Brain imaging and stuttering: An update for researchers and clinicians

Size: px
Start display at page:

Download "Brain imaging and stuttering: An update for researchers and clinicians"

Transcription

1 Brain imaging and stuttering: An update for researchers and clinicians Luc De Nil, Ph.D. University of Toronto ASHA November 2011

2 Number of brain imaging publications (excluding review articles, etc.)

3 Meta-analysis: Neural signatures of developmental stuttering (Brown et al., 2005) Overactivation of frontal operculum/anterior insula Decreased activity in bilateral auditory cortex Overactivation of lobule III of the cerebellum

4

5 overactivation De Nil, et al., 2000

6 Fox, et al., 1996 Other recent studies: Lu et al (picture naming - PWS showed RH>LH) Chang, et al (bilateral overactivation for speech as well as nonspeech oral tasks)

7 Laterality differences Fox, et al., 1996 OP 4 is densely connected to the PCG and the frontal cortex (note: Broca s and PMC but appears stronger connections in animals than humans) and may consequently play a role in sensorymotor integration processes, such as incorporating sensory feedback into motor actions Eickhoff, et al Chang, et al. 2009

8 Relation to stuttering severity Chang, et al., 2009 Other recent studies: Kell, et al. 2009: Positive correlation with severity for right insula, right rolandic operculum, and bilateral striatum; Negative correlation with right orbitofrontal and bilateral medial frontal gyrus No relationship to recovery from stuttering Giraud, et al., 2008

9 Speech vs. Nonspeech Speech Nonspeech Chang, et al. 2009

10 Overactivation of Cerebellum Silent Reading Chang, et al., 2011 The cerebellum is the brain structure most critically involved in reflex adjustments and the acquisition of fine and sequential motor control. (Glickstein, et al., 2009) Oral Reading The overall task of the cerebellum may be the ability to provide correct predictions about the relationship between sensory stimuli in both sequence and associative learning. There is increasing evidence that predictive control is a major function of the cerebellum in motor control and learning (Timmann, et al. 2010) Verb Generation De Nil et al., 2001

11 Overactivation increases with intensive motor-skill focused treatment PNS PWS - pre PreTx PostTx 2 yr follow-up PWS -post PWS -fup De Nil et al., 2000 Neumann et al., 2003

12 Deficit compensation? Effort? Motor learning? Motor task approach?.

13 Walter Moore (1984) right hemisphere compensates for deficient left hemisphere function William Webster (1990) deficient gating between RH activation and LH speech motor functions resulting in interference Kell, et al. (2009) How the brain repairs stuttering

14 Chang, et al increased activation during production but not during perception or planning could reflect effort Kell, et al., Correlations with stuttering severity may indicate greater effort De Nil, 1999, De Nil, et al Effort as a result of greater voluntary control and less automaticity Packmann, et al. (2007) Vmodel of stuttering (effort related to syllable stress variability is trigger of stuttering)

15 Effort in nonstuttering adults f..f..f..flower

16 Learning to play a melody Chen, et al., in press

17 Dual task interference effects Breaking news: Beal, et al. ASHA 2011 Bauerly, et al., submitted

18 Semantic/phonology Working memory Emotional behaviour/empathy Fine motor control Based on meta-analysis of 485 neuroimaging studies of the Inferior Frontal Gyrus (G. Liakakis et al., 2011)

19

20 Fox, et al Other recent studies: Lu et al. 2010: Decreased activation in left ASTG (but not right) Chang, et al 2009: Increased right STG and decreased left STG

21 Auditory inhibition animal studies Neural silence when vocalizing Neural activation when listening

22 Stuttering adults listening to the vowel /i/ Stuttering adults saying the vowel /i/ Beal et al., 2010

23 Auditory inhibition CWS Beal et al., 2011 The greater the severity, the lower the amplitude of the signal in auditory cortex indicating a possible role of effort

24 Brown, et al. 2005

25 Kikuchi, et al 2011 In NS sensory gating was more dominant in LH than in RH; No such difference was present in PWS - they may not be able to gate out ignorable auditory inputs which may cause auditory error signals Defective auditory motor integration the causes of stuttering Beal, et al CWS demonstrate longer bilateral latency in M50 during a listen and speak task (vowel), but similar latencies during a listen to tone task This may reflect a deficiency in integrating auditory and speech motor processes The difference may be compensatory in nature (related to severity and effort)

26

27 Structural imaging Gray Matter Voxel based morphometry (adults) a b L. Inferior frontal g. L. temporal pole L R L. and R. superior temporal g. c d R. insula P A L. middle temporal g. Beal et al., 2007

28 PDS subjects showed a small but significant increase in both the number of sulci connecting with the second segment of the right Sylvian fissure and in the number of suprasylvian gyral banks (of sulci) along this segment Cykowski et al., 2008

29 Structural imaging in CWS Group differences in Gray Matter Fluent > Stuttering inferior, middle, superior frontal g. medial frontal g. pre- post central g. anterior cingulate middle temporal g. supramarginal g. Recovered > Persistent posterior cingulate cerebellar inferior frontal g. Chang et al Persistent > Recovered cerebellum precentral Inferior parietal superior temporal g. middle frontal g.

