GLYCOGEN BEFORE THE LAB YOU HAVE TO READ ABOUT:

Size: px
Start display at page:

Download "GLYCOGEN BEFORE THE LAB YOU HAVE TO READ ABOUT:"

Transcription

1 GLYCGEN BEFRE THE LAB YU HAVE T READ ABUT:. Glycogen structure. 2. Glycogen synthesis and degradation (reactions with structural formulas and enzymes). 3. The role of glycogen in liver and muscles. INTRDUCTIN Glycogen represents the principal storage form of carbohydrate in the mammalian body, mainly in liver and muscles. It is a branched homoglycan composed of α-d-glucopyranose units which are linked via two types of bonds: α-, and α-,6 (Fig. ). Its corresponding form in plants is a starch but glycogen is more extensively branched (branches occur every twelve to fourteen glucose residues) and more compact than starch. Glycogen is stored mainly in liver (up to 6-8%) and muscles ( %). However, due to the greater mass, muscles contain about three to four times more glycogen than the liver. Glycogen accumulated in liver serves as a reservoir that releases glucose into the blood when the blood glucose level falls below the normal one. Phisiological glucose concentration in blood changes within a narrow interval ranged from. to 6.7 mmol/l (80-20 mg/dl). Glycogen accumulated in liver is sufficient to maintain glucose concentration on the appropriate level for 2-8 hours. Glycogen s role in maintaining blood-glucose level is especially important because glucose is the major metabolic fuel for mammals (except ruminants) and a universal fuel for the fetus. Glucose supply is necessary especially for the nervous system and erythrocytes. Glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity. A decrease in the glucose level below 70 mg/dl (hypoglycemia) causes brain dysfunction which can lead to coma and death. CH 2 -, linkage nonreducing end H CH 2 CH 2 CH 2 CH 2 6 -,6 linkage CH 2 Fig.. Branched structure of glycogen.

2 Muscle glycogen is not generally available to other tissues because muscles lack the enzyme glucose-6-phosphatase. Instead of it provides a source of energy for muscle contraction and is a readily available source of glucose for glycolysis within the muscle itself. Glycogen is synthesized from glucose by the pathway of glycogenesis, which occurs mainly in liver and muscle. The glucose donor in the biosynthesis of glycogen is an activated form of glucose - uridine diphosphate glucose (UDPGlc). UDPGlc is synthesized from glucose -phosphate and uridine triphosphate (UTP) in a reaction catalyzed by UDPGlc pyrophosphorylase. This is a key reaction in glycogen biosynthesis because the energy of the phospho-glycosyl bond of UDPGlc is utilized by glycogen synthase. glucose -phosphate + UTP UDPGlc + PP i Glycogen synthase catalyzes formation of glycosidic bonds between C of the activated glucose of UDPGlc and C of a terminal glucose residue at the non-reducing end of glycogen, liberating uridine diphosphate (UDP) (Fig. 2). HN HCH 2 H P P - - UDP-glucose N + HCH 2 H HCH 2 Glycogen (n residues of glucose) GLYCGEN SYNTHASE HN - P - P - UDP N + HCH 2 H HCH 2 HCH 2 Glycogen (n + residues of glucose) Fig.2. Elongation of a glycogen chain by glycogen synthase. Glycogen synthase can only extend existing chain of glycogen. The glycogen primer (known as glycogenin) must be present to initiate glycogen biosynthesis. Glycogenin is a 37-kDa protein, which catalyses the addition of a glucose monomer to one of its own tyrosine residues forming a bond between the C of glucose and the tyrosine hydroxyl group. This reaction is due to glycogenin s glucosyltransferase activity. Further glucose residues can be added to the α position to make a short chain that is a substrate for glycogen synthase. Glycogenin remains attached to the reducing end of the glycogen molecule. Glycogen synthase cannot make (α 6) bonds found at the branch points of glycogen. Instead, these are formed by a branching enzyme (amylo[ ] [ 6]-transglucosylase). When the chain has been lengthened to at least glucose residues, branching enzyme transfers a part of the α chain (at least six glucose residues) to a neighboring chain to form an α 6 linkage, establishing a branch point. The branches grow by further additions of α -glucosyl units and further branching. 2

