetic resonance angiography (MRA) is commonly utilized in the evaluation of the circle of Willis. TOF MRA allows depiction

More information

MRI Based treatment planning for with focus on prostate cancer. Xinglei Shen, MD Department of Radiation Oncology KUMC

MRI Based treatment planning for with focus on prostate cancer. Xinglei Shen, MD Department of Radiation Oncology KUMC MRI Based treatment planning for with focus on prostate cancer Xinglei Shen, MD Department of Radiation Oncology KUMC Overview How magnetic resonance imaging works (very simple version) Indications for

More information

Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR: Comparison with Fast Spin-Echo MR in Diseases of the Brain

Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR: Comparison with Fast Spin-Echo MR in Diseases of the Brain Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR: Comparison with Fast Spin-Echo MR in Diseases of the Brain Mahesh R. Patel, Roman A. Klufas, Ronald A. Alberico, and Robert R. Edelman PURPOSE:

More information

Layer-Specific Functional and Anatomical MRI of the Retina With Passband Balanced SSFP

Layer-Specific Functional and Anatomical MRI of the Retina With Passband Balanced SSFP Layer-Specific Functional and Anatomical MRI of the Retina With Passband Balanced SSFP Eric R. Muir 1 4 and Timothy Q. Duong 1 3,5 * Magnetic Resonance in Medicine 66:1416 1421 (2011) The retina consists

More information

MR Advance Techniques. Cardiac Imaging. Class IV

MR Advance Techniques. Cardiac Imaging. Class IV MR Advance Techniques Cardiac Imaging Class IV Heart The heart is a muscular organ responsible for pumping blood through the blood vessels by repeated, rhythmic contractions. Layers of the heart Endocardium

More information

Tools for cardiovascular magnetic resonance imaging

Tools for cardiovascular magnetic resonance imaging Review Article Tools for cardiovascular magnetic resonance imaging Ramkumar Krishnamurthy, Benjamin Cheong, Raja Muthupillai Department of Diagnostic and Interventional Radiology, CHI St. Luke s Health,

More information

Cardiac MRI at 7T Syllabus contribution: Matthew Robson

Cardiac MRI at 7T Syllabus contribution: Matthew Robson Cardiac MRI at 7T Syllabus contribution: Matthew Robson Field strength escalation has occurred over the last 10 years. Whilst 1.5T remains the most prevalent field strength the loss of 1T and the popularity

More information

ACR Breast MRI Accreditation Program - DRAFT

ACR Breast MRI Accreditation Program - DRAFT ACR Breast MRI Accreditation Program - DRAFT Donna M. Reeve, MS, DABR, DABMP Department of Imaging Physics Educational Objectives Provide an overview of the ACR Breast MRI Accreditation Program (BMRAP)

More information

MR Angiography in the evaluation of Lower Extremity Arterial Disease

MR Angiography in the evaluation of Lower Extremity Arterial Disease March 2001 MR Angiography in the evaluation of Lower Extremity Arterial Disease Ted Mau, Harvard Medical School Year III Objectives We will cover: Indications for Magnetic Resonance Angiography (MRA) Basic

More information

MR QA/QC for MRgRT. Rick Layman, PhD, DABR Department of Radiology July 13, 2015

MR QA/QC for MRgRT. Rick Layman, PhD, DABR Department of Radiology July 13, 2015 MR QA/QC for MRgRT Rick Layman, PhD, DABR Department of Radiology July 13, 2015 The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

More information

Orthopedic Hardware Imaging Part II: MRI v. Metal

Orthopedic Hardware Imaging Part II: MRI v. Metal Orthopedic Hardware Imaging Trent Roth, MD And Lauren Ladd, MD Indiana University School of Medicine IU Health Physicians-Radiology Recap: Imaging Techniques Radiography Standard for initial and surveillance

More information

Initial Clinical Experience of TOSHIBA 3T MRI

Initial Clinical Experience of TOSHIBA 3T MRI The 21st Conference of the Japanese Society of Cardiovascular Imaging & Dynamics Sponsored Seminar The Leading Edge of CT/MRI Diagnosis for the Cardiovascular System Initial Clinical Experience of TOSHIBA

More information

Rapid Quantitation of High-Speed Flow Jets

Rapid Quantitation of High-Speed Flow Jets Rapid Quantitation of High-Speed Flow Jets Krishna S. Nayak, 1 * Bob S. Hu, 1,2 and Dwight G. Nishimura 1 Magnetic Resonance in Medicine 50:366 372 (2003) Flow jets containing velocities up to 5 7 m/s

