Part I => CARBS and LIPIDS. 1.3 Polysaccharides 1.3a Disaccharides 1.3b Homoglycans 1.3c Heteroglycans

Size: px
Start display at page:

Download "Part I => CARBS and LIPIDS. 1.3 Polysaccharides 1.3a Disaccharides 1.3b Homoglycans 1.3c Heteroglycans"

Transcription

1 Part I => CARBS and LIPIDS 1.3 Polysaccharides 1.3a Disaccharides 1.3b Homoglycans 1.3c Heteroglycans

2 Section 1.3a: Disaccharides

3 Synopsis 1.3a - Polysaccharides (n > 1) are usually classified according to the number (n) of sugar units they harbor: Monosaccharide => n=1 Disaccharide => n=2 Oligosaccharide => 3 n < 10* Polysaccharide => n 10* *somewhat subjective but certainly no greater than 20! - Disaccharides are the simplest form of polysaccharides - Polysaccharides (also called glycans) are comprised of two or more monosaccharides covalently linked together via O-glycosidic bonds - Polysaccharides (as well as monosaccharides) often covalently associate with proteins and lipids to form highly complex macromolecules called glycoconjugates such as glycoproteins, proteoglycans, peptidoglycans, glycolipids, and lipopolysaccharides (outer membrane of Gram ve bacteria) - In addition to their role as common sugars, disaccharides also play important roles as medicines and food additives - Common disaccharides include lactose, sucrose, maltose, lactulose, and trehalose

4 Lactose The Milk Sugar -D-Galactose -D-Glucose [β-d-galactopyranosyl-(1 4)- -D-glucopyranose] - Lactose is formed via the glycosidic linkage between galactose ( -D-galactopyranose) and glucose ( -D-glucopyranose) - glycosidic linkage must be stated within the parentheses along with the position of linked C atoms and their anomericity (or that of constituent sugars) - Lactose is the milk sugar and can make up as much as 10%(w/w) of milk the suffix (w/w) signifies the %age in terms of weight per unit weight ie 10g of lactose for every 100g of dried milk what would be implied by 10%(v/v)? 10ml out of 100ml! - Lac is Latin for milk nb leche (Spanish), latte (Italian), lait (French), milch (German), et cetera

5 Sucrose The Table Sugar ( 1 2) -D-Glucose -D-Fructose [ -D-glucopyranosyl-(1 2)- -D-fructofuranose] - Sucrose is formed via the ( 1 2) glycosidic linkage between glucose ( -Dglucopyranose) and fructose ( -D-fructofuranose) the fruit sugar - ( 1 2) glycosidic linkage must be stated within the parentheses along with the position of linked C atoms and their anomericity (or that of constituent sugars) - Sucrose is the table sugar extracted from sugarcane or sugarbeet the name is derived from the French word for sugar (sucre) nb sacchar (Greek), sukar (Arabic), shakar (Urindi), azucar (Spanish), zucchero (Italian), zucker (German), et cetera

6 Maltose The Malt Sugar H H HO OH -D-Glucose -D-Glucose [ -D-glucopyranosyl-(1 4)- -D-glucopyranose] - Maltose is formed via the glycosidic linkage between two glucose ( -Dglucopyranose) units - Maltose is the malt sugar ie sugar obtained from grains that have undergone malting - Malting is the process wherein grains (eg barley) are dried after being allowed to partially germinate (undergo budding/sprouting) in water during which starch is broken down (by amylase) into maltose to be used as food! - Maltose is widely used in the production of alcoholic beverages such as beer maltose can be hydrolyzed into glucose by maltase

7 Lactulose A Laxative -D-Fructose -D-Galactose [ -D-galactopyranosyl-(1 4)- -D-fructofuranose] - Lactulose is formed via the glycosidic linkage between galactose (β-d-galactopyranose) and fructose ( -D-fructofuranose) - Produced commercially by isomerization of lactose, lactulose is a non-absorbable sugar used as a laxative in the treatment of constipation it is on the WHO List of Essential Medicines! - Heating milk can trigger isomerization of lactose to lactulose the greater the heat, the greater the amount of lactulose formed (drinking warm milk is indeed beneficial!) - Lactulose is not absorbed in the small intestine nor broken down by human enzymes thus stays in the digestive tract through most of its course, causing retention of water through osmosis leading to softer-and-easier-to-pass stool

8 Trehalose A Life Saver ( 1 1) -D-Glucose -D-Glucose [ -D-glucopyranosyl-(1 1)- -D-glucopyranose] - Trehalose is formed via the ( 1 1) glycosidic linkage between two glucose ( -Dglucopyranose) units - Particularly prevalent in shrimp and insects where it is implicated in anhydrobiosis the ability of organisms to withstand prolonged periods of desiccation/dehydration - Brine shrimps can live for millennia thanks to trehalose, which not only makes up over 10%(w/w) of their dry weight but also helps them survive dehydration! - Trehalose harbors high water retention capability thus widely used in food and cosmetics

9 Exercise 1.3a - Describe the monosaccharide units and their linkages in the common disaccharides - Explain why the systematic name of a disaccharide must include more than just the names of the component monosaccharides - Compare and contrast the structures and functions of lactose, sucrose, maltose, lactulose, and trehalose