3 The biological effect of branching is to make the glycogen molecule more soluble and increase in the number of nonreducing ends, which accelerates both synthesis and degradation of glycogen. Glycogen breakdown (glycogenolysis) requires the interplay of the following enzymes: glycogen phosphorylase, debranching enzyme (which has two activities of α-[ ] α-[ ]-glucan transferase and amylo-[ 6]-glucosidase) and phosphoglucomutase. Glycogen phosphorylase catalyzes the phosphorolytic cleavage by adding inorganic phosphate (phosphorolysis) to the α linkages of glycogen to yield glucose -phosphate. The phosphorolytic cleavage of glycogen is energetically advantageous because the released sugar is already phosphorylated. glycogen (n residues) + P i glucose -phosphate + glycogen (n- residues) α-[ ] α-[ ]-glucan transferase translocates a trisaccharide unit from one branch to the other, exposing a single glucose residue joined by an α-,6-glycosidic linkage. Amylo-[ 6]-glucosidase hydrolyzes the release of free glucose breaking an α 6 bond. Phosphoglucomutase converts glucose -phosphate formed during phosphorolytic cleavage of glycogen into glucose 6- phosphate. Further fate of glucose 6-phosphate depends on type of tissue. Liver and kidney contain a hydrolytic enzyme: glucose 6-phosphatase, which converts glucose 6-phosphate to dephosphorylated glucose. The free glucose formed from glycogen in liver is released into the bloodstream and carried to tissues that require it as a fuel. Glucose 6-phosphatase is not present in muscle, so muscle glycogen cannot directly act as a source of blood glucose. Instead, the glucose 6-phosphate is further processed by enzymes of glycolytic pathway. Glycogen is synthesized and degraded by different pathways. The principal enzymes controlling glycogen metabolism (glycogen phosphorylase and glycogen synthase) are regulated by allosteric mechanisms and covalent modifications due to its reversible phosphorylation and dephosphorylation in response to hormones action (glucagon, insulin, epinephrine). Cyclic adenosine-3,5 - monophosphate (camp) integrates the regulation of glycogenolysis and glycogenesis by promoting the simultaneous activation of phosphorylase and inhibition of glycogen synthase. Insulin acts reciprocally by inhibiting glycogenolysis and stimulating glycogenesis. EXPERIMENTS. Isolation of glycogen from animal liver Principle of the method Glycosidic bonds in glycogen are resistant to hydrolytic activity of - at elevated temperature. In contrast, peptide bonds in proteins, ester bonds in lipids and phosphodiester bonds in ribonucleic acids undergo hydrolysis at high temperature and in alkaline ph (i.e. in K solution). Under these conditions the glycogen solution, only slightly contaminated with other polysaccharides, fragments of denatured DNA and low molecular weight compounds, can be obtained. Addition of ethanol results in glycogen precipitation and allows to obtain relatively purified glycogen. 3

4 Reagents. 30% K solution 2. 96% ethanol Procedure Turn on the water bath before experiment!. Put one gram of liver into a centrifuge tube containing 2.5 ml of 30% K solution. 2. Seal the tube with rubber stopper with a reflux column and put it into a boiling water bath for 30 minutes shaking it from time to time. 3. After complete resolving of the tissue, cool the tube down.. Add.5 ml of 96% ethanol and shake it vigorously. 5. Seal the tube again with rubber stopper with a reflux column and put it into the boiling water bath. BE CAREFUL! Do not let alcohol evaporate, take the tube out of the water baths as soon as it starts to boil. 6. After cooling, spin down the glycogen precipitate by centrifugation (5 min, 3000 rpm). Before centrifugation, buckets with tubes should be balanced in pairs!!! 7. Discard the supernatant, dissolve the precipitate in 3 ml of water (stir with glass rod). 8. Afterwards, precipitate the glycogen by adding 6 ml of 96% ethanol (stir thoroughly the content of the tube). 9. Spin down the precipitated glycogen as previously described. 0. Discard the supernatant carefully.. Dry the precipitate by putting the tube upside down on a filter paper. 2. Dissolve the precipitate in 0 ml of distilled water. The resulting opaque solution of glycogen will be used in experiment Preparation of a calibration curve for glucose determination and quantitative task (individual for each student) Principle of the method Glucose has reducing properties and reduces dinitrosalicylic reagent under alkaline ph conditions, while itself is oxidized to gluconic acid. After reduction, the yellow dinitrosalicylic reagent changes to orange, with a maximum absorbance at 550 nm. The color change is directly proportional to the amount of glucose in the sample. Reagents. Glucose standard solution (0.0 mol/l) mol/l phosphate buffer, ph Dinitrosalicylic reagent (% 3,5-dinitrosalicylic acid,.6% Na, 30% sodium potassium tartrate)