30 Structural imaging in CWS Red: Green: Yellow: CWS < control for grey matter CWS < control for white matter CWS > control for grey Beal, et al. - submitted

31 Other recent studies Lu, et al more gray matter in left MFG, bilateral PCG, bilateral cingulate gyrus and left Putamen less in left SFG, bilateral medial FG, left STG and right cerebellum Kikuchi, et al more gray matter in right frontal gyrus, right temporal gyrus, right insula, and supramarginal gyrus less gray matter in left precentral gyrus, left middle frontal gyrus and left insula Kell, et al 2009 Less gray matter in left IFG negative correlation with severity

32 Structural imaging White Matter Diffusion Tensor Imaging (DTI) PWS: less dense white matter underlying the motor cortex, especially in laryngeal and tongue areas in left hemisphere may point to deficient timing of speech motor processes RH activation may point to compensation Sommer et al., 2001

33 Other recent studies Cykowski, et al reduced white matter in left forceps minor extending into the left superior longitudinal fasciculus, including deep into BA 44 reduced white matter in Corpus Callosum Lu, et al 2010; WM (VBM) reduced white matter in right PCG, left STG and bilateral cerebellum increased right SFG, right Inferior and Superior TG and left cerebellum Watkins, et al reduced white matter in left hemisphere reduced connections between cortical and between cortical-subcortical structures

34 Structural imaging associated with neural activation? Fig. 3 Structural and functional abnormalities in the premotor cortex and underlying white matter in people who stutter. The skeleton (green) is overlaid onto the average FA image of the subjects studied. Blue indicates areas where PWS had significantly less activity than Controls during speech production, across the three feedback conditions (see Fig. 1 for details). Pink indicates areas where PWS had lower FA than Controls (see Fig. 2 for details). Sagittal image in the top right of figure shows the position of the axial and coronal slices shown below (a^ d). For axial and coronal slices the left side of the brain is shown on the left. vpmc=ventral premotor cortex; cop=central operculum. Watkins, et al. 2008

35 Trait difference? Cykowski, et al deficient myelogenesis but no evidence of tissue damage (thus disfunction rather than deficit) Lu, et al deficient timing of motor plan: A disruption of timing in presma and posterior temporal cortex resulting in a disruption of timing control of speech production Chang, et al 2011 functional and structural connectivity differences between PWS and NS in left inferior frontal to premotor connections, but only functional differences in thalamocortical connections. The latter could reflect compensatory or reactive change. Lu et al (2010) connectivity from left IFG to left PMA is weaker in PWS than in NS; similarly between right IFG and left motor cortex deficiency in the connection may be a result of deficient connections between BG and IFG, and between cerebellum and PWM there is increased connectivity between the motor cortex and cerebellum in PWS, but not in NS Structural differences as a result of stuttering history?

36

37 tml

38 A case study: Parkinson Disease Oliver Sacks (2007). Musicophilia. Tales of Music and the Brain chapter 20

39 Neurogenic stuttering Ludlow, et al. (1987) 8 of the 10 patients they examined who had acquired stuttering incurred symptoms after injury to the striatum or cortico-striatal connections. Theys, et al. (submitted) the following brain areas differentiate between stroke patients with and without neurogenic stuttering: left inferior frontal gyrus and sulcus superior temporal sulcus ascending limb of inferior temporal sulcus intraparietal sulcus basal ganglia superior longitudinal fasciculus internal capsule

40 Drug treatment of developmental stuttering Exploratory Randomized Clinical Study of Pagoclone in Persistent Developmental Stuttering: The EXamining Pagoclone for persistent developmental Stuttering Study. Maguire, Gerald; Franklin, David; PsyD, MHA; Vatakis, Nick; Morgenshtern, Elena; Denko, Timothey; Yaruss, J; Scott PhD, CCC SLP; Spotts, Crystal; Davis, Larry; Davis, Aaron; Fox, Peter; Soni, Poonam; Blomgren, Michael; PhD, CCC SLP; Silverman, Andrew; Riley, Glyndon Journal of Clinical Psychopharmacology. 30(1):48 56, February DOI: /JCP.0b013e3181caebbe FIGURE 2. Average (+/ SE) percent change from pretreatment to on treatment in percentage of syllables stuttered ITT (LOCF) double blind and open label treatment periods (open label data include only patients who completed the 12 month open label study visit) Lippincott Williams & Wilkins, Inc. Published by Lippincott Williams & Wilkins, Inc. 2