10 Section 1.3b: Homoglycans

11 Synopsis 1.3b - Polysaccharides are categorized according to whether they harbor identical (homoglycans) or non-identical (heteroglycans) sugar units (or residues) - Unlike their more illustrious cousins in proteins and nucleic acids, homoglycans not only form linear polymers but also branched chains this is due to the fact that their polyhydroxy feature enables them to engage in the formation of multiple O-glycosidic bonds on the same monosaccharide - Homoglycans play key cellular roles as fuel storage as well as structural components - Common homoglycans include starch and glycogen (fuel storage) as well as cellulose and chitin (structural components)

12 Starch The Plant Energy Reservoir Glucose ( 1 6) Amylose Amylopectin Glucose - Starch is a mixture of amylose and amylopectin two closely related homoglycans comprised of thousands of repeating units of -D-glucose - Amylose is a linear biopolymer in which repetitive glucose ( -D-glucopyranose) units are joined together via glycosidic linkages in a head-to-tail fashion - Amylopectin is comprised of a linear chain of amylose to which additional glucose units are added via the ( 1 6) glycosidic linkages to generate a branched biopolymer, with branch points on average occurring at every 30 residues or so - Starch is the principal fuel storage or energy reservoir of plants deposited as insoluble granules within the chloroplasts

13 Glycogen The Animal Energy Reservoir Glucose ( 1 6) O Glucose - Glycogen shares its primary structure with amylopectin but it is more highly branched the ( 1 6) glycosidic linkages on average occur every 10 glucose units or so compared to 30 units in amylopectin - Glycogen is the principal fuel storage or energy reservoir in animals deposited as insoluble granules largely in liver but also present in virtually all cells glycogen can comprise as much 10%(w/w) of liver - Excess glucose produced via the hydrolysis of starch (in the diet) is converted to glycogen in the body for storage via a process called glycogenesis see Under times of starvation, glycogen can be quickly converted back to glucose to produce energy via a process known as glycogenolysis see 3.3

14 Cellulose The Structural Component of Plants - Cellulose is a linear biopolymer (homoglycan) comprised of thousands of -D-glucose units - Cellulose is formed via the repetitive glycosidic linkages between consecutive glucose ( -Dglucopyranose) units joined together in a head-to-tail fashion - Cellulose is a major structural component of the cell wall of plants the wood contains as much as 50%(w/w) cellulose and the cotton fiber can be as much as 90%(w/w) cellulose - Cellulose is also secreted by many bacteria during the formation of a biofilm a mode of growth in which bacteria stick together and adhere to a surface in response to nutritional cues or to evade toxins - Cellulose is the most abundant organic biopolymer on Earth!

15 Chitin The Structural Component of Exoskeletons - Chitin is a linear biopolymer (homoglycan) comprised of repeating units of N-acetyl- -Dglucosamine a derivative of glucose and closely related to cellulose - Chitin is formed via the repetitive glycosidic linkages between consecutive N- acetylglucosamine (N-acetyl- -D-glucosamine) units joined together in a head-to-tail fashion - Chitin is a major structural component of exoskeletons of invertebrates such as crustaceans and insects also a prominent component of cell walls of fungi and algae - Chitin is the second most abundant organic biopolymer on Earth after cellulose!

16 Structural Comparison of Homoglycans Structural Homoglycans Cellulose/Chitin (Extended conformation) Storage Homoglycans Starch/Glycogen (Coiled-coil conformation) - Structural homoglycans such as cellulose and storage homoglycans such as starch ( -amylose) are essentially stereoisomers of each other yet they exhibit remarkably distinct physicochemical properties a reminder that stereochemistry is a hallmark of life - Structural homoglycans adopt an extended conformation so as to allow them to tightly pack as stacked sheets forming 2D elongated fibers and thin filaments ideally suited to provide mechanical strength and structural support to surrounding tissues - In marked contrast, storage homoglycans largely assume irregular helices that allow them to adopt a coiled-coil conformation an higher-order architecture in which individual helices wind around each other in a manner akin to a rope accordingly, such organization not only enables them to be densely packed but also quickly exposes them to enzymes for rapid metabolic breakdown

17 Exercise 1.3b - Describe the monosaccharide units and their linkages in the common polysaccharides - Compare and contrast the structures and functions of cellulose, chitin, starch, and glycogen

18 Section 1.3c: Heteroglycans

19 Synopsis 1.3b - Unlike homoglycans, heteroglycans harbor non-identical sugar units they include complex polysaccharides such as glycosaminoglycans (GAGs) - GAGs are comprised of a disaccharide repeating unit in which one of the two monosaccharides is an amino sugar (usually either glucosamine or galactosamine) - Due to their polyanionic nature, GAGs are highly hydrated leading to their high viscosity and elasticity - GAGs are a major component of extracellular matrix (ECM) a filler substance (cf bacterial biofilm) in connective tissues such as cartilage and synovial fluid at the joints between bones wherein they help to reduce friction as well as serve as lubricants and shock absorbers due to their spongy nature - Covalent association of glycosaminoglycans to proteins generates the so-called proteoglycans in addition to their role as structural proteins, glycoproteins also serve as enzymes, transporters, receptors, and hormones

20 GAGs: Hyaluronan ( 1 3) n - In hyaluronan (also known as hyaluronate and hyaluronic acid), the disaccharide unit is provided by glucuronate (glucuronic acid) linked to N-acetyl-glucosamine via the ( 1 3) intra-glycosidic linkage - Such disaccharide units subsequently link together in a head-to-tail fashion via the inter-glycosidic linkage in their hundreds to generate the highly viscoelastic hydrogel - A major component of ECM at the joints acts as a lubricant and shock absorber