5 Procedure. Prepare 9 tubes calibrated for 0 ml. 2. Add ml of given individual task solution (IT) to the tubes 8 and To each of 9 tubes add the reagents in order according to the table. Mix carefully every time a new compound is added. PLEASE NTE that tubes tube is a blank sample, tubes 2-7 are the standard samples for preparation of a calibration curve,, while tubes 8 and 9 contain the individual task for each student. Table Tubes , 9 ml IT Glucose standard solution (0.0 mol/l) H mol/l phosphate buffer, ph Dinitrosalicylic reagent In test tubes you have respectively: moles of glucose in sample ?. After addition of reagents shake well the contents of all tubes and heat them in the boiling water bath for 0 minutes. 5. Take tubes out of the bath and cool them down. 6. Add distilled water to the final volume of 0 ml. 7. Shake the tubes carefully and read the absorbance of each sample (tubes 2-7 for calibration curve, 8-9 for individual task) against the blank sample (tube ) at 550 nm. 8. Draw the calibration curve. Plot the resulting absorbance values versus the amount of glucose [µmoles] in the appropriate samples. 9. Individual task: read the average amount [µmoles] of glucose in your task solution from the calibration curve. Calculate g of glucose in ml of the task solution using molecular weight value for glucose 80 g/mol. 3. Acid hydrolysis of glycogen. Quantification of glycogen content in liver (%) based on the released glucose amount Principle of the method Glycosidic bonds are fairly stable, they can be broken chemically by strong aqueous acids. Glycogen undergoes hydrolysis at 00 C under acidic ph, and if the hydrolysis lasts for a sufficiently long time, the whole amount of glycogen is degraded to free glucose. Reagents. 2 mol/l HCl solution 2..2 mol/l Na solution 3. Dinitrosalicylic reagent (% 3,5-dinitrosalicylic acid,.6% Na, 30% sodium potasium tartrate) mol/l phosphate buffer, ph Glycogen solution from experiment 5

6 Procedure. Take 5 ml of the glycogen solution obtained in the first experiment, add 5 ml of distilled water and shake it well (dilution :). 2. Prepare 0 calibrated test tubes. 3. Add 0. ml of the diluted glycogen to each test tube numbered from to 9, but 0. ml of distilled water to test tube 0 (blank sample).. Add 0.6 ml of 2 mol/l HCl solution to all tubes and write down the time (t o ). 5. Immediately neutralize the contents of and 0 tubes by adding ml of.2 mol/l Na solution. 6. Put the remaining tubes (from 2 to 9) into a boiling water bath. 7. Take out the tubes 2 to 8 from the water bath in intervals of four minutes, and immediately neutralize their contents with Na ( ml of.2 mol/l Na solution). 8. Take the tube 9 out from the bath after 0 minutes, and neutralize it as described above. 9. Add 0.5 ml of 0.05 mol/l phosphate buffer ph 6.9 to all tubes to obtain the same final ph value. 0. Add 2 ml of dinitrosalicylic reagent. Shake the tubes well to mix content, and put them into the boiling water bath for 0 minutes.. Afterwards, take the tubes out from the bath, cool down and add distilled water to the final volume of 0 ml. Mix well again. 2. Read the absorbance at 550 nm against the blank sample (tube 0). 3. Read the amount [µmoles] of glucose from the calibration curve for glucose prepared during experiment 2.. Plot the number of µmoles of released glucose (Y axis) versus time of acid hydrolysis of glycogen (X axis). 5. Calculate the amount of glucose [µg] released during complete hydrolysis of the glycogen sample and then, calculate percentage content of glycogen in liver. You should take into account all dilutions of the glycogen preparation obtained from g of tissue and multiply the calculated amount of glucose by 0.9 due to the fact that 62 g of glycogen yield 80 g of glucose (62:80). 6

Glycogen Metabolism. BCH 340 lecture 9

Glycogen Metabolism. BCH 340 lecture 9 Glycogen Metabolism BC 340 lecture 9 Structure of glycogen Glycogen is homopolysaccharide formed of branched D-glucose units The primary glycosidic bond is 1-4-linkage Each branch is made of 6-12 glucose

More information

Lecture 2: Glycogen metabolism (Chapter 15)

Lecture 2: Glycogen metabolism (Chapter 15) Lecture 2: Glycogen metabolism (Chapter 15) First. Fig. 15.1 Review: Animals use glycogen for ENERGY STORAGE. Glycogen is a highly-branched polymer of glucose units: Basic structure is similar to that

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN LAJIDE LETURE NTENT INTRDUTIN GLYGEN BREAKDWN (Glycogenolysis) GLYGEN SYNTESIS (Glycogenesis) REGULATIN F GLYGEN METABLISM MAINTENANE F BLD GLUSE DIABETES MELLITUS AND INSULIN INTRDUTIN

More information

Lecture 3: Phosphorylase (parts of Chapter 15 + Buchbinder et al. 2001) Discussion of paper and talk assignments.