41 Alm (2004) There are strong indications that the basal ganglia-thalamocortical motor circuit, through the putamen to the SMA, plays an important role in the pathophysiology of stuttering. The core dysfunction in stuttering is suggested to be impaired ability of the basal ganglia to produce timing cues. Some of the conditions that temporarily alleviate stuttering are proposed to be effective by providing compensatory timing information. This pertains to the rhythm effect, chorus speech, and singing. The adaptation effect is mainly based on an improvement of the basal ganglia timing cues resulting from practice of a specific speech sequence.

42 Other explanations: Indirect influence of BG on intra-cortical communication and coordination Watkins, 2011: influence of BG complex on intra-cortical communication as a result of reduced WM in left hemisphere and reduced connections between cortical areas and between cortical-subcortical structures Lu et al. 2010: Weaker connectivity from left IFG to left PMA in PWS than in NS; also between right IFG and left motor cortex. The deficiency in cortical connections may be the result of deficient connections between BG and IFG, as well as between cerebellum and PMC Atypical activity in BG or in areas receiving efferent output from basal ganglia nuclei contributes to a system dysfunction that interferes with rapid and dynamic speech processing for production (Ludlow & Loucks, 2003) Point to deficit in sequence learning and automatization (Smits- Bandstra & De Nil, 2007)

43 Differential role of Basal Ganglia and Cerebellum in Learning For motor sequence learning skills, it is proposed that the long-term retention of this type of skill is dependent upon activity maintained in the cortico-striatal system, whereas for motor adaptation skills, the longlasting representation of this form of learning is mediated through the cortico-cerebellar system. Doyon, et al., 2009 Basal Ganglia circuits are intimately involved in and necessary for new skill learning, but are of far less importance in the retention and recall of well-learned motor skills. Turner & Desmurget, 2010

44 Synthesis and Conclusion PWS and NS differ in activation of brain regions involved in speech production Increased activation, especially in structures involved in speech motor control (frontal cortex, basal ganglia and cerebellum) Primarily right hemisphere but also bilateral Reduced activation in auditory cortex Bilateral or left hemisphere PWS and NS show structural differences in cortical regions Differences in gray matter Differences in white matter these are becoming increasingly consistent and important Underlying frontal premotor and motor cortex Between motor cortex and auditory cortex Between motor cortex and subcortical structures (Basal Ganglia and Cerebellum) Regions of functional and structural differences are also evident in neurogenic stuttering Important role of basal ganglia and cerebellum in regulating and modulating the inter-region neural communication Functional and structural differences may point to timing disruptions of sensorimotor coordination required for speech

45 Sensorimotor dysfunction Reduced ability for articulatory coordination cognition temperament Temperament Linguistic Weaker ability to acquire new motor skills. Stuttering Chronic stuttering Weaker ability to automatize new motor skills Maturation Recovery experiences conditioning

46 Therapy Fluency shaping?? Stutter modification Ability for motor learning Recovery or relapse Automatization

47

Stuttering Research. Vincent Gracco, PhD Haskins Laboratories

Stuttering Research. Vincent Gracco, PhD Haskins Laboratories Stuttering Research Vincent Gracco, PhD Haskins Laboratories Stuttering Developmental disorder occurs in 5% of children Spontaneous remission in approximately 70% of cases Approximately 1% of adults with

More information

CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama

CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama Objectives At the end of the lecture, the student should be able to: List the parts of the cerebral hemisphere (cortex, medulla, basal nuclei, lateral

More information

CEREBRUM. Dr. Jamila EL Medany

CEREBRUM. Dr. Jamila EL Medany CEREBRUM Dr. Jamila EL Medany Objectives At the end of the lecture, the student should be able to: List the parts of the cerebral hemisphere (cortex, medulla, basal nuclei, lateral ventricle). Describe

More information

FRONTAL LOBE. Central Sulcus. Ascending ramus of the Cingulate Sulcus. Cingulate Sulcus. Lateral Sulcus

FRONTAL LOBE. Central Sulcus. Ascending ramus of the Cingulate Sulcus. Cingulate Sulcus. Lateral Sulcus FRONTAL LOBE Central Ascending ramus of the Cingulate Cingulate Lateral Lateral View Medial View Motor execution and higher cognitive functions (e.g., language production, impulse inhibition, reasoning