21 GAGs: Chondroitin Sulfate ( 1 3) n - In chondroitin sulfate, the disaccharide unit is provided by glucuronate (glucuronic acid) linked to N-acetyl-galactosamine-6-sulfate via the ( 1 3) intra-glycosidic linkage - Such disaccharide units subsequently link together in a head-to-tail fashion via the inter-glycosidic linkage in their hundreds to generate the highly viscoelastic hydrogel - A major component of ECM at the joints acts as a lubricant and shock absorber

22 GAGs: Keratan Sulfate 1 ( 1 3) ( 1 3) n - In keratan sulfate (not to be confused with keratin the protein in hair and nails), the disaccharide unit is provided by galactose linked to N-acetyl-glucosamine-6-sulfate via the intra-glycosidic linkage - Such disaccharide units subsequently link together in a head-to-tail fashion via the ( 1 3) inter-glycosidic linkage in their hundreds to generate the highly viscoelastic hydrogel - A major component of ECM at the joints acts as a lubricant and shock absorber - Also a major component of cornea in the eye plays a role in corneal hydration

23 GAGs: Heparin n - In heparin, the disaccharide unit is provided by iduronate-2-sulfate (uronic acid derivative of idose) linked to N-sulfo-glucosamine-6-sulfate via the intra-glycosidic linkage - Such disaccharide units subsequently link together in a head-to-tail fashion via the inter-glycosidic linkage in their thousands to generate the highly negatively charged haparin - Unlike other GAGs, heparin is not a major component of ECM or connective tissues such as cartilage between joints - Heparin primarily occurs in the intracellular granules of mast cells of arterial walls, where it acts as an anti-coagulant to prevent the formation of runaway blood clots it is also clinically administered as an anti-coagulant (blood thinner) in individuals with thrombotic disorders

24 Proteoglycans: Bottle-Brush Architecture - Covalent association of GAGs to proteins generates the so-called proteoglycans also called glycoproteins N-linked glycans - Proteoglycans adopt a bottle-brush architecture wherein the hyaluronan backbone is noncovalently attached via a small link protein to glycoprotein bristles or branches - While the backbone is exclusively made of hyaluronan, the glycoprotein bristles consist of a core protein to which GAGs (eg keratan sulfate and chondroitin sulfate) are covalently linked via the sidechain hydroxyl of serine and threonine (O-linked glycan) Core protein Hyaluronan O-linked glycans - Smaller oligosaccharides other than GAGs may also be covalently attached to the core protein near its site of interaction with the hyaluronan backbone via the sidechain amide of asparagine (N-linked glycan) Link protein

25 Glycan chain covalently attached via an O-glycosidic bond to the sidechain hydroxyl of a specific serine/threonine in a protein Proteoglycans: O-Linked Glycan

26 Proteoglycans: N-Linked Glycan Glycan chain covalently attached via an N-glycosidic bond to the sidechain amide of a specific asparagine in a protein

27 Exercise 1.3c - Compare and contrast the structures and functions of hyaluronan, chondroitin sulfate, keratan sulfate, and heparin - How do the physical properties of glycosaminoglycans relate to their biological roles?

28 Wheat Myth Busted Nothing But a Sales Pitch! - Although loaded with healthy carbs and dietary fiber, whole wheat also contains about 10% (w/w) gluten an umbrella term for several proteins that confer upon wheat viscoelasticity and chewiness - Because gluten can trigger the onset of a number of metabolic disorders such as the celiac disease (CD) an autoimmune disorder that can lead to various gastrointestinal issues such as diarrhea but only in genetically-predisposed individuals (ie those who have an underlying genetic susceptibility that goes unnoticed until triggered by an environmental cue!) - Although only about 1% of humanity suffers from CD, the dietitians and nutritionists argue that wheat contributes to gastrointestinal problems and weight gain in all individuals and that a wheatfree diet represents an healthier life style - Yet, a large body of data suggests that replacing wheat (and other whole grains) with other food substitutes is fraught with serious danger to health as the essential nutrients that wheat-related grains provide cannot be easily obtained from a grain-free diet - Unless you suffer from CD, stick with the old-fashioned whole grains for they bestowed upon your grandmother a disease-free life of 100 years!

Medical Biochemistry and Molecular Biology CARBOHYDRATE CHEMISTRY. By Hussein Abdelaziz

Medical Biochemistry and Molecular Biology CARBOHYDRATE CHEMISTRY. By Hussein Abdelaziz Medical Biochemistry and Molecular Biology CARBOHYDRATE CHEMISTRY 2 By Hussein Abdelaziz Disaccharides Disaccharides consist of two sugars joined by an O-glycosidic bond. The most abundant disaccharides

More information

Disaccharides. Three Important Disaccharides Maltose, Lactose, and Sucrose. The formation of these three common disaccharides are:

Disaccharides. Three Important Disaccharides Maltose, Lactose, and Sucrose. The formation of these three common disaccharides are: DISACCHARIDES Disaccharides Three Important Disaccharides Maltose, Lactose, and Sucrose The formation of these three common disaccharides are: 2 Disaccharides Maltose (Malt Sugar) Maltose is known as malt

More information

Abdullah zurayqat. Bahaa Najjar. Mamoun Ahram

Abdullah zurayqat. Bahaa Najjar. Mamoun Ahram 9 Abdullah zurayqat Bahaa Najjar Mamoun Ahram Polysaccharides Polysaccharides Definition and Structure [Greek poly = many; sacchar = sugar] are complex carbohydrates, composed of 10 to up to several thousand

More information

UNIT 4. CARBOHYDRATES

UNIT 4. CARBOHYDRATES UNIT 4. CARBOHYDRATES OUTLINE 4.1. Introduction. 4.2. Classification. 4.3. Monosaccharides. Classification. Stereoisomers. Cyclic structures. Reducing sugars. Sugar derivatives 4.4. Oligosaccharides. Disaccharides.