Lecture 3: Phosphorylase (parts of Chapter 15 + Buchbinder et al. 2001) Discussion of paper and talk assignments. Lecture 3: Phosphorylase (parts of Chapter 15 + Buchbinder et al. 2001) Discussion of paper and talk assignments. Notes: A PDF of Buchbinder et al. 2001 will be posted on the course web site today. For

More information

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation Lecture 34 Carbohydrate Metabolism 2 Glycogen Key Concepts Overview of Glycogen Metabolism Biochemistry and regulation of glycogen degradation Biochemistry and regulation of glycogen synthesis What mechanisms

More information

Biochemistry. Glycogenolysis. Metabolism of Carbohydrates. Dr.S.K.Khare,Professor IIT Delhi. Principal Investigator

Biochemistry. Glycogenolysis. Metabolism of Carbohydrates. Dr.S.K.Khare,Professor IIT Delhi. Principal Investigator Paper : 04 Metabolism of carbohydrates Module : 24 Dr. Vijaya Khader Dr. MC Varadaraj Principal Investigator Paper Coordinator Content Reviewer Dr.S.K.Khare,Professor IIT Delhi. Dr. Ramesh Kothari,Professor

More information

Metabolism of pentoses, glycogen, fructose and galactose. Jana Novotna

Metabolism of pentoses, glycogen, fructose and galactose. Jana Novotna Metabolism of pentoses, glycogen, fructose and galactose Jana Novotna 1. The Pentose Phosphate Pathway The pentose phosphate pathway (PPP): (hexose monophosphate or 6-phosphogluconate patway) Process that

More information

Highlights Pentose Phosphate Pathway

Highlights Pentose Phosphate Pathway Highlights Pentose Phosphate Pathway 1. The pentose phosphate pathway (PPP) is an interchange of metabolic pathways. 2. It is important to cells as a) an important source of NADPH, b) an important source

More information

Biochemistry Team 437. Glycogen metabolism. Color index: Doctors slides Notes and explanations Extra information Highlights. Musculoskeletal block

Biochemistry Team 437. Glycogen metabolism. Color index: Doctors slides Notes and explanations Extra information Highlights. Musculoskeletal block Glycogen metabolism Color index: Doctors slides Notes and explanations Extra information Highlights Biochemistry Team 437 ﺑ ﺳ م ﷲ اﻟرﺣﻣن اﻟرﺣﯾم Musculoskeletal block Objectives: By the end of this lecture,

More information

Experiment 1. Isolation of Glycogen from rat Liver

Experiment 1. Isolation of Glycogen from rat Liver Experiment 1 Isolation of Glycogen from rat Liver Figure 35: FIG-2, Liver, PAS, 100x. Note the presence of a few scattered glycogen granules (GG). Objective To illustrate the method for isolating glycogen.

More information

Carbohydrate. Metabolism

Carbohydrate. Metabolism Carbohydrate Metabolism Dietary carbohydrates (starch, glycogen, sucrose, lactose Mouth salivary amylase Summary of Carbohydrate Utilization Utilization for energy (glycolysis) ligosaccharides and disaccharides

More information

Carbohydrate Metabolism 2 Supplemental Reading

Carbohydrate Metabolism 2 Supplemental Reading Carbohydrate Metabolism 2 Supplemental Reading Key Concepts - Overview of glycogen metabolism - Biochemistry and regulation glycogen degradation - Biochemistry and regulation of glycogen synthesis - Control

More information

Glycogen Metabolism Dr. Mohammad Saadeh

Glycogen Metabolism Dr. Mohammad Saadeh Glycogen Metabolism Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry II Philadelphia University Faculty of pharmacy I. overview Glucose is energy source for Brain.

More information

Chapter 15 Homework Assignment

Chapter 15 Homework Assignment Chapter 15 Homework Assignment The following problems will be due once we finish the chapter: 3, 5, 6, 8, 9 Chapter 15 1 Regulation of Metabolic Pathways Dynamic Steady State Fuels, such as glucose, enter

More information

Regulation of glycogen degradation

Regulation of glycogen degradation Paper : 04 Metabolism of carbohydrates Module : 26 Principal Investigator Paper Coordinator Content Reviewer Content Writer Dr.S.K.Khare,Professor IIT Delhi. Dr. Ramesh Kothari,Professor UGC-CAS Department

More information

Chapter 18: Carbohydrate Metabolism

Chapter 18: Carbohydrate Metabolism Vocabulary Biotin: a CO2 carrier molecule Cori Cycle: a pathway in carbohydrate metabolism that links glycolysis in the liver with gluconeogenesis in the liver Debranching Enzyme: an enzyme that hydrolyzes

More information

Energy storage in cells

Energy storage in cells Energy storage in cells Josef Fontana EC - 58 Overview of the lecture Introduction to the storage substances of human body Overview of storage compounds in the body Glycogen metabolism Structure of glycogen

More information

Β-FRUCTOFURANOSIDASE ENZYME

Β-FRUCTOFURANOSIDASE ENZYME KINETICS ANALYSIS OF Β-FRUCTOFURANOSIDASE ENZYME 2-The effects of enzyme concentration on the rate of an enzyme catalyzed reaction. Systematic names and numbers β-fructofuranosidase (EC 3.2.1.26) Reactions

More information

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet http://testbankair.com/download/test-bank-for-fundamentals-ofbiochemistry-4th-edition-by-voet/ Chapter 16: Glycogen

More information

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي Done By: - Shady Soghayr لكية الطب البرشي البلقاء التطبيقية / املركز 6166 6102/ **How we get glucose-1-phosphate from glucose (source of glucose-1-

