Renal Functional MRI: Are We Ready for Clinical Application?

Size: px
Start display at page:

Download "Renal Functional MRI: Are We Ready for Clinical Application?"

Transcription

1 Genitourinary Imaging Perspective Chandarana and Lee Renal Functional MRI Genitourinary Imaging Perspective FOCUS ON: Hersh Chandarana 1 Vivian S. Lee Chandarana H, Lee VS Keywords: blood oxygen level dependent MRI, diffusion-weighted imaging, functional renal imaging, MR renography DOI:1.2214/AJR Received January 2, 29; accepted without revision January 2, Both authors: Department of Radiology, New York University Medical Center, 53 First Ave., MRI, New York, NY 116. Address correspondence to H. Chandarana (hersh.chandarana@nyumc.org). AJR 29; 192: X/9/ American Roentgen Ray Society Renal Functional MRI: Are We Ready for Clinical Application? OBJECTIVE. We review the basics of functional renal imaging and highlight a few clinical applications. CONCLUSION. Techniques such as contrast-enhanced MR renography, diffusionweighted imaging, and blood oxygen level dependent MRI have been investigated in animal models and in a few human studies. Functional renal imaging is a rapidly growing field that has the potential to provide new insight into the pathophysiology of renal disease. T he primary role of the kidney is to maintain homeostatic balance of bodily fluids by filtering and secreting metabolites and minerals from the blood and excreting them along with water as urine. Serum creatinine concentration is used to calculate glomerular filtration rate (GFR), which although imprecise, is considered the reference standard in the evaluation of kidney function. Serum creatinine concentration, however, is a late marker of renal dysfunction, especially in chronic renal disease, and becomes abnormal in response to substantial and sometimes irreversible renal damage. Furthermore, blood tests depend on body mass index and age and cannot be used to assess single-kidney function [1 3]. Because of the limitations of serum markers, imaging can play an important role in the evaluation of renal disease. Ultrasound and CT provide good anatomic images but limited functional information. CT also requires use of iodinated contrast material and exposure to ionizing radiation. Nuclear medicine examinations provide functional information but lack spatial resolution. MRI has the unique ability to show both structure and function [4, 5]. Functional renal imaging techniques, such as contrast-enhanced MR renography, and unenhanced techniques, such as diffusion-weighted imaging (DWI) and blood oxygen level dependent (BOLD) imaging have shown considerable promise in the evaluation of renal function in health and disease. We review potential applications of these techniques in the clinical setting. We also present examples of diagnostic algorithms for the evaluation of suspected renovascular disease, allograft dysfunction, and split renal function measurements to suggest how functional MRI techniques can be integrated into clinical practice. Contrast-Enhanced MR Renography Dynamic contrast-enhanced MRI of the kidneys, or MR renography, is used to monitor the transit of contrast material, typically a gadolinium chelate, through the renal cortex, the medulla, and the collecting system. Most gadolinium contrast agents are cleared by glomerular filtration and pass through capillaries and the renal tubules causing the signal intensity of the renal tissues to increase. Through analysis of the enhancement of the renal tissues as a function of time, clinically important singlekidney parameters such as renal blood flow, GFR, and cortical and medullary blood volumes can be determined [6 8]. Technique There is no consensus regarding an optimal technique for MR renography. Various groups have proposed varied acquisition techniques. Most of these techniques require the following steps: acquisition of dynamic images before, during, and after administration of gadolinium chelate; conversion of the signal intensity of the renal tissue to gadolinium concentration; and plotting of gadolinium concentration versus time to generate various functional parameter curves. The total acquisition time for MR renography of healthy kidneys ranges from 3 to 155 AJR:192, June 29

2 Renal Functional MRI 3 Cortex 25 Medulla Fig. 1 MR renography. A, 83-year-old woman with renal artery stenosis imaged with contrast-enhanced MRI. Coronal maximum-intensity-projection renal MR angiographic image shows severe stenosis at origin of left renal artery. B, Plot of signal intensity time curves at baseline and after injection of angiotensin-converting enzyme inhibitor (ACEI) shows signal intensity is higher after ACEI injection because 8 ml of contrast material was used. C, Plot of gadolinium concentration time curves at baseline and after ACEI injection shows decrease in glomerular filtration rate (GFR) consistent with hemodynamically significant renal artery stenosis. Three-compartment tracer kinetic model was used to calculate GFR at baseline and after ACEI injection. D, 67-year-old woman without evidence of renal artery stenosis. Plots of gadolinium concentration time curves at baseline and after ACEI injection show GFR calculated with three-compartment tracer kinetic model at baseline is unchanged after ACEI injection. 1 minutes. The highest GFR precision is achieved at an approximately.2 mmol/kg (~ 4 ml) dose of gadolinium in healthy persons and approximately.25 mmol/kg (~ 5 ml) in patients with decreased renal function [9]. High doses of gadolinium chelate should be avoided because of the T2* susceptibility effect caused by concentrated con trast material. Current and Potential Applications Renal artery stenosis MRI perfusion parameters, such as mean transit time, maximum up-slope, and time to peak signal intensity, can be calculated from first-pass tracer kinetics and have been used in evaluation of renal artery stenosis (RAS). A study by Michaely et al. [1] showed significant differences in these parameters in patients with high-grade RAS compared with healthy persons and patients with low-grade stenosis. Furthermore, these perfusion parameters exhibited significant correlation with serum A Signal Intensity Gadolinium Concentration (mmol/l) Gadolinium Concentration (mmol/l) Baseline with 4 ml of gadolinium Cortex Medulla 2 Cortex Medulla 2 GFR 17 ml/min Baseline with 4 ml of gadolinium GFR 44 ml/min Baseline with 4 ml of gadolinium 1 2 Time (min) 1 2 Time (min) 1 2 Time (min) After ACEI injection with 8 ml of gadolinium 22 GFR 8 ml/min After ACEI injection with 8 ml of gadolinium GFR 45 ml/min After ACEI injection with 8 ml of gadolinium 3 B 3 C 3 D AJR:192, June