More information

Telencephalon (Cerebral Hemisphere)

Telencephalon (Cerebral Hemisphere) Telencephalon (Cerebral Hemisphere) OUTLINE The Cortex - Lobes, Sulci & Gyri - Functional Subdivisions - Limbic Lobe & Limbic System The Subcortex - Basal Ganglia - White Matter (Internal Capsule) - Relations

More information

Regional and Lobe Parcellation Rhesus Monkey Brain Atlas. Manual Tracing for Parcellation Template

Regional and Lobe Parcellation Rhesus Monkey Brain Atlas. Manual Tracing for Parcellation Template Regional and Lobe Parcellation Rhesus Monkey Brain Atlas Manual Tracing for Parcellation Template Overview of Tracing Guidelines A) Traces are performed in a systematic order they, allowing the more easily

More information

Announcement. Danny to schedule a time if you are interested.

Announcement.  Danny to schedule a time if you are interested. Announcement If you need more experiments to participate in, contact Danny Sanchez (dsanchez@ucsd.edu) make sure to tell him that you are from LIGN171, so he will let me know about your credit (1 point).

More information

Homework Week 2. PreLab 2 HW #2 Synapses (Page 1 in the HW Section)

Homework Week 2. PreLab 2 HW #2 Synapses (Page 1 in the HW Section) Homework Week 2 Due in Lab PreLab 2 HW #2 Synapses (Page 1 in the HW Section) Reminders No class next Monday Quiz 1 is @ 5:30pm on Tuesday, 1/22/13 Study guide posted under Study Aids section of website

More information

Brain anatomy tutorial. Dr. Michal Ben-Shachar 459 Neurolinguistics

Brain anatomy tutorial. Dr. Michal Ben-Shachar 459 Neurolinguistics Brain anatomy tutorial Dr. Michal Ben-Shachar 459 Neurolinguistics The human brain Left hemisphere Right hemisphere http://www.brainmuseum.org/ Zoom out Zoom in Types of Brain Tissue Gray Matter: Cell

More information

Motor Functions of Cerebral Cortex

Motor Functions of Cerebral Cortex Motor Functions of Cerebral Cortex I: To list the functions of different cortical laminae II: To describe the four motor areas of the cerebral cortex. III: To discuss the functions and dysfunctions of

More information

Human Paleoneurology and the Evolution of the Parietal Cortex

Human Paleoneurology and the Evolution of the Parietal Cortex PARIETAL LOBE The Parietal Lobes develop at about the age of 5 years. They function to give the individual perspective and to help them understand space, touch, and volume. The location of the parietal

More information

Functional neural changes associated with acquired amusia across different stages of recovery after stroke

Functional neural changes associated with acquired amusia across different stages of recovery after stroke https://helda.helsinki.fi Functional neural changes associated with acquired amusia across different stages of recovery after stroke Sihvonen, Aleksi J. 2017-09-12 Sihvonen, A J, Särkämö, T, Ripolles,

More information

CEREBRUM & CEREBRAL CORTEX

CEREBRUM & CEREBRAL CORTEX CEREBRUM & CEREBRAL CORTEX Seonghan Kim Dept. of Anatomy Inje University, College of Medicine THE BRAIN ANATOMICAL REGIONS A. Cerebrum B. Diencephalon Thalamus Hypothalamus C. Brain Stem Midbrain Pons

More information

The Central Nervous System I. Chapter 12

The Central Nervous System I. Chapter 12 The Central Nervous System I Chapter 12 The Central Nervous System The Brain and Spinal Cord Contained within the Axial Skeleton Brain Regions and Organization Medical Scheme (4 regions) 1. Cerebral Hemispheres

More information

Define functional MRI. Briefly describe fmri image acquisition. Discuss relative functional neuroanatomy. Review clinical applications.

Define functional MRI. Briefly describe fmri image acquisition. Discuss relative functional neuroanatomy. Review clinical applications. Dr. Peter J. Fiester November 14, 2012 Define functional MRI. Briefly describe fmri image acquisition. Discuss relative functional neuroanatomy. Review clinical applications. Briefly discuss a few examples

More information

-Zeina Assaf. -Omar Odeh. - Maha Beltagy

-Zeina Assaf. -Omar Odeh. - Maha Beltagy -3 -Zeina Assaf -Omar Odeh - Maha Beltagy 1 P a g e The Inferior Surface Of The Brain The inferior surface of the brain is divide by the stem of the lateral fissure into 2 parts : The orbital surface and