More information

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water. Biology 4A Laboratory Biologically Important Molecules Objectives Perform tests to detect the presence of carbohydrates, lipids, proteins, and nucleic acids Recognize the importance of a control in a biochemical

More information

Molecular Structure and Function Polysaccharides as Energy Storage. Biochemistry

Molecular Structure and Function Polysaccharides as Energy Storage. Biochemistry 1 1.Objectives Dr. Vijaya Khader Dr. MC Varadaraj To understand how polysaccharides act as energy source To understand the structure and energy generation process from glycogen To understand the structure

More information

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages)

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages) Bio 366: Biological Chemistry II Test #1, 100 points (7 pages) READ THIS: Take a numbered test and sit in the seat with that number on it. Remove the numbered sticker from the desk, and stick it on the

More information

The concentration of glucose residues stored as glycogen in liver is ~0.4M, Whereas, glycogen concentration is only 10 nm.

The concentration of glucose residues stored as glycogen in liver is ~0.4M, Whereas, glycogen concentration is only 10 nm. The concentration of glucose residues stored as glycogen in liver is ~0.4M, Whereas, glycogen concentration is only 10 nm. IV: Large amount of glucose can be stored without affecting the osmolarity of

More information

Comparison of catabolic and anabolic pathways

Comparison of catabolic and anabolic pathways Comparison of catabolic and anabolic pathways Three stages of catabolism Glucose Synthesis of compounds e.g. lactose glycolipids Glucose-6-P Pentosephosphate Pathway Glycolysis Glycogenesis Acetyl-CoA

More information

Kinetics analysis of β-fructofuranosidase enzyme. 1-Effect of Time Incubation On The Rate Of An Enzymatic Reaction

Kinetics analysis of β-fructofuranosidase enzyme. 1-Effect of Time Incubation On The Rate Of An Enzymatic Reaction Kinetics analysis of β-fructofuranosidase enzyme 1-Effect of Time Incubation On The Rate Of An Enzymatic Reaction Enzyme kinetics It is the study of the chemical reactions that are catalyzed by enzymes.

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 2.2: Biological molecules Notes Water Water is a very important molecule which is a major component of cells, for instance: Water is a polar molecule due to uneven distribution

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Experiment 9. NATURE OF α-amylase ACTIVITY ON STARCH

Experiment 9. NATURE OF α-amylase ACTIVITY ON STARCH Experiment 9 NATURE OF α-amylase ACTIVITY ON STARC In Experiment 1 we described the action of α-amylase on starch as that of catalyzing the hydrolysis of α-1,4-glucosidic bonds at random in the interior

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 14 Done by Dergam Al-Tarawneh Corrected by Maya Attarakih Doctor Nayef Karadsheh 1 P a g e Glycogen metabolism Note: Everything written in orange is from the book not mentioned by the doctor. In

More information

Major Pathways in Carbohydrate Metabolism

Major Pathways in Carbohydrate Metabolism Major Pathways in Carbohydrate Metabolism 70 Stage 1: Digestion of Carbohydrates In Stage 1, the digestion of carbohydrates Begins in the mouth where salivary amylase breaks down polysaccharides to smaller

More information

2.1.1 Biological Molecules

2.1.1 Biological Molecules 2.1.1 Biological Molecules Relevant Past Paper Questions Paper Question Specification point(s) tested 2013 January 4 parts c and d p r 2013 January 6 except part c j k m n o 2012 June 1 part ci d e f g

More information

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry Biochemistry Table of Contents Section 1 Carbon Compounds Section 2 Molecules of Life Section 1 Carbon Compounds Objectives Distinguish between organic and inorganic compounds. Explain the importance of

More information

Activity: Biologically Important Molecules

Activity: Biologically Important Molecules Activity: Biologically Important Molecules AP Biology Introduction We have already seen in our study of biochemistry that the molecules that comprise living things are carbon-based, and that they are thought

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

HiPer Carbohydrates Estimation Teaching Kit (Quantitative)

HiPer Carbohydrates Estimation Teaching Kit (Quantitative) HiPer Carbohydrates Estimation Teaching Kit (Quantitative) Product Code: HTBC003 Number of experiments that can be performed: 10 Duration of Experiment Protocol DNSA Method :1 hour Phenol Sulphuric Acid

More information

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25 Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell

More information

Assignment #1: Biological Molecules & the Chemistry of Life

Assignment #1: Biological Molecules & the Chemistry of Life Assignment #1: Biological Molecules & the Chemistry of Life A. Important Inorganic Molecules Water 1. Explain why water is considered a polar molecule. The partial negative charge of the oxygen and the

More information

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures:

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures: alevelbiology.co.uk SPECIFICATION Monosaccharides are the monomers from which larger carbohydrates are made. Glucose, galactose and fructose are common monosaccharides. A condensation reaction between

More information

CELLULASE from PENICILLIUM FUNICULOSUM

CELLULASE from PENICILLIUM FUNICULOSUM CELLULASE from PENICILLIUM FUNICULOSUM Prepared at the 55th JECFA (2000) and published in FNP 52 Add 8 (2000), superseding tentative specifications prepared at the 31st JECFA (1987) and published in FNP

More information

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM 5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM Introduction: Variety of hormones and other molecules regulate the carbohydrates metabolism. Some of these have already been cited in previous sections.