3 Chandarana and Lee creatinine levels. Our group has implemented an angiotensin-converting enzyme inhibitor (ACEI) injection protocol for evaluation of RAS. Patients with hemodynamically significant RAS have a decrease in GFR measured at MR renography after ACEI injection. Patients without significant RAS do not have a change in response to ACEI injection (Fig. 1). ACEI administration thus can be used to differentiate hemodynamically significant stenosis from insignificant stenosis [11]. Allograft dysfunction Acute tubular necrosis (ATN) and acute rejection are the two most common causes of allograft dysfunction in the early postoperative period. It can be difficult to discriminate these two entities clinically, and renal biopsy is often required for diagnosis. Because of the risks associated with renal biopsy, noninvasive techniques such as MR perfusion imaging have been explored. Patients with ATN have maintained cortical and medullary perfusion despite the presence of renal insufficiency. However, patients with acute rejection have significantly decreased cortical and medullary perfusion [12]. MR renography can be useful in the diagnosis of these conditions in early transplant dysfunction, eliminating the risk of percutaneous biopsy. Limitations The limitations of functional contrast-enhanced MRI include quantification of gadolinium concentration from signal intensity, image postprocessing problems such as spatial registration of the dynamic data and tissue segmentation, and lack of consensus about a protocol and method of analysis. These problems have inhibited widespread use of MR renography in clinical practice. Unenhanced Functional Imaging In light of the association between gadolinium contrast agents and nephrogenic sclerosing fibrosis [13 15], there has been renewed interest in exploring unenhanced techniques in evaluation of renal function. Diffusion MRI DWI is based on thermally induced brownian motion of water molecules in tissue. The apparent diffusion coefficient (ADC) calculation can be used for in vivo quantification of the combined effects of capillary perfusion and diffusion [16]. DWI historically has been used in stroke imaging and in the evaluation of intracranial mass lesions. With improvements in hardware and software, including parallel imaging, there has been considerable interest in the use of DWI in abdominal imaging, especially in the evaluation of diffuse liver disease and focal liver lesions [17 2]. A handful of studies have tried to characterize focal renal lesions with DWI, and these studies have shown more restricted diffusion and lower ADC in neoplastic lesions [21 23]. The role of DWI in the evaluation of renal function has become a subject of exploration [24 26]. Technique Single-shot echo-planar imaging is the sequence most frequently used for DWI. Diffusion can be quantified with ADC calculation, for which at least two images are required: one with and one without application of a diffusion gradient. The ADC calculation is based on the negative natural logarithm (ln) of the ratio of signal intensities of the two images, weighted by the diffusion factor, or b value, as follows: ADC = ( 1/b)[ln(S 1 / S )], where ADC is measured in square millimeters per second, b is the diffusion factor, S is the signal at b =, and S 1 is the signal intensity after application of the diffusion gradient. Although at high b values, ADC is dominated by diffusion effects, it is well known that DWI is influenced by perfusion effects at lower diffusion factors (b values). Le Bihan et al. [27 29], in their works on intravoxel incoherent motion (IVIM) modeling of diffusion, suggested that movement of blood in the microvasculature can be modeled as pseudo diffusion and that this perfusion effect can be separated if both low (< 2 s/mm 2 ) and high b values are used in DWI. Currently most investigators routinely use higher b values (b = 4 8 s/mm 2 ) to exclude the perfusion effect and to obtain true diffusion measurements. Some investigators, however, have tried to exploit the perfusion information of DWI in the evaluation of renal function [25]. Current and Potential Applications Renal insufficiency Namimoto et al. [24] initially found that ADC values in both the cortex and the medulla of patients with acute and chronic renal failure were significantly lower than the values in normal kidneys. Furthermore, their initial study showed good linear correlation between serum creatinine level and the ADC value of the cortex (r =.75) and weaker linear correlation between serum creatinine level and the ADC of the medulla (r =.6). A subsequent study [26] also showed good correlation between GFR and renal ADC values. The results of these studies highlight the potential role of renal ADC values in the evaluation of renal dysfunction in native kidneys. Another advantage of DWI is its ability to investigate the function of each kidney separately and to acquire split function information. Many diseases such as RAS and ureteral obstruction are unilateral. GFR estimates based on serum creatinine concentration do not provide split renal function results; thus the function of the diseased kidney is overestimated and that of the healthy kidney is underestimated. A study by Bozgeyik et al. [3] showed that obstructed kidneys had lower ADCs than did normal kidneys. Similarly, in the evaluation of patients with hydronephrosis, another study [31] showed that hydronephrotic kidneys with moderate and severe decreases in renal function as assessed with renal scintigraphy had much lower ADCs than hydronephrotic kidneys with maintained renal function. Thoeny et al. [25] performed diffusion imaging with a large number of b values, including low (range, 1 s/mm 2 ) and high values (range, 5 1, s/mm 2 ). In their study, there was a decrease in renal cortical and medullary ADC measurements calculated with both low and high b values for both the cortex and the medulla of dysfunctioning kidneys. As suggested by the IVIM model of diffusion, low b values contain perfusion information, whereas as high b values contain true diffusion information. Thus DWI with a large number of b values can potentially provide simultaneous perfusion and diffusion information, and both of these parameters have been found to change with renal dysfunction. Renal allograft DWI has been used in the evaluation of renal allografts. In an animal model [32], decreases in renal cortical and medullary ADC values were found in allografts over an 8-hour period starting on day 4 after surgery. In renal allografts, the mean total ADC, true diffusion, and perfusion fraction were identical in the cortex and medulla. However, in normal native kidneys, total ADC and the perfusion fraction were usually higher in the cortex than in the medulla (Fig. 2). These decreases in cortical ADC and perfusion fraction in the allograft have been attributed to loss of autonomic innervation [33]. With an increase in serum creatinine concentration there is a decrease 1552 AJR:192, June 29

4 Renal Functional MRI in cortical ADC and perfusion fraction in both the cortex and the medulla, as in native kidneys. Thus, DWI has potential for evaluation of renal allograft dysfunction without the use of exogenous contrast agents, but this possibility has to be further investigated in a larger study. Renal artery stenosis Animal studies have shown a decrease in renal ADC in response to decreased renal perfusion. With the IVIM model of diffusion, it is possible to calculate the perfusion fraction with DWI without an exogenous contrast agent. Powers et al. [34] found correlation between perfusion fraction at DWI and renal blood flow in a canine model of unilateral renal artery obstruction. Yildirim et al. [35] used DWI with both low and high b values to examine patients with suspected RAS. They found that patients with RAS had significantly lower ADC values, which were calculated with average, low, and high b values. These early findings suggest RAS can be diagnosed on the basis of the ADC value of the kidney without contrast-enhanced MR angiography. A Fig. 2 Diffusion-weighted imaging. A, 45-year-old man with no known renal disease and normal serum creatinine concentration. Apparent diffusion coefficient (ADC) image shows normal corticomedullary differentiation with lower ADC (lower signal intensity) of medulla with respect to cortex. B, 29-year-old man with normally functioning renal allograft. Diffusion-weighted image shows loss of corticomedullary differentiation with decrease in cortical ADC, which has been attributed to loss of autonomic innervation. Limitations One of the major limitations to widespread use of DWI is the lack of consensus regarding the selection of b values for renal imaging. Calculated ADC measurements depend on the b value, and this lack of consensus has made it difficult to compare results of different studies and to generate standardized ADC values for disease and health. Further work also needs to be done in the evaluation of the precision and accuracy of ADC values obtained with different MRI systems. The results will allow investigators to reliably compare studies and confidently apply DWI in clinical practice. Diffusion Tensor Imaging ADC measurements generated with DWI have a scalar property, that is, they have magnitude but no direction. However, diffusion of B A water molecules is a 3D process having both magnitude and direction. This directionality of diffusion, or anisotropy, can be measured by application of diffusion gradients in at least six directions. Anisotropy can provide structural and flow information, expressed as fractional anisotropy (FA). FA values range from to 1, being isotropic diffusion without directionality and 1 being completely anisotropic diffusion in only one direction. The renal medulla is composed of closely packed radially oriented renal tubules and vasa recta. There is directionality to the flow of the glomerular filtrate within these tubules and the blood in the vessels as they travel from the corticomedullary junction to the renal papilla and back. Knowledge of the structure and function of these tubules acquired with a noninvasive technique such as renal diffusion tensor imaging is important because it may provide insight into the pathophysiologic mechanism of renal disease. A small number of investigators [36 39] have found higher FA of the medulla than of the cortex in healthy volunteers. It is unclear, however, whether medullary FA is predominantly a measure of tubular structural arrangement or is substantially influenced by tubular flow. Our group and others are investigating the contribution of flow and structure in the measurement of FA. The role of diffusion tensor imaging in the evaluation of renal disease in native and transplanted kidneys is also under investigation (Fig. 3). Fig. 3 Diffusion tensor imaging. A, 28-year-old woman with normally functioning renal allograft. Fractional anisotropy (FA) map on diffusion tensor image shows higher signal intensity (FA) in medulla with respect to cortex (arrow). FA of medulla in allograft measured.4. B, 47-year-old man with renal dysfunction secondary to acute T-cell mediated rejection after renal transplantation (calculated glomerular filtration rate, 27 ml/min). Diffusion tensor image shows loss of corticomedullary differentiation on FA map with decrease in medullary FA, which measured.2. B AJR:192, June