More information

MR Imaging of the Internal Auditory Canal and Inner Ear at 3T: Comparison between 3D Driven Equilibrium and 3D Balanced Fast Field Echo Sequences

MR Imaging of the Internal Auditory Canal and Inner Ear at 3T: Comparison between 3D Driven Equilibrium and 3D Balanced Fast Field Echo Sequences MR Imaging of the Internal Auditory Canal and Inner Ear at 3T: Comparison between 3D Driven Equilibrium and 3D Balanced Fast Field Echo Sequences Jun Soo Byun, MD 1,2 Hyung-Jin Kim, MD 1 Yoo Jeong Yim,

More information

Removal of Nuisance Signal from Sparsely Sampled 1 H-MRSI Data Using Physics-based Spectral Bases

Removal of Nuisance Signal from Sparsely Sampled 1 H-MRSI Data Using Physics-based Spectral Bases Removal of Nuisance Signal from Sparsely Sampled 1 H-MRSI Data Using Physics-based Spectral Bases Qiang Ning, Chao Ma, Fan Lam, Bryan Clifford, Zhi-Pei Liang November 11, 2015 1 Synopsis A novel nuisance

More information

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03 Introduction Cardiac Imaging Modalities Arnaud Bistoquet 12/19/03 Coronary heart disease: the vessels that supply oxygen-carrying blood to the heart, become narrowed and unable to carry a normal amount

More information

ACR MRI Accreditation Program. ACR MRI Accreditation Program Update. Educational Objectives. ACR accreditation. History. New Modular Program

ACR MRI Accreditation Program. ACR MRI Accreditation Program Update. Educational Objectives. ACR accreditation. History. New Modular Program ACR MRI Accreditation Program Update Donna M. Reeve, MS, DABR, DABMP Department of Imaging Physics University of Texas M.D. Anderson Cancer Center Educational Objectives Present requirements of the new

More information

RADIOLOGY TEACHING CONFERENCE

RADIOLOGY TEACHING CONFERENCE RADIOLOGY TEACHING CONFERENCE John Athas, MD Monica Tadros, MD Columbia University, College of Physicians & Surgeons Department of Otolaryngology- Head & Neck Surgery September 27, 2007 CT SCAN IMAGING

More information

2D-Sigmoid Enhancement Prior to Segment MRI Glioma Tumour

2D-Sigmoid Enhancement Prior to Segment MRI Glioma Tumour 2D-Sigmoid Enhancement Prior to Segment MRI Glioma Tumour Pre Image-Processing Setyawan Widyarto, Siti Rafidah Binti Kassim 2,2 Department of Computing, Faculty of Communication, Visual Art and Computing,

More information

Dewey, Rebecca S. (2012) Physiological MRI for neuropharmacological and advanced cerebral haemodynamic studies. PhD thesis, University of Nottingham.

Dewey, Rebecca S. (2012) Physiological MRI for neuropharmacological and advanced cerebral haemodynamic studies. PhD thesis, University of Nottingham. Dewey, Rebecca S. (2012) Physiological MRI for neuropharmacological and advanced cerebral haemodynamic studies. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:

More information

MAGNETIC RESONANCE IMAGING OF NEURAL AND PULMONARY VASCULAR FUNCTION. A Dissertation Presented. Ronn P. Walvick DOCTOR OF PHILOSOPHY

MAGNETIC RESONANCE IMAGING OF NEURAL AND PULMONARY VASCULAR FUNCTION. A Dissertation Presented. Ronn P. Walvick DOCTOR OF PHILOSOPHY MAGNETIC RESONANCE IMAGING OF NEURAL AND PULMONARY VASCULAR FUNCTION A Dissertation Presented By Ronn P. Walvick Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical

More information

ACR MRI Accreditation: Medical Physicist Role in the Application Process

ACR MRI Accreditation: Medical Physicist Role in the Application Process ACR MRI Accreditation: Medical Physicist Role in the Application Process Donna M. Reeve, MS, DABR, DABMP Department of Imaging Physics University of Texas M.D. Anderson Cancer Center Educational Objectives

More information

Case Reports: Tumor Detection by Diffusion-Weighted MRI and ADC-Mapping with Correlation to PET/CT Results

Case Reports: Tumor Detection by Diffusion-Weighted MRI and ADC-Mapping with Correlation to PET/CT Results Case Reports: Tumor Detection by Diffusion-Weighted MRI and ADC-Mapping with Correlation to PET/CT Results Matthias Philipp Lichy, M.D.; Philip Aschoff, M.D.; Christina Pfannenberg, M.D.; Schlemmer Heinz-Peter,