More information

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis I. Polymers & Macromolecules Figure 1: Polymers Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis 1 Dehydration Synthesis: Figure 3: Depolymerization via Hydrolysis Hydrolysis:

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids 9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids o o o Food is a good source of one or more of the following: protein,

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

Carbohydrate Metabolism

Carbohydrate Metabolism Chapter 34 Carbohydrate Metabolism Carbohydrate metabolism is important for both plants and animals. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Chapter 22. Before the class. 10 Steps of glycolysis. Outline. Can you tell the ten steps of glycolysis? Do you know how glucoses are

Chapter 22. Before the class. 10 Steps of glycolysis. Outline. Can you tell the ten steps of glycolysis? Do you know how glucoses are Chapter 22 Gluconeogenesis, Glycogen metabolism, and the Pentose Phosphate Pathway Reginald H. Garrett Charles M. Grisham 1 Before the class Can you tell the ten steps of glycolysis? Do you know how glucoses

More information

Enzymatic Assay of RIBONUCLEIC ACID POLYMERASE 1 (EC )

Enzymatic Assay of RIBONUCLEIC ACID POLYMERASE 1 (EC ) PRINCIPLE: Enzymatic Assay of RIBONUCLEIC ACID POLYMERASE 1 DNA + NTP RNA Polymerase > DNA + RNA + PP i PP i + UDPG UDPG Pyrophosphorylase > UTP + Glucose 1-Phosphate Glucose 1-Phosphate Phosphoglucomutase

More information

Diseases Associated with Glycogen Synthesis

Diseases Associated with Glycogen Synthesis Paper : 04 Metabolism of carbohydrates Module: 29 Principal Investigator, Dr. S.K.Khare, Professor IIT Delhi. Paper Coordinator Content Writer Dr. Ramesh Kothari, Professor Dr. Vijaya Khader UGC-CAS Dr.

More information

Introduction to Carbohydrate metabolism

Introduction to Carbohydrate metabolism Introduction to Carbohydrate metabolism Some metabolic pathways of carbohydrates 1- Glycolysis 2- Krebs cycle 3- Glycogenesis 4- Glycogenolysis 5- Glyconeogenesis - Pentose Phosphate Pathway (PPP) - Curi

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Chapter bjectives: Learn about Blood glucose. Learn about the glycolysis reaction pathways and the regulation of glycolysis. Learn about the fates of pyruvate under various

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1 Chapter 5 MITOCHONDRIA AND RESPIRATION All organisms must transform energy. This energy is required to maintain a dynamic steady state, homeostasis, and to insure continued survival. As will be discussed

More information

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS Course Number: BIOL 140 Department: Biology Course Title: Biochemistry/Health Sciences Semester: Spring Year: 1997 Objectives/ Course Number: BIOL

More information

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules Name: Bio AP Lab Organic Molecules BACKGROUND: A cell is a living chemistry laboratory in which most functions take the form of interactions between organic molecules. Most organic molecules found in living

More information

B i o c h e m i s t r y N o t e s

B i o c h e m i s t r y N o t e s 14 P a g e Carbon Hydrogen Nitrogen Oxygen Phosphorus Sulfur ~Major ~Found in all ~Found in most ~Found in all component of all organic organic molecules. molecules. ~Major structural atom in all organic

More information

Name Class Date. Write the correct letter in the blank before each numbered term. a. forms large molecules from smaller. ones

Name Class Date. Write the correct letter in the blank before each numbered term. a. forms large molecules from smaller. ones Name lass Date Assessment hapter Test B Biochemistry Write the correct letter in the blank before each numbered term. 1. nucleotide 2. hydrolysis 3. steroid 4. amino acid 5. condensation reaction 6. glucose

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules I. Polymers What is a polymer? Poly = many; mer = part. A polymer is a large molecule consisting of many smaller sub-units bonded together. What is a monomer?