More information

Text to brain: predicting the spatial distribution of neuroimaging observations from text reports (submitted to MICCAI 2018)

Text to brain: predicting the spatial distribution of neuroimaging observations from text reports (submitted to MICCAI 2018) 1 / 22 Text to brain: predicting the spatial distribution of neuroimaging observations from text reports (submitted to MICCAI 2018) Jérôme Dockès, ussel Poldrack, Demian Wassermann, Fabian Suchanek, Bertrand

More information

doi: /brain/awt275 Brain 2013: 136; Neural network connectivity differences in children who stutter

doi: /brain/awt275 Brain 2013: 136; Neural network connectivity differences in children who stutter doi:10.1093/brain/awt275 Brain 2013: 136; 3709 3726 3709 BRAIN A JOURNAL OF NEUROLOGY Neural network connectivity differences in children who stutter Soo-Eun Chang 1,2 and David C. Zhu 2,3,4 1 Department

More information

SUPPLEMENTARY MATERIAL. Table. Neuroimaging studies on the premonitory urge and sensory function in patients with Tourette syndrome.

SUPPLEMENTARY MATERIAL. Table. Neuroimaging studies on the premonitory urge and sensory function in patients with Tourette syndrome. SUPPLEMENTARY MATERIAL Table. Neuroimaging studies on the premonitory urge and sensory function in patients with Tourette syndrome. Authors Year Patients Male gender (%) Mean age (range) Adults/ Children

More information

A neural modeling study of stuttering and fluency enhancement by drugs that partially block dopamine action

A neural modeling study of stuttering and fluency enhancement by drugs that partially block dopamine action A neural modeling study of stuttering and fluency enhancement by drugs that partially block dopamine action Oren Civier 1,*, Daniel Bullock 1,2, Ludo Max 3,4, Frank H. Guenther 5,1,6 1 Department of Cognitive

More information

The Motor Systems. What s the motor system? Plan

The Motor Systems. What s the motor system? Plan The Motor Systems What s the motor system? Parts of CNS and PNS specialized for control of limb, trunk, and eye movements Also holds us together From simple reflexes (knee jerk) to voluntary movements

More information

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m.

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m. Normal CNS, Special Senses, Head and Neck TOPIC: CEREBRAL HEMISPHERES FACULTY: LECTURE: READING: P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center Wednesday, 16 March

More information

The Neuroscience of Music in Therapy

The Neuroscience of Music in Therapy Course Objectives The Neuroscience of Music in Therapy Unit I. Learn Basic Brain Information Unit II. Music in the Brain; Why Music Works Unit III. Considerations for Populations a. Rehabilitation b. Habilitation

More information

Supplementary Online Material Supplementary Table S1 to S5 Supplementary Figure S1 to S4

Supplementary Online Material Supplementary Table S1 to S5 Supplementary Figure S1 to S4 Supplementary Online Material Supplementary Table S1 to S5 Supplementary Figure S1 to S4 Table S1: Brain regions involved in the adapted classification learning task Brain Regions x y z Z Anterior Cingulate

More information

Supplementary Digital Content

Supplementary Digital Content Supplementary Digital Content Contextual modulation of pain in masochists: involvement of the parietal operculum and insula Sandra Kamping a, Jamila Andoh a, Isabelle C. Bomba a, Martin Diers a,b, Eugen

More information

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16 Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16 I. Introduction A. Appearance 1. physical 2. weight 3. relative weight B. Major parts of the brain 1. cerebrum 2.

More information

A few notions of brain anatomy

A few notions of brain anatomy A few notions of brain anatomy Christophe Pallier CNRS, INSERM 562, Orsay, France Note some slides were taken from lectures available from the excellent web site 'fmri for dummies' by Jody Culham. Drawing

More information

Reduced dynamic range to tune the sensory-motor coupling on the left, at least in males who stutter

Reduced dynamic range to tune the sensory-motor coupling on the left, at least in males who stutter Updated Perspectives on the Neural Bases of Stuttering: Sensory & Motor Mechanisms Underlying Dysfluent Speech Reduced dynamic range to tune the sensory-motor coupling on the left, at least in males who

More information

Fig.1: A, Sagittal 110x110 mm subimage close to the midline, passing through the cingulum. Note that the fibers of the corpus callosum run at a

Fig.1: A, Sagittal 110x110 mm subimage close to the midline, passing through the cingulum. Note that the fibers of the corpus callosum run at a Fig.1 E Fig.1:, Sagittal 110x110 mm subimage close to the midline, passing through the cingulum. Note that the fibers of the corpus callosum run at a slight angle are through the plane (blue dots with