More information

BIOCHEMISTRY LECTURES BY RASAQ, N.O

BIOCHEMISTRY LECTURES BY RASAQ, N.O BIOCHEMISTRY LECTURES BY RASAQ, N.O LECTURE CONTENT INTRODUCTION POLYSACCHARIDES STRUCTURAL POLYSACCHARIDES: CELLULOSE AND CHITIN BACTERIA CELL WALLS PEPTIDOGLYCAN PENICILLIN AND β-lactam ANTIBIOTICS AND

More information

Dr. Basima Sadiq Ahmed PhD. Clinical biochemist

Dr. Basima Sadiq Ahmed PhD. Clinical biochemist Dr. Basima Sadiq Ahmed PhD. Clinical biochemist MEDICAL AND BIOLOGICAL IMPORTANCE 1. major source of energy for man. e.g, glucose is used in the human body for energy production. 2. serve as reserve food

More information

Carbohydrates. Learning Objective

Carbohydrates. Learning Objective , one of the four major classes of biomolecules, are aldehyde or ketone compounds with multiple hydroxyl groups. They function as energy stores, metabolic intermediates and important fuels for the body.

More information

Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units

Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units Glycosaminoglycans present on the animal cell surface and in the extracellular matrix. Glycoseaminoglycans (mucopolysaccharides)

More information

Dehydration Synthesis and Hydrolysis Reactions. ne_content/animations/reaction_types.ht ml

Dehydration Synthesis and Hydrolysis Reactions.   ne_content/animations/reaction_types.ht ml Glucose Molecule Macromolecules Carbohydrates, proteins, and nucleic acids are polymers Polymers long molecules made from building blocks linked by covalent bonds Monomers the building blocks to polymers

More information

Structural Polysaccharides

Structural Polysaccharides Carbohydrates & ATP Carbohydrates include both sugars and polymers of sugars. The simplest carbohydrates are the monosaccharides, or simple sugars; these are the monomers from which more complex carbohydrates

More information

Biochemistry: Macromolecules

Biochemistry: Macromolecules 1 Biology: Macromolecules 2 Carbohydrates Carbohydrate organic compound containing carbon, hydrogen, & oxygen in a 1:2:1 ratio Meaning: hydrated carbon ratio of h:0 is 2:1 (same as in water) Source: plants

More information

-can be classified by the number of sugars that constitute the molecules: -how to differentiate between glucose and galactose?

-can be classified by the number of sugars that constitute the molecules: -how to differentiate between glucose and galactose? Carbohydrates (Also called: saccharides) -can be classified by the number of sugars that constitute the molecules: 1- monosaccharides: -General formula: (CH2O)n -Contain one sugar molecule -Contain two

More information

An aldose contains an aldehyde functionality A ketose contains a ketone functionality

An aldose contains an aldehyde functionality A ketose contains a ketone functionality RCT Chapter 7 Aldoses and Ketoses; Representative monosaccharides. (a)two trioses, an aldose and a ketose. The carbonyl group in each is shaded. An aldose contains an aldehyde functionality A ketose contains

More information

CARBOHYDRATE CHEMISTRY

CARBOHYDRATE CHEMISTRY Medical Biochemistry and Molecular Biology CARBOHYDRATE CHEMISTRY Polysaccharides 2 By Ayman Elsamanoudy Objectives (ILOs) I. to study the definition, classification of polysaccharides II. to know the

More information

189,311, , ,561, ,639, ,679, Ch13; , Carbohydrates. Oligosaccharides: Determination of Sequence

189,311, , ,561, ,639, ,679, Ch13; , Carbohydrates. Oligosaccharides: Determination of Sequence Lecture (2//7) Reading: Chs4,6,8,0,4,6,7,8; 28-29, 89,,77-80,555-557,56,62-622,69,662-66,679, 69-694 Ch; 497-50, 507-54 Problems: Ch (text); 5,6,9,0,22,24 Ch7 (study-guide: applying); 4 Ch7 (study-guide:

More information

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title Condensation and Hydrolysis Condensation reactions are the chemical processes by which large organic compounds are synthesized from their monomeric units. Hydrolysis reactions are the reverse process.

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 10 Carbohydrates 2013 W. H. Freeman and Company Chapter 10 Outline Monosaccharides are aldehydes or ketones that contain two or

More information

Chapter-8 Saccharide Chemistry

Chapter-8 Saccharide Chemistry Chapter-8 Saccharide Chemistry Page 217-228 Carbohydrates (Saccharides) are most abundant biological molecule, riginally produced through C 2 fixation during photosynthesis I (C 2 ) n or - C - I where

More information

Carbohydrates. What are they? What do cells do with carbs? Where do carbs come from? O) n. Formula = (CH 2

Carbohydrates. What are they? What do cells do with carbs? Where do carbs come from? O) n. Formula = (CH 2 Carbohydrates What are they? Formula = (C 2 O) n where n > 3 Also called sugar Major biomolecule in body What do cells do with carbs? Oxidize them for energy Store them to oxidize later for energy Use

More information

Carbohydrates are aldehyde or ketone compounds with multiple hydroxyl groups Have multiple roles in all forms of life

Carbohydrates are aldehyde or ketone compounds with multiple hydroxyl groups Have multiple roles in all forms of life Carbohydrates 1 Carbohydrates are aldehyde or ketone compounds with multiple hydroxyl groups Have multiple roles in all forms of life Classification Serve as energy stores, fuels, and metabolic intermediates

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Most mammalian cells are located in tissues where they are surrounded by a complex extracellular matrix (ECM) often referred to as connective tissue.