More information

Name: Period: Date: Testing for Biological Macromolecules Lab

Name: Period: Date: Testing for Biological Macromolecules Lab Testing for Biological Macromolecules Lab Introduction: All living organisms are composed of various types of organic molecules, such as carbohydrates, starches, proteins, lipids and nucleic acids. These

More information

Organic Chemistry Worksheet

Organic Chemistry Worksheet Organic Chemistry Worksheet Name Section A: Intro to Organic Compounds 1. Organic molecules exist in all living cells. In terms of biochemistry, what does the term organic mean? 2. Identify the monomer

More information

189,311, , ,561, ,639, ,679, Ch13; , Carbohydrates

189,311, , ,561, ,639, ,679, Ch13; , Carbohydrates Lecture 31 (12/8/17) Reading: Ch7; 258-267 Ch10; 371-373 Problems: Ch7 (text); 26,27,28 Ch7 (study-guide: applying); 2,5 Ch7 (study-guide: facts); 6 NEXT (LAST!) Reading: Chs4,6,8,10,14,16,17,18; 128-129,

More information

Adenosine triphosphate (ATP)

Adenosine triphosphate (ATP) Adenosine triphosphate (ATP) 1 High energy bonds ATP adenosine triphosphate N NH 2 N -O O P O O P O- O- O O P O- O CH 2 H O H N N adenine phosphoanhydride bonds (~) H OH ribose H OH Phosphoanhydride bonds

More information

HEMICELLULASE from ASPERGILLUS NIGER, var.

HEMICELLULASE from ASPERGILLUS NIGER, var. HEMICELLULASE from ASPERGILLUS NIGER, var. Prepared at the 55th JECFA (2000) and published in FNP 52 Add 8 (2000), superseding tentative specifications prepared at the 31st JECFA (1987) and published in

More information

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro.

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro. Ch. 5 The S & F of Macromolecules They may be extremely small but they are still macro. Background Information Cells join small molecules together to form larger molecules. Macromolecules may be composed

More information

UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY

UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 1 UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY GLUCOSE HOMEOSTASIS An Overview WHAT IS HOMEOSTASIS? Homeostasis

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

2.2 Properties of Water

2.2 Properties of Water 2.2 Properties of Water I. Water s unique properties allow life to exist on Earth. A. Life depends on hydrogen bonds in water. B. Water is a polar molecule. 1. Polar molecules have slightly charged regions

More information

2.1. thebiotutor. Unit F212: Molecules, Biodiversity, Food and Health. 1.1 Biological molecules. Answers

2.1. thebiotutor. Unit F212: Molecules, Biodiversity, Food and Health. 1.1 Biological molecules. Answers thebiotutor Unit F212: Molecules, Biodiversity, Food and Health 1.1 Biological molecules Answers 1 1. δ + H hydrogen bond δ + H O δ - O δ - H H δ + δ+ 1 hydrogen bond represented as, horizontal / vertical,

More information

Topic 4 - #2 Carbohydrates Topic 2

Topic 4 - #2 Carbohydrates Topic 2 Topic 4 - #2 Carbohydrates Topic 2 Biologically Important Monosaccharide Derivatives There are a large number of monosaccharide derivatives. A variety of chemical and enzymatic reactions produce these

More information

LAB 3: Biomolecules and Digestion

LAB 3: Biomolecules and Digestion Page 3.1 LAB 3: Biomolecules and Digestion Food taken into our bodies must first be broken down by mechanical and chemical digestion before it can be absorbed and used as an energy source. The chemical

More information

III. Metabolism Glucose Catabolism Part II

III. Metabolism Glucose Catabolism Part II Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism Glucose Catabolism Part II Slide 1 Metabolic Fates of NADH and Pyruvate Cartoon: Fate of pyruvate, the product of glycolysis.

More information

The effect of incubation time on the rate of an enzyme catalyzed reaction

The effect of incubation time on the rate of an enzyme catalyzed reaction The effect of incubation time on the rate of an enzyme catalyzed reaction Objectives To monitor the progress of an enzyme catalyzed reaction (Acid phosphatase). To determine the initial rate of the reaction

More information

The Structure and Function of Biomolecules

The Structure and Function of Biomolecules The Structure and Function of Biomolecules The student is expected to: 9A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic

More information

Student Manual. Background STUDENT MANUAL BACKGROUND. Enzymes

Student Manual. Background STUDENT MANUAL BACKGROUND. Enzymes Background Enzymes Enzymes are typically proteins (some nucleic acids have also been found to be enzymes) that act as catalysts, speeding up chemical reactions that would take far too long to occur on

More information

Bio 12 Chapter 2 Test Review

Bio 12 Chapter 2 Test Review Bio 12 Chapter 2 Test Review 1.Know the difference between ionic and covalent bonds In order to complete outer shells in electrons bonds can be Ionic; one atom donates or receives electrons Covalent; atoms

More information

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title Condensation and Hydrolysis Condensation reactions are the chemical processes by which large organic compounds are synthesized from their monomeric units. Hydrolysis reactions are the reverse process.