More information

Why Talk About Technique? MRI of the Knee:

Why Talk About Technique? MRI of the Knee: Why Talk About Technique? MRI of the Knee: Part 1 - Imaging Techniques Mark Anderson, M.D. University of Virginia Health Sciences Center Charlottesville, Virginia Always had an interest teach our fellows

More information

Heart Failure and Associated Structural and Functional Remodeling: Assessment Employing Various Magnetic Resonance Imaging Methodologies

Heart Failure and Associated Structural and Functional Remodeling: Assessment Employing Various Magnetic Resonance Imaging Methodologies Heart Failure and Associated Structural and Functional Remodeling: Assessment Employing Various Magnetic Resonance Imaging Methodologies A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF

More information

Essential tools for Clinical Cardiovascular MRI Raja Muthupillai, PhD,DABMP, DABR

Essential tools for Clinical Cardiovascular MRI Raja Muthupillai, PhD,DABMP, DABR Essential tools for Clinical Cardiovascular MRI Raja Muthupillai, PhD,DABMP, DABR Director of Imaging Research Department of Diagnostic and Interventional Radiology Baylor St Luke s Medical Center, Houston,

More information

*smith&nephew. MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG. Hip Implants

*smith&nephew. MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG. Hip Implants Hip Implants MRI Safety Information & Parameters for Smith & Nephew Orthopaedics AG Hip Implants *smith&nephew Supporting healthcare professionals for over 150 years Summary All hip implants of Smith &

More information

Abstract. Introduction. Material and Methods. Results. Conclusion

Abstract. Introduction. Material and Methods. Results. Conclusion Dynamic susceptibility contrast MRI calibrated using T1-based steadystate CBV and vascular space occupancy (VASO): Comparison with model-free arterial spin labelling Emelie Lindgren Supervisors: Linda

More information

Using Radial k-space Sampling and Steady-State Free Precession Imaging

Using Radial k-space Sampling and Steady-State Free Precession Imaging MRI of Coronary Vessel Walls Cardiac Imaging Original Research A C D E M N E U T R Y L I A M C A I G O F I N G Marcus Katoh 1 Elmar Spuentrup 1 Arno Buecker 1 Tobias Schaeffter 2 Matthias Stuber 3 Rolf

More information

How to Learn MRI An Illustrated Workbook

How to Learn MRI An Illustrated Workbook How to Learn MRI An Illustrated Workbook Exercise 8: Cine Imaging of the Heart Teaching Points: How to do cardiac gating? What is Steady State Free Precession (SSFP)? What are the basic cardiac views and

More information

T2, T2*, ute. Yeo Ju Kim. Radiology, Inha University Hospital, Incheon, Korea

T2, T2*, ute. Yeo Ju Kim. Radiology, Inha University Hospital, Incheon, Korea SY28-1 T2, T2*, ute Yeo Ju Kim Radiology, Inha University Hospital, Incheon, Korea T2 relaxation times relate to the rate of transverse magnetization decay, caused by the loss of phase coherence induced

More information

Spatially Varying Saturation Pulse (SVSP) for Fat Suppression in Breast MRI

Spatially Varying Saturation Pulse (SVSP) for Fat Suppression in Breast MRI Spatially Varying Saturation Pulse (SVSP) for Fat Suppression in Breast MRI by Tse Chiang Chen A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Medical

More information

NIH Public Access Author Manuscript Magn Reson Med. Author manuscript; available in PMC 2008 May 13.

NIH Public Access Author Manuscript Magn Reson Med. Author manuscript; available in PMC 2008 May 13. NIH Public Access Author Manuscript Published in final edited form as: Magn Reson Med. 2005 November ; 54(5): 1295 1299. On the Dark Rim Artifact in Dynamic Contrast-Enhanced MRI Myocardial Perfusion Studies

More information

Evaluation of adrenal masses using FIESTA-MRI sequence

Evaluation of adrenal masses using FIESTA-MRI sequence Evaluation of adrenal masses using FIESTA-MRI sequence 14.September.2018/Friday / Room 3 / 11.00-1230 GÖKHAN PEKİNDİL, FATMA CAN, CELAL BAYAR UNIVERSITY MEDICAL FACULTY DEP. OF RADIOLOGY MANİSA-TURKEY

More information

Time-Of-Flight MRA. Faculty Disclosures Vincent B. Ho, M.D. Presentation Objectives. MRA Techniques. Pros and Cons of MRA

Time-Of-Flight MRA. Faculty Disclosures Vincent B. Ho, M.D. Presentation Objectives. MRA Techniques. Pros and Cons of MRA Faculty Disclosures Vincent B. Ho, M.D. MR Angiography Techniques and Pitfalls Financial Disclosure Grant/Research Support General Electric Medical Systems Off-Label/Investigational Drug Use Dr. Ho will

More information

Amide Proton Transfer Imaging: A Novel MR Method for High-grade Brain Tumors.