5 Chandarana and Lee BOLD MRI The renal medulla functions in a hypoxic milieu and is susceptible to changes in blood flow and blood oxygenation. Medullary hypoxia has been implicated as a common pathway in renal failure in animal models of various renal diseases, including hypertension and diabetes [4 42]. Most studies in animal models have been conducted with invasive electrodes, which are clearly not feasible for human studies. BOLD MRI, however, can be used for noninvasive but indirect measurement of renal oxygenation. It exploits the paramagnetic effect of deoxyhemoglobin for acquisition of images sensitive to local oxygen concentration. With an increase in tissue deoxyhemoglobin concentration, there is more dephasing and a decrease in the T2* relaxation time of the protons in the surrounding tissues [43]. In other words, higher tissue oxygenation results in increased T2* relaxation time and a correspondingly shorter R2* value. Technique A multiple gradient-recalled echo (GRE) sequence is currently the most widely used technique for renal BOLD MRI [44]. In the 2D multiple GRE technique, about eight to 16 echoes are acquired after each excitation pulse. For an optimal signal-to-noise ratio, the maximum TE should be equal to the T2* value of the organ of interest. For renal imaging, this value is approximately 5 milliseconds at 1.5 T and 25 milliseconds at 3 T on the basis of the T2* relaxation time of the renal medulla. The R2* value can be obtained by measurement of the slope of the line fit of natural log of signal intensity versus TE [45]. With calculation of the R2* value on a pervoxel basis, an R2* map can be easily generated on commercially available workstations. Regions of interest defined on the anatomic template can be used for estimation of R2* value in the renal medulla and cortex. Current and Potential Applications Renal artery stenosis BOLD MRI can be used to detect the changes of renal hypoxia in an animal model. In an elegant study, Juillard et al. [46] found a graded increase in cortical and medullary R2* value in response to a decrease in renal blood flow in a pig model. They also found a decrease in cortical and medullary R2* value with return to baseline values in response to resolution of renal artery occlusion. BOLD MRI also has been investigated in the evaluation of RAS in humans. Textor et al. [47] found A that normal-sized kidneys with high-grade RAS had improved oxygenation in response to furosemide administration. This finding suggests maintenance of functional reserve in kidneys even in the presence of reduced GFR. However, atrophic kidneys distal to the totally occluded renal arteries had a low R2* value (or improved oxygenation) that did not respond to furosemide challenge. Thus, response to furosemide can serve as a marker of maintained renal function in the presence of RAS. Whether these patients are more likely to benefit from therapy remains to be investigated, and use of BOLD MRI may facilitate appropriate patient selection. Renal allograft dysfunction Renal transplantation has become the treatment of choice of patients with end-stage renal disease. The medullary R2* value in patients who have undergone transplantation is lower than that in healthy volunteers, implying relatively improved oxygenation in transplanted kidneys. This phenomenon has been attributed to reduced tubular fractional reabsorption of sodium and an increase in blood flow due to allograft denervation [33]. In early renal dysfunction after transplantation, differentiating acute rejection from ATN is an important but difficult clinical endeavor because the initial manifestations of both of these conditions are abnormal serum creatinine concentration and a decrease in GFR. Sadowski et al. [48] found that patients with acute rejection have significantly lower R2* values (higher oxygenation) in the medulla than patients with ATN and normal allografts. Using an R2* cutoff of 18 seconds 1 or lower, the investigators diagnosed acute rejection with 1% sensitivity and specificity. This decrease in renal hypoxia in acute rejection has been attributed to decreased oxygen utilization or increased corticomedullary shunting of blood. In contrast, patients with ATN have higher cortical R2* value than patients with normal transplants and patients with acute rejection, likely because of ischemic insult. Having a noninvasive means of determining the presence of acute rejection may allow patients to be evaluated without the concerns associated with percutaneous biopsy. Djamali et al. [49] found that BOLD MRI can be used for evaluation of chronic allograft nephropathy. There is a loss of corticomedullary differentiation on R2* maps of patients with chronic allograft nephropathy with a decrease in medullary R2* values that approaches cortical R2* values. These changes may reflect a decrease in deoxyhemoglobin in the medulla due to decreased tubular work and underutilization of oxygen. Diabetic nephropathy Diabetic nephropathy is the leading cause of chronic renal failure and end-stage renal disease in the United States. Renal hypoxia is considered an important factor in the development and progression of renal failure in diabetes. Animal studies [41, 42] have shown medullary hypoxia, increased oxygen consumption, and up-regulation of the sodium potassium Fig year-old woman with no known renal disease who underwent blood oxygen level dependent (BOLD) MRI. A, T2*-weighted image at baseline in dehydrated state shows medulla to be more hypoxic with lower T2* relaxation time and lower signal intensity than cortex. B, T2*-weighted image obtained after physiologic water-loading challenge shows improvement in medullary hypoxia with increase in signal intensity and corresponding loss of corticomedullary differentiation. B 1554 AJR:192, June 29

6 Renal Functional MRI pump in diabetic kidneys with maintenance of renal blood flow. Using BOLD MRI, Ries et al. [4] found significantly lower oxygenation in the renal medulla of diabetic rats than in a control group as early as 5 days after induction. BOLD MRI has also been used to evaluate humans with diabetes. Epstein et al. [5] found a significant increase in oxygenation of the renal medulla in healthy subjects in response to water diuresis (Fig. 4). This response was absent in the diabetic patients. It is hypothesized that early in the disease, before observed changes in GFR, diabetic patients have loss of autoregulation with impairment of adaptive vasodilatation in response to water loading. Studies are being conducted to explore the role of nitric oxide synthase and nitric oxide inhibitors in animal models and diabetic patients to better understand the role of nitric oxide in the pathogenesis of diabetes. Limitations BOLD signal intensity is an indirect marker of renal oxygenation, and various factors influence signal intensity on BOLD images. These factors include oxygen supply and consumption, blood flow, hematocrit, and plasma oxygen (Po 2). Therefore, direct calibration of R2* value versus Po 2 is unreliable. More work needs to be done to better understand whether changes in BOLD signal intensity in renal disease result from changes in oxygen supply or oxygen consumption. Furthermore, the absolute magnitude of the R2* value is less reliable in practice than the relative changes observed in response to various physiologic and pharmacologic challenges. Future work should be directed at developing physiologic and pharmacologic challenges that help to elucidate changes in renal physiology in renal diseases such as diabetes and hypertension. This findings not only will allow us to better understand the pathogenesis of renal disease but also will provide another paradigm to evaluate disease progression and treatment efficacy. Clinical Practice Algorithms Renal Artery Stenosis RAS (Fig. 5) can be diagnosed with contrast-enhanced MRI or CT. MR renography with an ACEI can help discriminate hemodynamically significant from insignificant RAS. If significant RAS is present, BOLD imaging with furosemide challenge can depict kidneys with maintained functional reserve despite a decrease in renal function. Although unproven, this protocol may allow Decrease in GFR Significant RAS MR renography ACEI BOLD MRI with furosemide challenge Decrease in R2* No change in R2* Maintained renal function Atrophic kidney with no functional reserve selection of patients who are more likely to benefit from revascularization. In patients who are unable to receive gadolinium chelate owing to renal insufficiency, DWI may help in the diagnosis of moderate to severe RAS because patients with this degree of disease have lower ADC values. Acute Allograft Dysfunction Patients with acute allograft dysfunction (Fig. 6) have an abnormal serum creatinine concentration and hence a low GFR. In this setting, BOLD imaging will help discriminate cases of acute rejection from ATN noninvasively and without use of an exogenous contrast agent. If the diagnosis is unclear at BOLD imaging, MR renography can be used for patients who are able to receive a gadolinium contrast agent. RAS No change in GFR Normal or insignificant RAS Decrease in ADC DWI Significant RAS If gadolinium contraindicated Normal ADC Normal vessels or insignificant RAS Fig. 5 Clinical practice functional MRI algorithm for renal artery stenosis (RAS). ACEI = angiotensinconverting enzyme inhibitor, DWI = diffusion-weighted imaging, GFR = glomerular filtration rate, ADC = apparent diffusion coefficient, BOLD = blood oxygen level dependent. Decreased in R2* valve (increased oxygenation) Acute Allograft Dysfunction Acute rejection BOLD MRI Increased in R2* valve (decreased oxygenation) ATN Fig. 6 Clinical practice functional MRI algorithm for acute allograft dysfunction. BOLD = blood oxygen level dependent, ATN = acute tubular necrosis. MR renography GFR estimate Split Renal Function If gadolinium contraindicated DWI Cortical and medullary ADC and perfusion fraction measurements Kidney with lower cortical ADC and perfusion fraction suggests decreased GFR Fig. 7 Clinical practice functional MRI algorithm for split renal function. DWI = diffusion-weighted imaging, GFR = glomerular filtration rate, ADC = apparent diffusion coefficient. Split Renal Function Split renal function (Fig. 7) can be evaluated with MR renography with one of a variety of analysis techniques. Diffusion imaging can help in estimating split renal function in patients who are unable to receive exogenous gadolinium contrast material. Conclusion Noninvasive imaging techniques such as contrast-enhanced MR renography, DWI, and BOLD MRI have great potential in the evaluation of renal function. These techniques have shown considerable promise in research studies and despite some challenges are ready to be explored on a larger scale to answer clinical questions. A clear understanding of these techniques will allow us as radiologists to better serve our clinical colleagues and patients by providing another paradigm in the evaluation of renal function beyond anatomic structural imaging. AJR:192, June