Most mammalian cells are located in tissues where they are surrounded by a complex extracellular matrix (ECM) often referred to as connective tissue. GLYCOSAMINOGLYCANS Most mammalian cells are located in tissues where they are surrounded by a complex extracellular matrix (ECM) often referred to as connective tissue. The ECM contains three major classes

More information

Chapter 16: Carbohydrates

Chapter 16: Carbohydrates Vocabulary Aldose: a sugar that contains an aldehyde group as part of its structure Amylopectin: a form of starch; a branched chain polymer of glucose Amylose: a form of starch; a linear polymer of glucose

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

IB Biology BIOCHEMISTRY. Biological Macromolecules SBI3U7. Topic 3. Thursday, October 4, 2012

IB Biology BIOCHEMISTRY. Biological Macromolecules SBI3U7. Topic 3. Thursday, October 4, 2012 + IB Biology SBI3U7 BIOCHEMISTRY Topic 3 Biological Macromolecules Essential Questions: 1.What are the 4 main types of biological macromolecules and what is their function within cells? 2.How does the

More information

Definition of a Carbohydrate

Definition of a Carbohydrate * Atoms held together by covalent bonds Definition of a Carbohydrate * Organic macromolecules * Consist of C, H, & O atoms * Usually in a 1:2:1 ratio of C:H : O Functions Performed by Carbohydrates Used

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

The Structure and Func.on of Macromolecules: GRU1L4 Carbohydrates

The Structure and Func.on of Macromolecules: GRU1L4 Carbohydrates The Structure and Func.on of Macromolecules: GRU1L4 Carbohydrates Do Now: WHAT IS TABLE SUGAR MADE UP OF? Sucrose (table sugar) Composed of a glucose molecule and a fructose molecule Please draw the structure

More information

Carbohydrates. Chapter 12

Carbohydrates. Chapter 12 Carbohydrates Chapter 12 Educational Goals 1. Given a Fischer projection of a monosaccharide, classify it as either aldoses or ketoses. 2. Given a Fischer projection of a monosaccharide, classify it by

More information

Glycosaminoglycans, Proteoglycans, and Glycoproteins

Glycosaminoglycans, Proteoglycans, and Glycoproteins Glycosaminoglycans, Proteoglycans, and Glycoproteins Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy I. OVERVIEW OF GLYCOSAMINOGLYCANS

More information

OH -lactose OH O CH 2 OH O CH 2 OH OH HO OH HO O HO

OH -lactose OH O CH 2 OH O CH 2 OH OH HO OH HO O HO Compounds. C A R B Y D R A T E S. DISACARIDES and oligosaccharides Aris Kaksis 0.year Riga Stradin s University http://aris.gusc.lv/utritionbiochem/carbohydratesdisacchari.pdf Most carbohydrates in nature

More information

CARBOHYDRATES (SUGARS)

CARBOHYDRATES (SUGARS) ARBYDRATES (SUGARS) ARBYDRATES: 1. Most Abundant Molecules on Earth: (100 MILLIN METRI TNS f 2 And 2 0 onverted To ellulose and ther Plant Products/Year) 2. FUNTINS: Diet, Energy, Structural, Signalling

More information

BIOCHEMISTRY UNIT 2 Part 4 ACTIVITY #4 (Chapter 5) CARBOHYDRATES

BIOCHEMISTRY UNIT 2 Part 4 ACTIVITY #4 (Chapter 5) CARBOHYDRATES AP BIOLOGY BIOCHEMISTRY UNIT 2 Part 4 ACTIVITY #4 (Chapter 5) NAME DATE PERIOD CARBOHYDRATES GENERAL CHARACTERISTICS: Polymers of simple sugars Classified according to number of simple sugars Sugars 3

More information

CARBOHYDRATES (H 2. Empirical formula: C x. O) y

CARBOHYDRATES (H 2. Empirical formula: C x. O) y CARBYDRATES 1 CARBYDRATES Empirical formula: C x ( 2 ) y 2 CARBYDRATES- WERE? In solid parts of: plants, up to 80% animals, do not exceed 2% In plants: main storage material (starch) building material

More information

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds.

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. BIOLOGY 12 BIOLOGICAL MOLECULES NAME: Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. ORGANIC MOLECULES: Organic molecules

More information

A BEGINNER S GUIDE TO BIOCHEMISTRY

A BEGINNER S GUIDE TO BIOCHEMISTRY A BEGINNER S GUIDE TO BIOCHEMISTRY Life is basically a chemical process Organic substances: contain carbon atoms bonded to other carbon atom 4 classes: carbohydrates, lipids, proteins, nucleic acids Chemical

More information

CLASS 11th. Biomolecules

CLASS 11th. Biomolecules CLASS 11th 01. Carbohydrates These are the compound of carbon, hydrogen and oxygen having hydrogen and oxygen in the same ratio as that of water, i.e. 2 : 1. They are among the most widely distributed

More information

Chapter 5 Structure and Function Of Large Biomolecules

Chapter 5 Structure and Function Of Large Biomolecules Formation of Macromolecules Monomers Polymers Macromolecules Smaller larger Chapter 5 Structure and Function Of Large Biomolecules monomer: single unit dimer: two monomers polymer: three or more monomers

More information

Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1)

Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1) 14 Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1) Introduction Many cells are embedded in an extracellular matrix which is consist of insoluble secreted macromolecules. Cells of bacteria,

More information

2.2: Sugars and Polysaccharides François Baneyx Department of Chemical Engineering, University of Washington

2.2: Sugars and Polysaccharides François Baneyx Department of Chemical Engineering, University of Washington 2.2: Sugars and Polysaccharides François Baneyx Department of hemical Engineering, University of Washington baneyx@u.washington.edu arbohydrates or saccharides are abundant compounds that play regulatory

More information

Name a property of. water why is it necessary for life?