More information

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this! Cellular Respiration LISA Biology Cellular Respiration C 6 H 12 O 6 + 6O 2 - - - - - > 6CO 2 + 6H 2 0 + energy You need to know this! Heat + ATP 1 Did that equation look familiar? * The equation for cellular

More information

Biomolecule: Carbohydrate

Biomolecule: Carbohydrate Biomolecule: Carbohydrate This biomolecule is composed of three basic elements (carbon, hydrogen, and oxygen) in a 1:2:1 ratio. The most basic carbohydrates are simple sugars, or monosaccharides. Simple

More information

Yeast Extracts containing Mannoproteins (Tentative)

Yeast Extracts containing Mannoproteins (Tentative) 0 out of 6 Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 84th meeting 2017 Yeast Extracts containing Mannoproteins (Tentative) This monograph

More information

Background knowledge

Background knowledge Background knowledge This is the required background knowledge: State three uses of energy in living things Give an example of an energy conversion in a living organism State that fats and oils contain

More information

Chapter 23 Carbohydrates and Nucleic Acids. Carbohydrates

Chapter 23 Carbohydrates and Nucleic Acids. Carbohydrates Chapter 23 Carbohydrates and Nucleic Acids Carbohydrates Synthesized by plants using sunlight to convert CO 2 and H 2 O to glucose and O 2. Polymers include starch and cellulose. Starch is storage unit

More information

6 The chemistry of living organisms

6 The chemistry of living organisms Living organisms are composed of about 22 different chemical elements. These are combined to form a great variety of compounds. Six major elements make up almost 99% of the mass of the human body, as shown

More information

LAB 4 Macromolecules

LAB 4 Macromolecules LAB 4 Macromolecules Overview In addition to water and minerals, living things contain a variety of organic molecules. Most of the organic molecules in living organisms are of 4 basic types: carbohydrate,

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Dehydration Synthesis and Hydrolysis Reactions. ne_content/animations/reaction_types.ht ml

Dehydration Synthesis and Hydrolysis Reactions.   ne_content/animations/reaction_types.ht ml Glucose Molecule Macromolecules Carbohydrates, proteins, and nucleic acids are polymers Polymers long molecules made from building blocks linked by covalent bonds Monomers the building blocks to polymers

More information

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding Biochemistry Table of Contents Objectives Distinguish between organic and inorganic compounds. Explain the importance of carbon bonding in biological molecules. Identify functional groups in biological

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Name a property of. water why is it necessary for life?

Name a property of. water why is it necessary for life? 02.09.18 Name a property of + water why is it necessary for life? n Cohesion n Adhesion n Transparency n Density n Solvent n Heat capacity + Macromolecules (2.3 & some of 2.4) + Organic Molecules All molecules

More information

Organic Molecule Composition of Milk: Lab Investigation

Organic Molecule Composition of Milk: Lab Investigation Name: Organic Molecule Composition of Milk: Lab Investigation Introduction & Background Milk & milk products have been a major food source from earliest recorded history. Milk is a natural, nutritionally

More information

Chapter 2: Biochemistry

Chapter 2: Biochemistry Chapter 2: Biochemistry Biochemistry Biochemistry is the study of chemical makeup and reactions of living matter All chemicals in the body are either organic & inorganic Organic compounds contain carbon

More information

Introduction to Macromolecules. If you were to look at the nutrition label of whole milk, what main items stick out?

Introduction to Macromolecules. If you were to look at the nutrition label of whole milk, what main items stick out? Introduction to Macromolecules Macromolecules are a set of molecules that are found in living organisms. Macromolecules essentially mean big molecules as the word macro means large. The functions of these

More information

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1.

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. Macromolecules The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. CARBOHYDRATES 1. LIPIDS 1. NUCLEIC ACIDS Carbon Compounds All compounds

More information

Tests for Carbohydrates

Tests for Carbohydrates Goals bserve physical and chemical properties of some common carbohydrates. Use physical and chemical tests to distinguish between monosaccharides, disaccharides, and polysaccharides. Identify an unknown

More information

Question #2 Fructose, galactose, and glucose are monosaccharides (simple sugars). The open chain form of glucose is drawn below:

Question #2 Fructose, galactose, and glucose are monosaccharides (simple sugars). The open chain form of glucose is drawn below: II. Carbohydrates Question #1: List two functions of carbohydrates 1. Energy source 2. Energy storage 3. Components of cell walls and other protective structures 4. Recognition and signaling 5. Components

More information

Water Carbon Macromolecules

Water Carbon Macromolecules Water Carbon Macromolecules I. CHEMISTRY: THE BASIS FOR LIFE Hydrogen bond Hydrogen bonds happen mainly between water molecules. The electrons between hydrogen and the other atoms are shared unequally

More information

In any solution, a scientist can talk about the concentration of the atoms that are dissolved in the solvent.

In any solution, a scientist can talk about the concentration of the atoms that are dissolved in the solvent. Acids and Bases Acids and Bases In any solution, a scientist can talk about the concentration of the atoms that are dissolved in the solvent. i.e. Salt water is an example of Na + and Cl - in a solution

More information