7 Chandarana and Lee References 1. Lamb EJ, Tomson CR, Roderick PJ. Estimating the brain: from structure to function. Radiology 199; 177: Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffu- kidney function in adults using formulae. Ann 17. Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, sion and perfusion in intravoxel incoherent mo- Clin Biochem 25; 42: Menu Y. Evaluation of liver diffusion isotropy and tion MR imaging. Radiology 1988; 168: Prigent A. Monitoring renal function and limita- characterization of focal hepatic lesions with two 29. Le Bihan D, Turner R. The capillary network: a tions of renal function tests. Semin Nucl Med single-shot echo-planar MR imaging sequences: link between IVIM and classical perfusion. Magn 28; 38: Coresh J, Auguste P. Reliability of GFR formulas based on serum creatinine, with special reference to the MDRD study equation. Scand J Clin Lab Invest Suppl 28; 68[suppl 241]: Michaely HJ, Sourbron S, Dietrich O, Attenberger U, Reiser MF, Schoenberg SO. Functional renal MR imaging: an overview. Abdom Imaging 26 Dec 7 [Epub ahead of print] 5. Laissy JP, Idee JM, Fernandez P, Floquet M, Vrtovsnik F, Schouman-Claeys E. Magnetic resonance imaging in acute and chronic kidney diseases: present status. Nephron Clin Pract 26; 13:c5 c57 6. Huang AJ, Lee VS, Rusinek H. Functional renal MR imaging. Magn Reson Imaging Clin N Am 24; 12: Bokacheva L, Rusinek H, Zhang JL, Lee VS. Assessment of renal function with dynamic contrastenhanced MR imaging. Magn Reson Imaging Clin N Am 28; 16: Lee VS, Rusinek H, Bokacheva L, et al. Renal function measurements from MR renography and a simplified multicompartmental model. Am J Physiol Renal Physiol 27; 292:F1548 F Rusinek H, Lee VS, Johnson G. Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med 21; 46: Michaely HJ, Schoenberg SO, Oesingmann N, et al. Renal artery stenosis: functional assessment with dynamic MR perfusion measurements feasibility study. Radiology 26; 238: Zhang JL, Rusinek H, Bokacheva L, et al. Glomerular filtration and renal perfusion measurements by dual-injection MR renography. Am J Physiol Renal Physiol 29; 296:F884 F Szolar DH, Preidler K, Ebner F, et al. Functional magnetic resonance imaging of human renal allografts during the post-transplant period: preliminary observations. Magn Reson Imaging 1997; 15: Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 27; 243: Grobner T, Prischl FC. Gadolinium and nephrogenic systemic fibrosis. Kidney Int 27; 72: Thomsen HS, Marckmann P, Logager VB. Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents. Cancer Imaging 27; 7: Le Bihan D. Diffusion/perfusion MR imaging of prospective study in 66 patients. Radiology 23; 226: Taouli B, Chouli M, Martin AJ, Qayyum A, Coakley FV, Vilgrain V. Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging 28; 28: Girometti R, Furlan A, Esposito G, et al. Relevance of b-values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusionweighted sequences. J Magn Reson Imaging 28; 28: Gourtsoyianni S, Papanikolaou N, Yarmenitis S, Maris T, Karantanas A, Gourtsoyiannis N. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol 28; 18: Zhang J, Tehrani YM, Wang L, Ishill NM, Schwartz LH, Hricak H. Renal masses: characterization with diffusion-weighted MR imaging a preliminary experience. Radiology 28; 247: Cova M, Squillaci E, Stacul F, et al. Diffusionweighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol 24; 77: Squillaci E, Manenti G, Di Stefano F, Miano R, Strigari L, Simonetti G. Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 24; 23: Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Tang Y, Takahashi M. Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging 1999; 9: Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 25; 235: Xu Y, Wang X, Jiang X. Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: preliminary experience. J Magn Reson Imaging 27; 26: Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161:41 47 Reson Med 1992; 27: Bozgeyik Z, Kocakoc E, Sonmezgoz F. Diffusionweighted MR imaging findings of kidneys in patients with early phase of obstruction. Eur J Radiol 29; 7: Toyoshima S, Noguchi K, Seto H, Shimizu M, Watanabe N. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging: relationship between apparent diffusion coefficient and split glomerular filtration rate. Acta Radiol 2; 41: Yang D, Ye Q, Williams DS, Hitchens TK, Ho C. Normal and transplanted rat kidneys: diffusion MR imaging at 7 T. Radiology 24; 231: Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 26; 241: Powers TA, Lorenz CH, Holburn GE, Price RR. Renal artery stenosis: in vivo perfusion MR imaging. Radiology 1991; 178: Yildirim E, Kirbas I, Teksam M, Karadeli E, Gullu H, Ozer I. Diffusion-weighted MR imaging of kidneys in renal artery stenosis. Eur J Radiol 28; 65: Notohamiprodjo M, Glaser C, Herrmann KA, et al. Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 28; 43: Ries M, Jones RA, Basseau F, Moonen CT, Grenier N. Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 21; 14: Muller MF, Prasad PV, Bimmler D, Kaiser A, Edelman RR. Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 1994; 193: Fukuda Y, Ohashi I, Hanafusa K, et al. Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging 2; 11: Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy: blood oxygen level dependent. J Magn Reson Imaging 23; 17: Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 23; 46: dos Santos EA, Li LP, Ji L, Prasad PV. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest Radiol 1556 AJR:192, June 29

8 Renal Functional MRI 27; 42: Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 1982; 714: Prasad PV, Chen Q, Goldfarb JW, Epstein FH, Edelman RR. Breath-hold R2* mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J Magn Reson Imaging 1997; 7: FOR YOUR INFORMATION 45. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 1996; 94: Juillard L, Lerman LO, Kruger DG, et al. Blood oxygen level dependent measurement of acute intra-renal ischemia. Kidney Int 24; 65: Textor SC, Glockner JF, Lerman LO, et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol 28; 19: Sadowski EA, Fain SB, Alford SK, et al. Assessment of acute renal transplant rejection with blood oxygen level dependent MR imaging: initial experience. Radiology 25; 236: Djamali A, Sadowski EA, Muehrer RJ, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 27; 292:F513 F Epstein FH, Veves A, Prasad PV. Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 22; 25: Unique customized medical search engine service from ARRS! ARRS GoldMiner is a keyword- and concept-driven search engine that provides instant access to radiologic images published in peer-reviewed journals. For more information, visit AJR:192, June

Diffusion weighted MRI in evaluation of transplanted kidney: Preliminary clinical experience

Diffusion weighted MRI in evaluation of transplanted kidney: Preliminary clinical experience African Journal of Nephrology (2009) 13: 26-30 Original Article AJN Diffusion weighted MRI in evaluation of transplanted kidney: Preliminary clinical experience Mohamed Abou El-Ghar; M.D, Huda Refaie;

More information

Magnetic resonance (MR) diffusion-weighted imaging (DWI) is

Magnetic resonance (MR) diffusion-weighted imaging (DWI) is Diagn Interv Radiol DOI 10.4261/1305-3825.DIR.3892-10.1 Turkish Society of Radiology 2010 ABDOMINAL IMAGING ORIGINAL ARTICLE Diffusion tensor imaging of the kidney at 3 Tesla: normative values and repeatability

More information

MRI qbold Based Evaluation. Renal Oxidative Metabolism. Department of Radiology and Hernando Gomez, MD Critical Care Medicine

MRI qbold Based Evaluation. Renal Oxidative Metabolism. Department of Radiology and Hernando Gomez, MD Critical Care Medicine MRI qbold Based Evaluation of Renal Oxidative Metabolism Xiang He, PhD Department of Radiology and Hernando Gomez, MD Critical Care Medicine Background High oxygen-demand and lower medullary blood flow

More information

Correlation of Diffusion-weighted MR Imaging with Cellularity of Renal Tumours

Correlation of Diffusion-weighted MR Imaging with Cellularity of Renal Tumours Correlation of Diffusion-weighted MR Imaging with Cellularity of Renal Tumours ETTORE SQUILLACI 1, GUGLIELMO MANENTI 1, MARIA COVA 2, MAURO DI ROMA 1, ROBERTO MIANO 3, GIAMPIERO PALMIERI 4 and GIOVANNI

More information

Kidney Transplant: Functional Assessment with Diffusion-Tensor MR Imaging at 3T 1

Kidney Transplant: Functional Assessment with Diffusion-Tensor MR Imaging at 3T 1 Note: This copy is for your personal non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. Original Research

More information

Non-Invasive MR-based Evaluation of Kidney Function without Exogenous Contrast Agent. Xiang He, PhD Department of Radiology University of Pittsburgh

Non-Invasive MR-based Evaluation of Kidney Function without Exogenous Contrast Agent. Xiang He, PhD Department of Radiology University of Pittsburgh Non-Invasive MR-based Evaluation of Kidney Function without Exogenous Contrast Agent Xiang He, PhD Department of Radiology University of Pittsburgh Contents MR-based non-invasive estimation of single kidney

More information

Index. mri.theclinics.com. Note: Page numbers of article titles are in boldface type.