Name a property of. water why is it necessary for life? 02.09.18 Name a property of + water why is it necessary for life? n Cohesion n Adhesion n Transparency n Density n Solvent n Heat capacity + Macromolecules (2.3 & some of 2.4) + Organic Molecules All molecules

More information

Topic 4 - #2 Carbohydrates Topic 2

Topic 4 - #2 Carbohydrates Topic 2 Topic 4 - #2 Carbohydrates Topic 2 Biologically Important Monosaccharide Derivatives There are a large number of monosaccharide derivatives. A variety of chemical and enzymatic reactions produce these

More information

I (CH 2 O) n or H - C - OH I

I (CH 2 O) n or H - C - OH I V. ARBYDRATE arbohydrates (glycans) have the following basic composition: I ( ) n or - - I Many carbohydrates are soluble in water. The usual chemical test for the simpler carbohydrates is heating with

More information

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4)

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4) Macromolecules Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4) Q: Which of the above are polymers? (put a star by them). Polymer literally means. Polymers are long

More information

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro.

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro. Ch. 5 The S & F of Macromolecules They may be extremely small but they are still macro. Background Information Cells join small molecules together to form larger molecules. Macromolecules may be composed

More information

CHAPTER 7 Carbohydrates and Glycobiology. Key topics about carbohydrates

CHAPTER 7 Carbohydrates and Glycobiology. Key topics about carbohydrates CHAPTER 7 Carbohydrates and Glycobiology Key topics about carbohydrates Structures and names of monosaccharides Open-chain and ring forms of monosaccharides Structures and properties of disaccharides Biological

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

Name: Per. HONORS: Molecules of Life

Name: Per. HONORS: Molecules of Life Name: Per. HONORS: Molecules of Life Carbohydrates, proteins, and fats are classes of organic molecules that are essential to the life processes of all living things. All three classes of molecules are

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Ch13. Sugars. What biology does with monosaccharides disaccharides and polysaccharides. version 1.0

Ch13. Sugars. What biology does with monosaccharides disaccharides and polysaccharides. version 1.0 Ch13 Sugars What biology does with monosaccharides disaccharides and polysaccharides. version 1.0 Nick DeMello, PhD. 2007-2015 Ch13 Sugars Haworth Structures Saccharides can form rings. That creates a

More information

Carbohydrate Structure

Carbohydrate Structure IN THE NAME OF GOD Carbohydrate Structure Disaccharides Simple Carbs Sucrose (glucose & fructose) Cookies, candy, cake, soft drinks Maltose (glucose & glucose) Beans Lactose (glucose & galactose) Yogurt,

More information

Chapter 7 Overview. Carbohydrates

Chapter 7 Overview. Carbohydrates Chapter 7 Overview n Carbohydrates main ingredient for energy production Most abundant biomolecule in nature Direct link between solar energy & chemical energy Glucose our main energy source Carbohydrates

More information

Chapter 18. Carbohydrates with an Introduction to Biochemistry. Carbohydrates with an Introduction to Biochemistry page 1

Chapter 18. Carbohydrates with an Introduction to Biochemistry. Carbohydrates with an Introduction to Biochemistry page 1 Chapter 18 Carbohydrates with an Introduction to Biochemistry Carbohydrates with an Introduction to Biochemistry page 1 Introduction to Proteins, Carbohydrates, Lipids, and Bioenergetics Metabolism and

More information

Carbohydrates. Dr. Mamoun Ahram Summer,

Carbohydrates. Dr. Mamoun Ahram Summer, Carbohydrates Dr. Mamoun Ahram Summer, 2017-2018 Resource This lecture Campbell and Farrell s Biochemistry, Chapter 16 What are they? Carbohydrates are polyhydroxy aldehydes or ketones Saccharide is another

More information

Biology Chapter 5. Biological macromolecules

Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Dr. Mahendra P. Bhatt (BMLT, MS-Ph.D., Post-doctorate) Associate Professor Clinical Biochemistry

Dr. Mahendra P. Bhatt (BMLT, MS-Ph.D., Post-doctorate) Associate Professor Clinical Biochemistry Dr. Mahendra P. Bhatt (BMLT, MS-Ph.D., Post-doctorate) Associate Professor Clinical Biochemistry mahendramlt@gmail.com Students will be able to describe: Biochemical organization of the cell Transport

More information

I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins

I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins Inorganic compounds = compounds that DO NOT contain carbon Ex: Vitamins, minerals,

More information

Chapter 11. Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins.