Amide Proton Transfer Imaging: A Novel MR Method for High-grade Brain Tumors. Amide Proton Transfer Imaging: A Novel MR Method for High-grade Brain Tumors. Poster No.: C-1732 Congress: ECR 2013 Type: Scientific Exhibit Authors: M. Ida, M. Ishizuka, T. Suzuki, Y. Kubo, K. Hino, S.

More information

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview CARDIAC MRI Dr Yang Faridah A. Aziz Department of Biomedical Imaging University of Malaya Medical Centre Cardiovascular Disease Diseases of the circulatory system, also called cardiovascular disease (CVD),

More information

HSC Physics. Module 9.6. Medical Physics

HSC Physics. Module 9.6. Medical Physics HSC Physics Module 9.6 Medical Physics Contextual Outline 9.6 Medical Physics (28 indicative hours) The use of other advances in technology, developed from our understanding of the electromagnetic spectrum,

More information

Cervical Spine: Three-dimensional Fast Spin-Echo MR Imaging Improved Recovery of Longitudinal Magnetization with Driven Equilibrium Pulse 1

Cervical Spine: Three-dimensional Fast Spin-Echo MR Imaging Improved Recovery of Longitudinal Magnetization with Driven Equilibrium Pulse 1 Elias R. Melhem, MD Ryuta Itoh, MD, PhD Paul J. M. Folkers, PhD Index terms: Magnetic resonance (MR), technology, 34.121419 Spinal cord, MR, 341.121419 Spine, MR, 34.121419 Radiology 2001; 218:283 288

More information

Anatomical and Functional MRI of the Pancreas

Anatomical and Functional MRI of the Pancreas Anatomical and Functional MRI of the Pancreas MA Bali, MD, T Metens, PhD Erasme Hospital Free University of Brussels Belgium mbali@ulb.ac.be Introduction The use of MRI to investigate the pancreas has

More information

Why Cardiac MRI? Presented by:

Why Cardiac MRI? Presented by: Why Cardiac MRI? Presented by: Lisa G. Carkner, MD, FACC 1 Disclosures I have no financial disclosures Objectives Review basic principles of Cardiac MRI. What patient characteristics do I need to consider

More information

First Clinical Experiences with Simultaneous Multi-Slice Accelerated Diffusion-Weighted Imaging Throughout the Body

First Clinical Experiences with Simultaneous Multi-Slice Accelerated Diffusion-Weighted Imaging Throughout the Body Clinical Oncological Imaging First Clinical Experiences with Simultaneous Multi-Slice Accelerated Diffusion-Weighted Imaging Throughout the Body Valentin Tissot, M.D. 1 ; Olivier Legeas, M.D. 1 ; Isabelle

More information

Functional Chest MRI in Children Hyun Woo Goo

Functional Chest MRI in Children Hyun Woo Goo Functional Chest MRI in Children Hyun Woo Goo Department of Radiology and Research Institute of Radiology Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea No ionizing radiation

More information

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology Introduction to the Course and the Techniques Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology (jralger@ucla.edu) CTSI Neuroimaging April 2014 Rationale for the Course

More information

Supplemental figure 1: Histological correlation. (a) Low-power view and (b) high power view (inset) of swine liver post MC transplantation stained

Supplemental figure 1: Histological correlation. (a) Low-power view and (b) high power view (inset) of swine liver post MC transplantation stained Supplemental figure 1: Histological correlation. (a) Low-power view and (b) high power view (inset) of swine liver post MC transplantation stained with Prussian Blue (PB) for iron. PB-positive MCs are

More information

Magnetic Resonance Imaging. Alex MacKay University of British Columbia

Magnetic Resonance Imaging. Alex MacKay University of British Columbia Magnetic Resonance Imaging Alex MacKay University of British Columbia Magnetic Resonance Imaging A) What is MRI? B) Why do MRI? C) What can we do with an MRI scanner? What is MRI? Magnetic Resonance Imaging

More information

High-resolution diffusion-weighted MRI of the breast using readout-segmented EPI and single-shot EPI