Index. mri.theclinics.com. Note: Page numbers of article titles are in boldface type. Index Note: Page numbers of article titles are in boldface type. A Angiogenesis, and cancer of prostate, 689 690 Angiography, MR. See MR angiography. Apoptosis, MR imaging of, 637 Apparent diffusion coefficient,

More information

Evaluation of Transplanted Kidneys Using Blood Oxygenation Level Dependent MRI at 3 T: A Preliminary Study

Evaluation of Transplanted Kidneys Using Blood Oxygenation Level Dependent MRI at 3 T: A Preliminary Study Genitourinary Imaging Original Research Park et al. OLD MRI of Renal llografts Genitourinary Imaging Original Research Sung Yoon Park 1 Chan Kyo Kim 1 yung Kwan Park 1 Wooseong Huh 2 Sung Ju Kim 3 ohyun

More information

Renal artery disease: MR Techniques and Interpretation

Renal artery disease: MR Techniques and Interpretation Renal artery disease: MR Techniques and Interpretation Prof. Dr. Stefan O. Schoenberg Professor and Chairman of Radiology Department of Clinical Radiology and Nuclear Medicine University Medicine Mannheim

More information

Anatomical and Functional MRI of the Pancreas

Anatomical and Functional MRI of the Pancreas Anatomical and Functional MRI of the Pancreas MA Bali, MD, T Metens, PhD Erasme Hospital Free University of Brussels Belgium mbali@ulb.ac.be Introduction The use of MRI to investigate the pancreas has

More information

Intra-renal Oxygenation. in Human Subjects

Intra-renal Oxygenation. in Human Subjects MRI-based Mapping of Intra-renal Oxygenation BOLD in Human Subjects OEF Xiang He, PhD Department of Radiology Background Cortex Brain CBF ~ 1.0 ml/min/g Brain PO 2 ~ 25-35 mm Hg Medullary hypoxia is an

More information

Genitourinary Imaging Original Research

Genitourinary Imaging Original Research Genitourinary Imaging Original Research Li et al. MRI of Renal Function Genitourinary Imaging Original Research Qinghai Li 1 Xinying Wu 1 Lingling Qiu 1 Peipei Zhang 1 Minming Zhang 1 Fuhua Yan 2 Li Q,

More information

An exploration into the role of diffusion weighted MRI imaging in the assessment of chronic kidney disease

An exploration into the role of diffusion weighted MRI imaging in the assessment of chronic kidney disease An exploration into the role of diffusion weighted MRI imaging in the assessment of chronic kidney disease Saeed N. Younis (1) Safa Ezzidin Norouldin Almukhtar (2) Dendar Khudhur Rashid (3) (1) Department

More information

The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis

The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis Nephrol Dial Transplant (2008) 23: 2666 2672 doi: 10.1093/ndt/gfn064 Advance Access publication 28 February 2008 Original Article The significance of BOLD MRI in differentiation between renal transplant

More information

ADC Measurement of Abdominal Organs and Lesions Using Parallel Imaging Technique

ADC Measurement of Abdominal Organs and Lesions Using Parallel Imaging Technique ADC Measurement of Abdomen Using Parallel Imaging Abdominal Imaging Original Research A C D E M N E U T R Y L I A M C A I G O F I N G Takeshi Yoshikawa 1 Hideaki Kawamitsu 2 Donald G. Mitchell 1 Yoshiharu

More information

New magnetic resonance imaging methods in nephrology

New magnetic resonance imaging methods in nephrology http://www.kidney-international.org & 2013 International Society of Nephrology New magnetic resonance imaging methods in nephrology Jeff L. Zhang 1, Glen Morrell 1, Henry Rusinek 2, Eric E. Sigmund 2,

More information

Assessment of Renal Function with Dynamic Contrast-Enhanced MR Imaging

Assessment of Renal Function with Dynamic Contrast-Enhanced MR Imaging Assessment of Renal Function with Dynamic Contrast-Enhanced MR Imaging Louisa Bokacheva, PhD a, *,HenryRusinek,PhD a, Jeff L. Zhang, PhD a,vivian S. Lee, MD,PhD,MBA b KEYWORDS Dynamic contrast-enhanced

More information

Abdominal applications of DWI

Abdominal applications of DWI Postgraduate course, SPR San Antonio (Texas), May 14-15, 2013 Abdominal applications of DWI Rutger A.J. Nievelstein Wilhelmina Children s s Hospital, Utrecht (NL) Outline What is DWI? How to perform? Challenges

More information

T2, T2*, ute. Yeo Ju Kim. Radiology, Inha University Hospital, Incheon, Korea

T2, T2*, ute. Yeo Ju Kim. Radiology, Inha University Hospital, Incheon, Korea SY28-1 T2, T2*, ute Yeo Ju Kim Radiology, Inha University Hospital, Incheon, Korea T2 relaxation times relate to the rate of transverse magnetization decay, caused by the loss of phase coherence induced

More information

Pediatric* MR Urography

Pediatric* MR Urography Abdominal Imaging Clinical Pediatric* MR Urography Richard A. Jones; Stephen Little; J. Damien Grattan-Smith Children s Healthcare of Atlanta, Department of Radiology, Atlanta, GA, USA MR urography represents

More information

FUNCTIONAL MRI OF THE KIDNEYS

FUNCTIONAL MRI OF THE KIDNEYS FUNCTIONAL MRI OF THE KIDNEYS INVESTIGATING MINIMALLY INVASIVE STRESSORS FOR FUNCTIONAL MRI OF THE KIDNEYS By MARLA A. SHAVER, B.Eng. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment

More information

Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective study

Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective study Liu et al. BMC Nephrology 2014, 15:158 RESEARCH ARTICLE Open Access Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective

More information

Diffusion Weighted Imaging in IBD: An Update Ethan A. Smith, MD

Diffusion Weighted Imaging in IBD: An Update Ethan A. Smith, MD Diffusion Weighted Imaging in IBD: An Update Ethan A. Smith, MD Section of Pediatric Radiology C.S. Mott Children s Hospital University of Michigan ethans@med.umich.edu Disclosures Royalties from Elsevier

More information

HHS Public Access Author manuscript Invest Radiol. Author manuscript; available in PMC 2015 June 17.

HHS Public Access Author manuscript Invest Radiol. Author manuscript; available in PMC 2015 June 17. Evaluation of Renal Hypoxia in Diabetic Mice by BOLD MRI Pottumarthi Prasad, PhD *, Lu-Ping Li, PhD *, Sarah Halter, BA *, JoAnn Cabray, BS *, Minghao Ye, MD, and Daniel Batlle, MD * Radiology Department,

More information

renoprotection therapy goals 208, 209

renoprotection therapy goals 208, 209 Subject Index Aldosterone, plasminogen activator inhibitor-1 induction 163, 164, 168 Aminopeptidases angiotensin II processing 64 66, 214 diabetic expression 214, 215 Angiotensin I intrarenal compartmentalization

More information

Functional aspects of anatomical imaging techniques

Functional aspects of anatomical imaging techniques Functional aspects of anatomical imaging techniques Nilendu Purandare Associate Professor & Consultant Radiologist Tata Memorial Centre Functional/metabolic/molecular imaging (radioisotope scanning) PET

More information

Computer aided detection of acute renal allograft dysfunction using dynamic contrast enhanced MRI

Computer aided detection of acute renal allograft dysfunction using dynamic contrast enhanced MRI The Egyptian Journal of Radiology and Nuclear Medicine (2011) 42, 443 449 Egyptian Society of Radiology and Nuclear Medicine The Egyptian Journal of Radiology and Nuclear Medicine www.elsevier.com/locate/ejrnm

More information

Nephrographic and Pyelographic Analysis of CT Urography: Principles, Patterns, and Pathophysiology

Nephrographic and Pyelographic Analysis of CT Urography: Principles, Patterns, and Pathophysiology Genitourinary Imaging Review Wolin et al. CT Urography Principles, Patterns, and Genitourinary Imaging Review FOCUS ON: Ely A. Wolin 1 David S. Hartman J. Ryan Olson Wolin EA, Hartman DS, Olson JR Keywords:

More information

PERFUSION MRI CONTRAST BASED TECHNIQUES

PERFUSION MRI CONTRAST BASED TECHNIQUES PERFUSION MRI CONTRAST BASED TECHNIQUES by Kenny K Israni Mar 28, 2006 PERFUSION - MRI Dynamic Susceptibility contrast Dynamic Relaxivity contrast STEADY-STATE STATE TECHNIQUES Steady-state Susceptibility

More information

Naoaki Yamada, Satoshi Imakita, and Toshiharu Sakuma

Naoaki Yamada, Satoshi Imakita, and Toshiharu Sakuma AJNR Am J Neuroradiol 20:193 198, February 1999 Value of Diffusion-Weighted Imaging and Apparent Diffusion Coefficient in Recent Cerebral Infarctions: A Correlative Study with Contrast-Enhanced T1-Weighted

More information

Protocol for iv. iodine and gadolinium contrast studies

Protocol for iv. iodine and gadolinium contrast studies Protocol for iv. iodine and gadolinium contrast studies Royal College of Radiologists Standard The individual administering the contrast agent must ensure that the patient understands that it is to be

More information

Index. Note: Page numbers of article titles are in boldface type.