More information

Leah Militello, class of 2018

Leah Militello, class of 2018 Leah Militello, class of 2018 Objectives 1. Describe the general organization of cerebral hemispheres. 2. Describe the locations and features of the different functional areas of cortex. 3. Understand

More information

Supplemental Information. Triangulating the Neural, Psychological, and Economic Bases of Guilt Aversion

Supplemental Information. Triangulating the Neural, Psychological, and Economic Bases of Guilt Aversion Neuron, Volume 70 Supplemental Information Triangulating the Neural, Psychological, and Economic Bases of Guilt Aversion Luke J. Chang, Alec Smith, Martin Dufwenberg, and Alan G. Sanfey Supplemental Information

More information

Cerebral Cortex 1. Sarah Heilbronner

Cerebral Cortex 1. Sarah Heilbronner Cerebral Cortex 1 Sarah Heilbronner heilb028@umn.edu Want to meet? Coffee hour 10-11am Tuesday 11/27 Surdyk s Overview and organization of the cerebral cortex What is the cerebral cortex? Where is each

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Levels of organization Central Nervous System 1m 10 11 neurons Neural systems and neuroanatomy Systems 10cm Networks 1mm Neurons 100μm 10 8 neurons Professor Daniel Leeds

More information

Cognitive Neuroscience Cortical Hemispheres Attention Language

Cognitive Neuroscience Cortical Hemispheres Attention Language Cognitive Neuroscience Cortical Hemispheres Attention Language Based on: Chapter 18 and 19, Breedlove, Watson, Rosenzweig, 6e/7e. Cerebral Cortex Brain s most complex area with billions of neurons and

More information

Exam 1 PSYC Fall 1998

Exam 1 PSYC Fall 1998 Exam 1 PSYC 2022 Fall 1998 (2 points) Briefly describe the difference between a dualistic and a materialistic explanation of brain-mind relationships. (1 point) True or False. George Berkely was a monist.

More information

Brain & Language 122 (2012) Contents lists available at SciVerse ScienceDirect. Brain & Language. journal homepage:

Brain & Language 122 (2012) Contents lists available at SciVerse ScienceDirect. Brain & Language. journal homepage: Brain & Language 122 (2012) 11 24 Contents lists available at SciVerse ScienceDirect Brain & Language journal homepage: www.elsevier.com/locate/b&l Brain activity in adults who stutter: Similarities across

More information

Higher Cortical Function

Higher Cortical Function Emilie O Neill, class of 2016 Higher Cortical Function Objectives Describe the association cortical areas processing sensory, motor, executive, language, and emotion/memory information (know general location

More information

A Within- and Between-Subject FMRI Experiment Before and After a Fluency Shaping Therapy

A Within- and Between-Subject FMRI Experiment Before and After a Fluency Shaping Therapy A Within- and Between-Subject FMRI Experiment Before and After a Fluency Shaping Therapy Katrin NEUMANN 1, Harald A. EULER 2, Christine PREIBISCH 3, Alexander WOLFF VON GUDENBERG 4 1Clinic of Phoniatry

More information

The Frontal Lobes. Anatomy of the Frontal Lobes. Anatomy of the Frontal Lobes 3/2/2011. Portrait: Losing Frontal-Lobe Functions. Readings: KW Ch.

The Frontal Lobes. Anatomy of the Frontal Lobes. Anatomy of the Frontal Lobes 3/2/2011. Portrait: Losing Frontal-Lobe Functions. Readings: KW Ch. The Frontal Lobes Readings: KW Ch. 16 Portrait: Losing Frontal-Lobe Functions E.L. Highly organized college professor Became disorganized, showed little emotion, and began to miss deadlines Scores on intelligence

More information

Supplemental Information. Direct Electrical Stimulation in the Human Brain. Disrupts Melody Processing

Supplemental Information. Direct Electrical Stimulation in the Human Brain. Disrupts Melody Processing Current Biology, Volume 27 Supplemental Information Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing Frank E. Garcea, Benjamin L. Chernoff, Bram Diamond, Wesley Lewis, Maxwell

More information

Cerebrum-Cerebral Hemispheres. Cuneyt Mirzanli Istanbul Gelisim University

Cerebrum-Cerebral Hemispheres. Cuneyt Mirzanli Istanbul Gelisim University Cerebrum-Cerebral Hemispheres Cuneyt Mirzanli Istanbul Gelisim University The largest part of the brain. Ovoid shape. Two incompletely separated cerebral hemispheres. The outer surface of the cerebral

More information

Learning Objectives.