Chapter 11. Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins. Chapter 11 Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins. Carbohydrates Fuels Structural components Coating of cells Part of extracellular matrix

More information

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Dr. Entedhar Carbohydrates Carbohydrates are carbon compounds that have aldehyde (C-H=0) or ketone (C=O) moiety and comprises polyhyroxyl alcohol

Dr. Entedhar Carbohydrates Carbohydrates are carbon compounds that have aldehyde (C-H=0) or ketone (C=O) moiety and comprises polyhyroxyl alcohol Dr. Entedhar Carbohydrates Carbohydrates are carbon compounds that have aldehyde (C-H=0) or ketone (C=O) moiety and comprises polyhyroxyl alcohol (polyhydroxyaldehyde or polyhyroxyketone); their polymers,which

More information

CARBOHYDRATES PART I

CARBOHYDRATES PART I CARBYDRATES PART I 1 CARBYDRATES Empirical formula: C x ( 2 ) y 2 CARBYDRATES- WERE ARE TEY? In solid parts of: plants, up to 80% animals, does not exceed 2% In plants: mainly as a storage material (starch)

More information

2/25/2015. Chapter 6. Carbohydrates. Outline. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates

2/25/2015. Chapter 6. Carbohydrates. Outline. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates Lecture Presentation Chapter 6 Carbohydrates Julie Klare Fortis College Smyrna, GA Outline 6.7 Carbohydrates and Blood The simplest carbohydrates are monosaccharides (mono is Greek for one, sakkhari is

More information

Biomolecules are organic molecules produced by living organisms which consists mainly of the following elements:

Biomolecules are organic molecules produced by living organisms which consists mainly of the following elements: Biomolecules are organic molecules produced by living organisms which consists mainly of the following elements: These elements are non-metals which combine in various ways to form biomolecules through

More information

Carbohydrates. 1. Using the terms provided below, complete the concept map showing the characteristics of organic compounds.

Carbohydrates. 1. Using the terms provided below, complete the concept map showing the characteristics of organic compounds. Name: Class: Date: Grade 10 Science Related Reading/Biology Carbohydrates Biology Gr10 1. Using the terms provided below, complete the concept map showing the characteristics of organic compounds. maltose

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y Carbohydrates Organic compounds which comprise of only C, H and O C x (H 2 O) y Carbohydrates Monosaccharides Simple sugar Soluble in water Precursors in synthesis triose sugars of other (C3) molecules

More information

Carbohydrates. Lecture2

Carbohydrates. Lecture2 Carbohydrates Lecture2 Disaccharides Consist of two monosaccharides covalently bound to each other. All of which are isomers with the molecular formula C 12 22 O 11. The differences in these disaccharides

More information

Macromolecules. Ch. 5 Macromolecules BIOL 222. Overview: The Molecules of Life. Macromolecules

Macromolecules. Ch. 5 Macromolecules BIOL 222. Overview: The Molecules of Life. Macromolecules Ch. 5 Macromolecules BIOL 222 Overview: The Molecules of Life Macromolecules large molecules composed of thousands of covalently connected atoms Built from carbon backbone Also contain large numbers of

More information

Name: Period: Date: Testing for Biological Macromolecules Lab

Name: Period: Date: Testing for Biological Macromolecules Lab Testing for Biological Macromolecules Lab Introduction: All living organisms are composed of various types of organic molecules, such as carbohydrates, starches, proteins, lipids and nucleic acids. These

More information

Topic 3: Molecular Biology

Topic 3: Molecular Biology Topic 3: Molecular Biology 3.2 Carbohydrates and Lipids Essen=al Understanding: Carbon, hydrogen and oxygen are used to supply and store energy. Carbohydrates CARBOHYDRATES CHO sugars Primarily consist

More information

Lecture 2 Carbohydrates

Lecture 2 Carbohydrates Lecture 2 Carbohydrates Sources of CHOs Wholegrains major dietary intake Vegetables, legumes ad fruit contain dietary fibre Milk products provide lactose essential for infants Glycogen is a storage carbohydrate,

More information

Chemistry B11 Chapters 13 Esters, amides and carbohydrates

Chemistry B11 Chapters 13 Esters, amides and carbohydrates Chapters 13 Esters, amides and carbohydrates Esters: esters are derived from carboxylic acids (the hydrogen atom in the carboxyl group of carboxylic acid is replaced by an alkyl group). The functional

More information

Ch. 5 Macromolecules. Overview: The Molecules of Life. Macromolecules BIOL 222. Macromolecules

Ch. 5 Macromolecules. Overview: The Molecules of Life. Macromolecules BIOL 222. Macromolecules Ch. 5 Macromolecules BIOL 222 Overview: The Molecules of Life Macromolecules large molecules composed of thousands of covalently connected atoms Built from carbon backbone Also contain large numbers of

More information

HW #9: 21.36, 21.52, 21.54, 21.56, 21.62, 21.68, 21.70, 21.76, 21.82, 21.88, 21.94, Carbohydrates

HW #9: 21.36, 21.52, 21.54, 21.56, 21.62, 21.68, 21.70, 21.76, 21.82, 21.88, 21.94, Carbohydrates Chemistry 131 Lectures 16 & 17: Carbohydrates Chapter 21 in McMurry, Ballantine, et. al. 7 th edition 05/24/18, 05/25/18 W #9: 21.36, 21.52, 21.54, 21.56, 21.62, 21.68, 21.70, 21.76, 21.82, 21.88, 21.94,

More information

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization Chapter 5, Campbell Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization. Polymerization = large compounds are built by joining smaller ones together

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Two major goals: 1. Monosaccharides: to recognize their structure, properties, & their stereochemistry 2. The nature of

More information

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers Structure and Function of Macromolecules Chapter 5 Macromolecules Giant molecules weighing over 100,000 daltons Emergent properties not found in component parts Macromolecules Multiple Units meris = one

More information

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon Ach Chemistry of Carbon All living things rely on one particular type of molecule: carbon Carbon atom with an outer shell of four electrons can form covalent bonds with four atoms. In organic molecules,

More information

A. Incorrect! No, this is not the description of this type of molecule. B. Incorrect! No, this is not the description of this type of molecule.