Index. Note: Page numbers of article titles are in boldface type. Magn Reson Imaging Clin N Am 12 (2004) 587 591 Index Note: Page numbers of article titles are in boldface type. A Adenoma(s), adrenal, gadolinium-enhanced MR imaging in, 533 534 hyperfunctioning versus

More information

Evaluation of intra-renal oxygenation during water diuresis: A time-resolved study using BOLD MRI

Evaluation of intra-renal oxygenation during water diuresis: A time-resolved study using BOLD MRI http://www.kidney-international.org & 2006 International Society of Nephrology original article see commentary on page Evaluation of intra-renal oxygenation during water diuresis: A time-resolved study

More information

Renal. Prof John Buscombe

Renal. Prof John Buscombe Renal Prof John Buscombe Renal nuclear Medicine Only consistent test of kidney func7on Many good tests for renal anatomy Ultrasound good looking at cysts and renal pelvis CT can look at perfusion, size

More information

1Pulse sequences for non CE MRA

1Pulse sequences for non CE MRA MRI: Principles and Applications, Friday, 8.30 9.20 am Pulse sequences for non CE MRA S. I. Gonçalves, PhD Radiology Department University Hospital Coimbra Autumn Semester, 2011 1 Magnetic resonance angiography

More information

Diffusion-Weighted Imaging of the Kidneys and Its Relationship With Residual Renal Function in Continuous Ambulatory Peritoneal Dialysis Patients

Diffusion-Weighted Imaging of the Kidneys and Its Relationship With Residual Renal Function in Continuous Ambulatory Peritoneal Dialysis Patients Genitourinary Imaging Original Research Yang et al. DWI of the Kidneys in PD Patients Genitourinary Imaging Original Research Ling Yang 1 Xue-Ming Li 2 Shuang Zhao 1 Ya-Jun Hu 1 Rong-o Liu 1 Yang L, Li

More information

Usefulness of Apparent Diffusion Coefficient of Diffusion- Weighted Imaging for Differential Diagnosis of Primary Solid and Cystic Renal Masses

Usefulness of Apparent Diffusion Coefficient of Diffusion- Weighted Imaging for Differential Diagnosis of Primary Solid and Cystic Renal Masses Signature: Pol J Radiol, 2017; 82: 209-215 DOI: 10.12659/PJR.899984 ORIGINAL ARTICLE Received: 2016.06.08 Accepted: 2016.08.16 Published: 2017.04.13 Authors Contribution: A Study Design B Data Collection

More information

DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING OF THE LIVER IN HEPATITIS B PATIENTS

DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING OF THE LIVER IN HEPATITIS B PATIENTS DIFFUSIO-WEIGHTED MAGETIC RESOACE IMAGIG OF THE LIVER I HEATITIS B ATIETS WITH CHILD-UGH A CIRRHOSIS Feng-O Hsu, 1 Yen-Yu Chiou, 1 Chiao-Yun Chen, 1,2 Gin-Chung Liu, 1,2 Hui-Chen Chu, 3 Hui-Cheng Liu,

More information

Value of the Diffusion-Weighted MRI in the Differential Diagnostics of Malignant and Benign Kidney Neoplasms Our Clinical Experience

Value of the Diffusion-Weighted MRI in the Differential Diagnostics of Malignant and Benign Kidney Neoplasms Our Clinical Experience Signature: Pol J Radiol, 2014; 79: 290-295 DOI: 10.12659/PJR.890604 ORIGINAL ARTICLE Received: 2014.02.27 Accepted: 2014.03.24 Published: 2014.09.01 Authors Contribution: A Study Design B Data Collection

More information

Renal function measurements from MR renography and a simplified multicompartmental model

Renal function measurements from MR renography and a simplified multicompartmental model Am J Physiol Renal Physiol 292: F1548 F1559, 2007. First published January 9, 2007; doi:10.1152/ajprenal.00347.2006. Renal function measurements from MR renography and a simplified multicompartmental model

More information

BOLD signal compartmentalization based on the apparent diffusion coefficient

BOLD signal compartmentalization based on the apparent diffusion coefficient Magnetic Resonance Imaging 20 (2002) 521 525 BOLD signal compartmentalization based on the apparent diffusion coefficient Allen W. Song a,b *, Harlan Fichtenholtz b, Marty Woldorff b a Brain Imaging and

More information

The Egyptian Journal of Hospital Medicine (October 2017) Vol.69 (2), Page

The Egyptian Journal of Hospital Medicine (October 2017) Vol.69 (2), Page The Egyptian Journal of Hospital Medicine (October 2017) Vol.69 (2), Page 1823-1827 Role of Diffusion Weighted MRI Imaging in Detection of Liver Metakstases Khalid E. Allam, Mennatallah H. Shalaby, Israa

More information

Intravoxel Incoherent Motion in Body Diffusion-Weighted MRI: Reality and Challenges

Intravoxel Incoherent Motion in Body Diffusion-Weighted MRI: Reality and Challenges Medical Physics and Informatics Review Koh et al. Challenges of Intravoxel Incoherent Motion in Diffusion- Weighted MRI Medical Physics and Informatics Review Dow-Mu Koh 1 David J. Collins 1,2 Matthew

More information

Diagnostic value of diffusion weighted MRI and ADC in differential diagnosis of cavernous hemangioma of the liver.

Diagnostic value of diffusion weighted MRI and ADC in differential diagnosis of cavernous hemangioma of the liver. Diagnostic value of diffusion weighted MRI and ADC in differential diagnosis of cavernous hemangioma of the liver. Ozlem Tokgoz 1, Ebru Unlu 2, Ilker Unal 3, Ismail Serifoglu 4, Ilker Oz 4, Elif Aktas

More information

Functional Chest MRI in Children Hyun Woo Goo

Functional Chest MRI in Children Hyun Woo Goo Functional Chest MRI in Children Hyun Woo Goo Department of Radiology and Research Institute of Radiology Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea No ionizing radiation

More information

Renal Relevant Radiology: Renal Functional Magnetic Resonance Imaging

Renal Relevant Radiology: Renal Functional Magnetic Resonance Imaging Renal Relevant Radiology: Renal Functional Magnetic Resonance Imaging Behzad Ebrahimi, Stephen C. Textor, and Lilach O. Lerman Summary Because of its noninvasive nature and provision of quantitative measures

More information

Renal transplantation is the treatment of choice in patients with chronic renal failure, sparing them from life-long dialysis and improving their qual

Renal transplantation is the treatment of choice in patients with chronic renal failure, sparing them from life-long dialysis and improving their qual Note: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. Akira Yamamoto,

More information

Outline the functional anatomy, and the physiological factors, that determine oxygen delivery to the renal medulla.

Outline the functional anatomy, and the physiological factors, that determine oxygen delivery to the renal medulla. 2011-2-21 Outline the functional anatomy, and the physiological factors, that determine oxygen delivery to the renal medulla. Oxygen delivery = Blood flow CaO 2 Where Blood flow determined by (arterial

More information

Effect of intravenous contrast medium administration on prostate diffusion-weighted imaging

Effect of intravenous contrast medium administration on prostate diffusion-weighted imaging Effect of intravenous contrast medium administration on prostate diffusion-weighted imaging Poster No.: C-1766 Congress: ECR 2015 Type: Authors: Keywords: DOI: Scientific Exhibit J. Bae, C. K. Kim, S.

More information

The principal functions of the kidneys

The principal functions of the kidneys Renal physiology The principal functions of the kidneys Formation and excretion of urine Excretion of waste products, drugs, and toxins Regulation of body water and mineral content of the body Maintenance

More information

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University Disclosures! No conflicts of interest to disclose Neuroimaging 101! Plain films! Computed tomography " Angiography " Perfusion! Magnetic

More information

Evaluation of Renal Oxygenation Level Changes after Water Loading Using Susceptibility-Weighted Imaging and T2* Mapping

Evaluation of Renal Oxygenation Level Changes after Water Loading Using Susceptibility-Weighted Imaging and T2* Mapping Original Article Genitourinary Imaging http://dx.doi.org/1.3348/kjr.215.16.4.827 pissn 1229-6929 eissn 25-833 Korean J Radiol 215;16(4):827-834 Evaluation of Renal Oxygenation Level Changes after Water

More information

Perfusion Physics. ICMRI2018 March 29-31, 2018 Grand Hilton Hotel, Seoul, Korea. Asian Forum Ⅱ: Perfusion MRI SY24-1.