Learning Objectives. Emilie O Neill, class of 2016 Learning Objectives 1. Describe the types of deficits that occur with lesions in association areas including: prosopagnosia, neglect, aphasias, agnosia, apraxia 2. Discuss

More information

Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal.

Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal. Dental Neuroanatomy Thursday, February 3, 2011 Suzanne Stensaas, PhD Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal. Resources: Pathway Quiz for HyperBrain Ch. 5 and

More information

Psy /16 Human Communication. By Joseline

Psy /16 Human Communication. By Joseline Psy-302 11/16 Human Communication By Joseline Lateralization Left Hemisphere dominance in speech production in 95% of right handed and 70% of left handed people Left -> Timing, Sequence of events Right

More information

Connectivity of the Subthalamic Nucleus and Globus Pallidus Pars Interna to Regions Within the Speech Network: A Meta-Analytic Connectivity Study

Connectivity of the Subthalamic Nucleus and Globus Pallidus Pars Interna to Regions Within the Speech Network: A Meta-Analytic Connectivity Study r Human Brain Mapping 00:00 00 (2013) r Connectivity of the Subthalamic Nucleus and Globus Pallidus Pars Interna to Regions Within the Speech Network: A Meta-Analytic Connectivity Study Jordan L. Manes,

More information

Gives few collaterals, it is mainly a single process surrounded by a myelin sheath

Gives few collaterals, it is mainly a single process surrounded by a myelin sheath Lecture 1 - Nerve fiber refers to both axons and dendrites, the dendrites are the afferent fibers (sensory); they receive impulses from neighbouring neurons, and the axon is the efferent fiber (motor);

More information

A. General features of the basal ganglia, one of our 3 major motor control centers:

A. General features of the basal ganglia, one of our 3 major motor control centers: Reading: Waxman pp. 141-146 are not very helpful! Computer Resources: HyperBrain, Chapter 12 Dental Neuroanatomy Suzanne S. Stensaas, Ph.D. April 22, 2010 THE BASAL GANGLIA Objectives: 1. What are the

More information

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004 Chapter 3 Structure and Function of the Nervous System 1 Basic Features of the Nervous System Neuraxis: An imaginary line drawn through the center of the length of the central nervous system, from the

More information

Neocortex. Hemispheres 9/22/2010. Psychology 472 Pharmacology of Psychoactive Drugs. Structures are divided into several section or lobes.

Neocortex. Hemispheres 9/22/2010. Psychology 472 Pharmacology of Psychoactive Drugs. Structures are divided into several section or lobes. Neocortex Psychology 472 Pharmacology of Psychoactive Drugs 1 Is the most developed in Humans Has many folds and fissures The folds of tissue are called gyri or a gyrus (single) The fissures or valleys

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Devenney E, Bartley L, Hoon C, et al. Progression in behavioral variant frontotemporal dementia: a longitudinal study. JAMA Neurol. Published online October 26, 2015. doi:10.1001/jamaneurol.2015.2061.

More information

Medical Neuroscience Tutorial Notes

Medical Neuroscience Tutorial Notes Medical Neuroscience Tutorial Notes Lateral Surface of the Brain MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning

More information

Essentials of Human Anatomy & Physiology. Seventh Edition. The Nervous System. Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Essentials of Human Anatomy & Physiology. Seventh Edition. The Nervous System. Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings Essentials of Human Anatomy & Physiology Seventh Edition The Nervous System Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings Functions of the Nervous System 1. Sensory input gathering

More information

Can group singing help long term aphasia?

Can group singing help long term aphasia? PRIORITY BRIEFING The purpose of this briefing paper is to aid Stakeholders in prioritising topics to be taken further by PenCLAHRC as the basis for a specific evaluation or implementation research project.

More information

Structural and functional abnormalities of the motor system in developmental stuttering

Structural and functional abnormalities of the motor system in developmental stuttering doi:10.1093/brain/awm241 Brain (2008), 131,50^59 Structural and functional abnormalities of the motor system in developmental stuttering Kate E. Watkins, 1,2 Stephen M. Smith, 2 Steve Davis 3 and Peter

More information

BASAL GANGLIA. Dr JAMILA EL MEDANY

BASAL GANGLIA. Dr JAMILA EL MEDANY BASAL GANGLIA Dr JAMILA EL MEDANY OBJECTIVES At the end of the lecture, the student should be able to: Define basal ganglia and enumerate its components. Enumerate parts of Corpus Striatum and their important

More information

A. General features of the basal ganglia, one of our 3 major motor control centers:

A. General features of the basal ganglia, one of our 3 major motor control centers: Reading: Waxman pp. 141-146 are not very helpful! Computer Resources: HyperBrain, Chapter 12 Dental Neuroanatomy Suzanne S. Stensaas, Ph.D. March 1, 2012 THE BASAL GANGLIA Objectives: 1. What are the main