A. Incorrect! No, this is not the description of this type of molecule. B. Incorrect! No, this is not the description of this type of molecule. Biochemistry - Problem Drill 08: Carbohydrates No. 1 of 10 1. have one aldehyde (-CHO) or one keto (-C=O) group and many hydroxyl (-OH) groups. (A) Amino acids (B) Proteins (C) Nucleic Acids (D) Carbohydrates

More information

Carbohydrates. Monosaccharides

Carbohydrates. Monosaccharides Carbohydrates Carbohydrates (also called saccharides) are molecular compounds made from just three elements: carbon, hydrogen and oxygen. Monosaccharides (e.g. glucose) and disaccharides (e.g. sucrose)

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules I. Polymers What is a polymer? Poly = many; mer = part. A polymer is a large molecule consisting of many smaller sub-units bonded together. What is a monomer?

More information

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic compounds. What are inorganic molecules? Molecules that CANNOT

More information

The building blocks of life.

The building blocks of life. The building blocks of life. The 4 Major Organic Biomolecules The large molecules (biomolecules OR polymers) are formed when smaller building blocks (monomers) bond covalently. via anabolism Small molecules

More information

among the most important organic compounds in the living organisms;

among the most important organic compounds in the living organisms; CARBOHYDRATES Elena Rivneac PhD, Associate Professor Department of Biochemistry and Clinical Biochemistry State University of Medicine and Pharmacy "Nicolae Testemitanu" CARBOHYDRATESare among the most

More information

Chemistry of Carbon. Building Blocks of Life

Chemistry of Carbon. Building Blocks of Life Chemistry of Carbon Building Blocks of Life 2007-2008 Why study Carbon? All of life is built on carbon Cells ~72% 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl,

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis I. Polymers & Macromolecules Figure 1: Polymers Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis 1 Dehydration Synthesis: Figure 3: Depolymerization via Hydrolysis Hydrolysis:

More information

Macromolecules Structure and Function

Macromolecules Structure and Function Macromolecules Structure and Function Within cells, small organic molecules (monomers) are joined together to form larger molecules (polymers). Macromolecules are large molecules composed of thousands

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

Carbohydrates: structure and Function. Important. 436 Notes Original slides. 438 notes Extra information

Carbohydrates: structure and Function. Important. 436 Notes Original slides. 438 notes Extra information Carbohydrates: structure and Function Important. 436 Notes Original slides. 438 notes Extra information Objectives: To understand: 1- The structure of carbohydrates of physiological significance. 2- The

More information

Chapter 3 The Molecules of Life Biology and Society: Got Lactose?

Chapter 3 The Molecules of Life Biology and Society: Got Lactose? Chapter 3 The Molecules of Life Biology and Society: Got Lactose? Lactose is the main sugar found in milk. Lactose intolerance is the inability to properly digest lactose. Instead of lactose being broken

More information

Waseem Abu Obeida. Salsabeel Fleifal. Mamoon Ahram

Waseem Abu Obeida. Salsabeel Fleifal. Mamoon Ahram 8 Waseem Abu Obeida Salsabeel Fleifal Mamoon Ahram Anomers Anomers cyclic monosaccharides or glycosides that are epimers, they differ from each other in the configuration of C-1 if they are aldoses or

More information

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules BIOLOGY 111 CHAPTER 2: The Chemistry of Life Biological Molecules The Chemistry of Life : Learning Outcomes 2.4) Describe the significance of carbon in forming the basis of the four classes of biological

More information

Welcome to Class 7. Class 7: Outline and Objectives. Introductory Biochemistry

Welcome to Class 7. Class 7: Outline and Objectives. Introductory Biochemistry Welcome to Class 7 Introductory Biochemistry Class 7: Outline and Objectives l Monosaccharides l Aldoses, ketoses; hemiacetals; epimers l Pyranoses, furanoses l Mutarotation, anomers l Disaccharides and

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

Macromolecules. Macromolecules. What are the macromolecules? Organic molecules. The human body uses complex organic molecules known as macromolecules.

Macromolecules. Macromolecules. What are the macromolecules? Organic molecules. The human body uses complex organic molecules known as macromolecules. Macromolecules Macromolecules Biochemistry The human body uses complex organic molecules known as macromolecules. Macro - long or large It is a large molecule that is made up of smaller units joined together.

More information

Chemical Composition of the Cell. B. Balen

Chemical Composition of the Cell. B. Balen Chemical Composition of the Cell B. Balen Table 2-2 Molecular Biology of the Cell ( Garland Science 2008) 1. Water the most abundant substance in the cell! Where did it come from? several hypothesis: -

More information

Chapter 20 Carbohydrates Chapter 20

Chapter 20 Carbohydrates Chapter 20 Chapter 20 Carbohydrates Chapter 20 1 Carbohydrates Carbohydrate: A polyhydroxyaldehyde or polyhydroxyketone, or a substance that gives these compounds on hydrolysis. Monosaccharide: A carbohydrate that

More information

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures:

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures: alevelbiology.co.uk SPECIFICATION Monosaccharides are the monomers from which larger carbohydrates are made. Glucose, galactose and fructose are common monosaccharides. A condensation reaction between

More information

BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud

BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud 1 Carbohydrates Carbohydrates: Compounds composed of carbon, oxygen, and hydrogen arranged as monosaccharides or multiples of monosaccharides. Most,

More information