High-resolution diffusion-weighted MRI of the breast using readout-segmented EPI and single-shot EPI High-resolution diffusion-weighted MRI of the breast using readout-segmented EPI and single-shot EPI Objective: Compared to dynamic contrast enhanced MRI (DCE-MRI), image quality in diffusion-weighted

More information

A Primer on Functional Magnetic Resonance Imaging

A Primer on Functional Magnetic Resonance Imaging DOI 10.1007/s11065-007-908-8 ORIGINAL PAPER A Primer on Functional Magnetic Resonance Imaging Gregory G. Brown Joanna E. Perthen Thomas T. Liu Richard B. Buxton Received: March 007 / Accepted: 4 March

More information

MRI Abdomen Protocol Pancreas/MRCP with Contrast

MRI Abdomen Protocol Pancreas/MRCP with Contrast MRI Abdomen Protocol Pancreas/MRCP with Contrast Reviewed By: Brett Mollard, MD; Anna Ellermeier, MD Last Reviewed: July 2018 Contact: (866) 761-4200 Standard uses: 1. Characterization of cystic and solid

More information

Objectives 8/17/2011. Challenges in Cardiac Imaging. Challenges in Cardiac Imaging. Basic Cardiac MRI Sequences

Objectives 8/17/2011. Challenges in Cardiac Imaging. Challenges in Cardiac Imaging. Basic Cardiac MRI Sequences 8/17/2011 Traditional Protocol Model for Tomographic Imaging Cardiac MRI Sequences and Protocols Frandics Chan, M.D., Ph.D. Stanford University Medical Center Interpretation Lucile Packard Children s Hospital

More information

Diffusion-weighted Imaging of the Breast: Principles and Clinical Applications 1

Diffusion-weighted Imaging of the Breast: Principles and Clinical Applications 1 Note: This copy is for your personal non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. BREAST IMAGING Diffusion-weighted

More information

Daniel Bulte. Centre for Functional Magnetic Resonance Imaging of the Brain. University of Oxford

Daniel Bulte. Centre for Functional Magnetic Resonance Imaging of the Brain. University of Oxford Daniel Bulte Centre for Functional Magnetic Resonance Imaging of the Brain University of Oxford Overview Signal Sources BOLD Contrast Mechanism of MR signal change FMRI Modelling Scan design details Factors

More information

The Effects of Music intervention on Functional connectivity. Supplemental Information

The Effects of Music intervention on Functional connectivity. Supplemental Information Yang et al. 0 The Effects of Music intervention on Functional connectivity strength of Brain in Schizophrenia Supplemental Information Mi Yang,#, Hui He #, Mingjun Duan,, Xi Chen, Xin Chang, Yongxiu Lai,

More information

Liver Fat Quantification

Liver Fat Quantification Liver Fat Quantification Jie Deng, PhD, DABMP Department of Medical Imaging May 18 th, 2017 Disclosure Research agreement with Siemens Medical Solutions 2 Background Non-alcoholic fatty liver diseases

More information

ACR Accreditation Update in MRI

ACR Accreditation Update in MRI ACR Accreditation Update in MRI Whole Body Systems Extremity (MSK) Ron Price Vanderbilt University Medical Center Nashville, TN Dedicated Breast MRI Accreditation Update 1. ACR MRI Accreditation: Overview,

More information

Handzettel 1. Multiparametric Functional Imaging in Radiation Therapy. Functional and Quantitative Imaging with MR

Handzettel 1. Multiparametric Functional Imaging in Radiation Therapy. Functional and Quantitative Imaging with MR Multiparametric Functional Imaging in Radiation Therapy Himanshu Bhat, Ph.D. Siemens Healthcare MR in RT Adding valuable information on tissue properties CT provides: Geometric accuracy Delineation of

More information

By Mohammed D. Alenezy

By Mohammed D. Alenezy Modeling Left Ventricle Wall Motion Using Tagged Magnetic Resonance Imaging By Mohammed D. Alenezy Submitted to the Department of Physics and Astronomy and the Faculty of the Graduate School of the University

More information

Comparison of 1.5 T Tesla and 3.0 T Tesla Magnetic Resonance Imaging for Evaluating Local Extension of Endometrial Cancer

Comparison of 1.5 T Tesla and 3.0 T Tesla Magnetic Resonance Imaging for Evaluating Local Extension of Endometrial Cancer Showa Univ J Med Sci 27 1, 21 28, March 2015 Original Comparison of 1.5 T Tesla and 3.0 T Tesla Magnetic Resonance Imaging for Evaluating Local Extension of Endometrial Cancer Naomi YAGI, Masanori HIROSE,

More information