Perfusion Physics. ICMRI2018 March 29-31, 2018 Grand Hilton Hotel, Seoul, Korea. Asian Forum Ⅱ: Perfusion MRI SY24-1. SY24-1 Perfusion Physics Hiroyuki Kabasawa MR Collaborations and Development, GE Healthcare, Tokyo, Japan Perfusion is referred as the blood supply to micro capillary in tissue. Perfusion parameter such

More information

Imaging the Kidney using Magnetic Resonance Techniques: Structure to. Function

Imaging the Kidney using Magnetic Resonance Techniques: Structure to. Function Imaging the Kidney using Magnetic Resonance Techniques: Structure to Function Huda Mahmoud 1,2, Charlotte Buchanan 3, Susan T Francis 3 and Nicholas M Selby 1,2 1 Centre for Kidney Research and Innovation

More information

Innovations in HCC Imaging: MDCT/MRI

Innovations in HCC Imaging: MDCT/MRI Innovations in HCC Imaging: MDCT/MRI Anthony E. Cheng, M.D. Cardinal MRI Center Cardinal Santos Medical Center, Wilson Street, San Juan Innovations in HCC Imaging: Goals/Objectives MDCT/MRI Learn the diagnostic

More information

The follow-up of uterine fibroids treated with HIFU: role of DWI and Dynamic contrast-study MRI

The follow-up of uterine fibroids treated with HIFU: role of DWI and Dynamic contrast-study MRI The follow-up of uterine fibroids treated with HIFU: role of DWI and Dynamic contrast-study MRI Poster No.: C-1137 Congress: ECR 2011 Type: Authors: Keywords: DOI: Scientific Exhibit V. Zampa, V. Vallini,

More information

Diffusion-weighted Magnetic Resonance Imaging in the Emergency Department

Diffusion-weighted Magnetic Resonance Imaging in the Emergency Department 298 / = Abstract = Diffusion-weighted Magnetic Resonance Imaging in the Emergency Department Sung Pil Chung, M.D, Suk Woo Lee, M.D., Young Mo Yang, M.D., Young Rock Ha, M.D., Seung Whan Kim, M.D., and

More information

Contrast Induced Nephropathy

Contrast Induced Nephropathy Contrast Induced Nephropathy O CIAKI refers to an abrupt deterioration in renal function associated with the administration of iodinated contrast media O CIAKI is characterized by an acute (within 48 hours)

More information

DTI fiber tracking at 3T MR using b-1000 value in the depiction of periprostatic nerve before and after nervesparing prostatectomy

DTI fiber tracking at 3T MR using b-1000 value in the depiction of periprostatic nerve before and after nervesparing prostatectomy DTI fiber tracking at 3T MR using b-1000 value in the depiction of periprostatic nerve before and after nervesparing prostatectomy Poster No.: C-2328 Congress: ECR 2012 Type: Scientific Paper Authors:

More information

Imaging for Peripheral Vascular Disease

Imaging for Peripheral Vascular Disease Imaging for Peripheral Vascular Disease James G. Jollis, MD Director, Rex Hospital Cardiovascular Imaging Imaging for Peripheral Vascular Disease 54 year old male with exertional calf pain in his right

More information

The Use of Magnetic Resonance to Evaluate Tissue Oxygenation in Renal Artery Stenosis

The Use of Magnetic Resonance to Evaluate Tissue Oxygenation in Renal Artery Stenosis The Use of Magnetic Resonance to Evaluate Tissue Oxygenation in Renal Artery Stenosis Stephen C. Textor, James F. Glockner, Lilach O. Lerman, Sanjay Misra, Michael A. McKusick, Stephen J. Riederer, Joseph

More information

Introduction to Clinical Diagnosis Nephrology

Introduction to Clinical Diagnosis Nephrology Introduction to Clinical Diagnosis Nephrology I. David Weiner, M.D. C. Craig and Audrae Tisher Chair in Nephrology Professor of Medicine and Physiology and Functional Genomics University of Florida College

More information

Liver Fat Quantification

Liver Fat Quantification Liver Fat Quantification Jie Deng, PhD, DABMP Department of Medical Imaging May 18 th, 2017 Disclosure Research agreement with Siemens Medical Solutions 2 Background Non-alcoholic fatty liver diseases

More information

Essentials of Clinical MR, 2 nd edition. 65. Benign Hepatic Masses

Essentials of Clinical MR, 2 nd edition. 65. Benign Hepatic Masses 65. Benign Hepatic Masses Pulse sequences acquired for abdominal MRI typically consist of fast acquisition schemes such as single-shot turbo spin echo (i.e. HASTE) and gradient echo schemes such as FLASH

More information

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II 14. Ischemia and Infarction II Lacunar infarcts are small deep parenchymal lesions involving the basal ganglia, internal capsule, thalamus, and brainstem. The vascular supply of these areas includes the

More information

BCH 450 Biochemistry of Specialized Tissues

BCH 450 Biochemistry of Specialized Tissues BCH 450 Biochemistry of Specialized Tissues VII. Renal Structure, Function & Regulation Kidney Function 1. Regulate Extracellular fluid (ECF) (plasma and interstitial fluid) through formation of urine.

More information

In vivo diffusion tensor imaging (DTI) of articular cartilage as a biomarker for osteoarthritis

In vivo diffusion tensor imaging (DTI) of articular cartilage as a biomarker for osteoarthritis In vivo diffusion tensor imaging (DTI) of articular cartilage as a biomarker for osteoarthritis Jose G. Raya 1, Annie Horng 2, Olaf Dietrich 2, Svetlana Krasnokutsky 3, Luis S. Beltran 1, Maximilian F.

More information

Doppler ultrasound, see Ultrasonography. Magnetic resonance imaging (MRI), kidney oxygenation assessment 75

Doppler ultrasound, see Ultrasonography. Magnetic resonance imaging (MRI), kidney oxygenation assessment 75 Subject Index Acidemia, cardiorenal syndrome type 3 146 Acute Dialysis Quality Initiative (ADQI) acute kidney injury biomarkers, see Acute kidney injury; specific biomarkers cardiorenal syndrome, see specific

More information

The Paul Evans Memorial Lecture Functional radiotherapy targeting using focused dose escalation. Roberto Alonzi Mount Vernon Cancer Centre

The Paul Evans Memorial Lecture Functional radiotherapy targeting using focused dose escalation. Roberto Alonzi Mount Vernon Cancer Centre The Paul Evans Memorial Lecture Functional radiotherapy targeting using focused dose escalation Roberto Alonzi Mount Vernon Cancer Centre Overview Introduction and rationale for focused dose escalation

More information

Current Role of Renal Artery Stenting in Patients with Renal Artery Stenosis

Current Role of Renal Artery Stenting in Patients with Renal Artery Stenosis Current Role of Renal Artery Stenting in Patients with Renal Artery Stenosis Young-Guk Ko, M.D. Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea Etiology Fibromuscular

More information

Diffusion-Weighted Imaging of the Abdomen at 3.0 Tesla: Image Quality and Apparent Diffusion Coefficient Reproducibility Compared With 1.

Diffusion-Weighted Imaging of the Abdomen at 3.0 Tesla: Image Quality and Apparent Diffusion Coefficient Reproducibility Compared With 1. CME JOURNAL OF MAGNETIC RESONANCE IMAGING 33:128 135 (2011) Original Research Diffusion-Weighted Imaging of the Abdomen at 3.0 Tesla: Image Quality and Apparent Diffusion Coefficient Reproducibility Compared

More information

Diagnosis of Renal Artery Stenosis (RAS)

Diagnosis of Renal Artery Stenosis (RAS) May 2001 Diagnosis of Renal Artery Stenosis (RAS) Kurt Fink, Harvard Medical School, Year III Epidemiology Hypertension -Affects 60 million Americans Essential HTN >95% of cases Secondary HTN 1-5% of cases

More information

COMPLETE INHIBITION OF RENAL RESERVE IN CHRONIC RENAL FAILURE BY A COMBINATION OF ACEI AND ARB

COMPLETE INHIBITION OF RENAL RESERVE IN CHRONIC RENAL FAILURE BY A COMBINATION OF ACEI AND ARB COMPLETE INHIBITION OF RENAL RESERVE IN CHRONIC RENAL FAILURE BY A COMBINATION OF ACEI AND ARB CG Musso ¹, J Reynaldi¹, N Imperiali ¹, L Algranati ¹, DG Oreopoulos ² Nephrology Department Hospital Italiano

More information

Kristina M. Nowitzki, M.D., Ph.D. and Hao S. Lo, M.D. University of Massachusetts Medical School, Worcester, MA

Kristina M. Nowitzki, M.D., Ph.D. and Hao S. Lo, M.D. University of Massachusetts Medical School, Worcester, MA Kristina M. Nowitzki, M.D., Ph.D. and Hao S. Lo, M.D. University of Massachusetts Medical School, Worcester, MA Outline I. Introduction highlighting normal renal enhancement physiology including normal

More information

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE In Practice RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE By Atsuya Watanabe, MD, PhD, Director, Advanced Diagnostic Imaging Center and Associate Professor, Department of Orthopedic Surgery, Teikyo

More information

DIFFUSION MRI OF FOCAL LIVER LESIONS

DIFFUSION MRI OF FOCAL LIVER LESIONS ORIGINAL ARTICLE DIFFUSION MRI OF FOCAL LIVER LESIONS Iman Abbas Hosny Department of Radiodiagnosis, Faculty of Medicine, Cairo University, Cairo, Egypt. : 01-07 ABSTRACT OBJECTIVE: To evaluate the diagnostic

More information

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING:

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING: National Imaging Associates, Inc. Clinical guidelines BONE MARROW MRI Original Date: July 2008 Page 1 of 5 CPT Codes: 77084 Last Review Date: September 2014 NCD 220.2 MRI Last Effective Date: July 2011

More information

MR Advance Techniques. Vascular Imaging. Class II

MR Advance Techniques. Vascular Imaging. Class II MR Advance Techniques Vascular Imaging Class II 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology

Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology Koh and Collins DWI Applications and Challenges in Oncology MR Imaging Review Dow-Mu Koh 1,2 David J. Collins 1,2 Koh DM, Collins DJ Keywords: abdominal imaging, cancer, diffusion-weighted imaging, MRI,

More information

General Cardiovascular Magnetic Resonance Imaging

General Cardiovascular Magnetic Resonance Imaging 2 General Cardiovascular Magnetic Resonance Imaging 19 Peter G. Danias, Cardiovascular MRI: 150 Multiple-Choice Questions and Answers Humana Press 2008 20 Cardiovascular MRI: 150 Multiple-Choice Questions

More information

Controversies around antenatally detected PUJ syndrom. Amy Piepsz, CHU St Pierre, Brussels, Belgium

Controversies around antenatally detected PUJ syndrom. Amy Piepsz, CHU St Pierre, Brussels, Belgium Controversies around antenatally detected PUJ syndrom Amy Piepsz, CHU St Pierre, Brussels, Belgium Editors : Anthony Caldamone, USA Pierre Mouriquand, France Newborn boy History of prenatally diagnosed

More information

Cardiac MRI in ACHD What We. ACHD Patients

Cardiac MRI in ACHD What We. ACHD Patients Cardiac MRI in ACHD What We Have Learned to Apply to ACHD Patients Faris Al Mousily, MBChB, FAAC, FACC Consultant, Pediatric Cardiology, KFSH&RC/Jeddah Adjunct Faculty, Division of Pediatric Cardiology

More information

occlusions. Cerebral perfusion is driven fundamentally by regional cerebral

occlusions. Cerebral perfusion is driven fundamentally by regional cerebral Appendix Figures Figure A1. Hemodynamic changes that may occur in major anterior circulation occlusions. Cerebral perfusion is driven fundamentally by regional cerebral perfusion pressure (CPP). In response

More information

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology Introduction to the Course and the Techniques Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology (jralger@ucla.edu) CTSI Neuroimaging April 2014 Rationale for the Course

More information

Renal Disease and PK/PD. Anjay Rastogi MD PhD Division of Nephrology

Renal Disease and PK/PD. Anjay Rastogi MD PhD Division of Nephrology Renal Disease and PK/PD Anjay Rastogi MD PhD Division of Nephrology Drugs and Kidneys Kidney is one of the major organ of drug elimination from the human body Renal disease and dialysis alters the pharmacokinetics

More information

Precursor of renal scarring: Cortical perfusion change or Cortical defect or Photon defect

Precursor of renal scarring: Cortical perfusion change or Cortical defect or Photon defect Usefulness of Intravoxel Incoherent Motion (IVIM) MR Imaging to Evaluate Cortical Defects in the first episode of Upper Urinary Tract Infections: Can IVIM DWI Replace the DMSA Scintigraphy? Poster No.:

More information

Allen W. Song, Marty G. Woldorff, Stacey Gangstead, George R. Mangun, and Gregory McCarthy

Allen W. Song, Marty G. Woldorff, Stacey Gangstead, George R. Mangun, and Gregory McCarthy NeuroImage 17, 742 750 (2002) doi:10.1006/nimg.2002.1217 Enhanced Spatial Localization of Neuronal Activation Using Simultaneous Apparent-Diffusion-Coefficient and Blood-Oxygenation Functional Magnetic

More information

Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver

Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver Magn Reson Mater Phy (2009) 22:319 325 DOI 10.1007/s10334-009-0183-1 RESEARCH ARTICLE Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver Thomas C. Kwee Taro Takahara

More information

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed Kidney Physiology Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed The purpose of tubular secrection To dispose of certain substances that are bound to plasma proteins. To

More information

MRI/MRS Biomarkers. Robert E. Lenkinski, Ph.D.

MRI/MRS Biomarkers. Robert E. Lenkinski, Ph.D. MRI/MRS Biomarkers Robert E. Lenkinski, Ph.D. Disclosure GE Healthcare-Research Grant Aspect MR-Scientific Advisor Aposense-Scientific Advisor Brainwatch-Scientific Advisor I will be discussing off-label

More information

Disclosures. Diffusion and Perfusion Imaging in the Head and Neck. Learning objectives ???

Disclosures. Diffusion and Perfusion Imaging in the Head and Neck. Learning objectives ??? Disclosures No relevant financial disclosures Diffusion and Perfusion Imaging in the Head and Neck Ashok Srinivasan, MD Associate Professor Director of Neuroradiology University of Michigan Health System

More information

Disclosures. Critical Limb Ischemia. Vascular Testing in the CLI Patient. Vascular Testing in Critical Limb Ischemia UCSF Vascular Symposium

Disclosures. Critical Limb Ischemia. Vascular Testing in the CLI Patient. Vascular Testing in Critical Limb Ischemia UCSF Vascular Symposium Disclosures Vascular Testing in the CLI Patient None 2015 UCSF Vascular Symposium Warren Gasper, MD Assistant Professor of Surgery UCSF Division of Vascular Surgery Critical Limb Ischemia Chronic Limb

More information

Copyright 2009 Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. Figure 19-1c. Efferent arteriole. Juxtaglomerular apparatus

Copyright 2009 Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. Figure 19-1c. Efferent arteriole. Juxtaglomerular apparatus /6/0 About this Chapter Functions of the Kidneys Anatomy of the urinary system Overview of kidney function Secretion Micturition Regulation of extracellular fluid volume and blood pressure Regulation of

More information

Biomarkers and the Future of. John R. Votaw CBIS 5 th Year Anniversary Celebration/Look to the future February 8, 2013

Biomarkers and the Future of. John R. Votaw CBIS 5 th Year Anniversary Celebration/Look to the future February 8, 2013 Biomarkers and the Future of Radiology John R. Votaw CBIS 5 th Year Anniversary Celebration/Look to the future February 8, 2013 Statistics/Radiology Collaboration The utility of Radiologic procedures

More information

Effects of magnetic field strength and b value on the sensitivity and specificity of quantitative breast diffusion-weighted MRI

Effects of magnetic field strength and b value on the sensitivity and specificity of quantitative breast diffusion-weighted MRI Original Article Effects of magnetic field strength and b value on the sensitivity and specificity of quantitative breast diffusion-weighted MRI Mohammad Eghtedari 1, Jingfei Ma 2, Patricia Fox 3, Inanc

More information

Val M. Runge, MD Editor-in-Chief Investigative Radiology

Val M. Runge, MD Editor-in-Chief Investigative Radiology Val M. Runge, MD Editor-in-Chief Investigative Radiology Patients First RSNA 2012 The classical model of medical care which portrays the authoritative physician evaluating and treating an obedient, non-inquisitive

More information

Apparent Diffusion Coefficient for Prostate Cancer Imaging: Impact of b Values

Apparent Diffusion Coefficient for Prostate Cancer Imaging: Impact of b Values Genitourinary Imaging Original Research Peng et al. Impact of b Value on Apparent Diffusion Coefficient in Prostate Cancer Imaging Genitourinary Imaging Original Research Yahui Peng 1 Yulei Jiang 2 Tatjana

More information

DIRECT RENIN INHIBITOR (DRI) EFFECT ON GFR AND USE IN RENAL ARTERY STENOSIS SCREENING

DIRECT RENIN INHIBITOR (DRI) EFFECT ON GFR AND USE IN RENAL ARTERY STENOSIS SCREENING DIRECT RENIN INHIBITOR (DRI) EFFECT ON GFR AND USE IN RENAL ARTERY STENOSIS SCREENING Harold Thomas Pretorius, MD, PhD, Nichole Richards, and Michael Harrell Abstract Objective: A new method using a nuclear

More information

Bone PET/MRI : Diagnostic yield in bone metastases and malignant primitive bone tumors

Bone PET/MRI : Diagnostic yield in bone metastases and malignant primitive bone tumors Bone PET/MRI : Diagnostic yield in bone metastases and malignant primitive bone tumors Lars Stegger, Benjamin Noto Department of Nuclear Medicine University Hospital Münster, Germany Content From PET to

More information

Imaging Emphysema 3-Helium MR Imaging

Imaging Emphysema 3-Helium MR Imaging Imaging Emphysema 3-Helium MR Imaging Edwin J.R. van Beek MD PhD MEd FRCR Professor of Radiology and Medicine Carver College of Medicine, University of Iowa, USA. Permanent Visiting Professor of Radiology,

More information