More information

MULTI-CHANNEL COMMUNICATION

MULTI-CHANNEL COMMUNICATION INTRODUCTION Research on the Deaf Brain is beginning to provide a new evidence base for policy and practice in relation to intervention with deaf children. This talk outlines the multi-channel nature of

More information

Theory of mind skills are related to gray matter volume in the ventromedial prefrontal cortex in schizophrenia

Theory of mind skills are related to gray matter volume in the ventromedial prefrontal cortex in schizophrenia Theory of mind skills are related to gray matter volume in the ventromedial prefrontal cortex in schizophrenia Supplemental Information Table of Contents 2 Behavioral Data 2 Table S1. Participant demographics

More information

Neuroanatomy lecture (1)

Neuroanatomy lecture (1) Neuroanatomy lecture (1) Introduction: Neuroanatomy has two parts: the central and peripheral nervous system. The central nervous system is composed of brain and spinal cord. The brain has the following

More information

Supplementary Material S3 Further Seed Regions

Supplementary Material S3 Further Seed Regions Supplementary Material S3 Further Seed Regions Figure I. Changes in connectivity with the right anterior insular cortex. (A) wake > mild sedation, showing a reduction in connectivity between the anterior

More information

By Lauren Stowe, PhD, CCC-SLP & Gina Rotondo, MS, CCC-SLP The Speech Therapy Group

By Lauren Stowe, PhD, CCC-SLP & Gina Rotondo, MS, CCC-SLP The Speech Therapy Group By Lauren Stowe, PhD, CCC-SLP & Gina Rotondo, MS, CCC-SLP The Speech Therapy Group http://www.acquiredbraininjury.com/interactive brain/interactivebrain.swf 1. Hormones make the science messy 2. Difference

More information

Motor Systems I Cortex. Reading: BCP Chapter 14

Motor Systems I Cortex. Reading: BCP Chapter 14 Motor Systems I Cortex Reading: BCP Chapter 14 Principles of Sensorimotor Function Hierarchical Organization association cortex at the highest level, muscles at the lowest signals flow between levels over

More information

Neurophysiology of systems

Neurophysiology of systems Neurophysiology of systems Motor cortex (voluntary movements) Dana Cohen, Room 410, tel: 7138 danacoh@gmail.com Voluntary movements vs. reflexes Same stimulus yields a different movement depending on context

More information

Overview of Brain Structures

Overview of Brain Structures First Overview of Brain Structures Psychology 470 Introduction to Chemical Additions Steven E. Meier, Ph.D. All parts are interrelated. You need all parts to function normally. Neurons = Nerve cells Listen

More information

PSY 302: CHAPTER 3 NOTES THE BRAIN (PART II) - 9/5/17. By: Joseline

PSY 302: CHAPTER 3 NOTES THE BRAIN (PART II) - 9/5/17. By: Joseline PSY 302: CHAPTER 3 NOTES THE BRAIN (PART II) - 9/5/17 By: Joseline Left 3 MAJOR FISSURES : 2HEMISPHERES Right Lateral Ventricle Central Fissure Third Ventricle Sulcus Lateral Fissure Gyros Fissure- Fissures

More information

Slide 1. Slide 2. Slide 3. Tomography vs Topography. Computed Tomography (CT): A simplified Topographical review of the Brain. Learning Objective

Slide 1. Slide 2. Slide 3. Tomography vs Topography. Computed Tomography (CT): A simplified Topographical review of the Brain. Learning Objective Slide 1 Computed Tomography (CT): A simplified Topographical review of the Brain Jon Wheiler, ACNP-BC Slide 2 Tomography vs Topography Tomography: A technique for displaying a representation of a cross

More information

Gross Morphology of the Brain

Gross Morphology of the Brain Gross Morphology of the Brain Done by : Marah Marahleh & Razan Krishan *slides in bold Principal Parts of the Brain Cerebrum : largest part of the brain Diencephalon Thalamus & hypothalamus Cerebellum

More information

A3.1.7 Motor Control. 10 November 2016 Institute of Psychiatry,Psychology and Neuroscience Marinela Vavla

A3.1.7 Motor Control. 10 November 2016 Institute of Psychiatry,Psychology and Neuroscience Marinela Vavla A3.1.7 Motor Control 10 November 2016 Institute of Psychiatry,Psychology and Neuroscience Marinela Vavla marinela.vavla@kcl.ac.uk Learning objectives Motor systems: components & organization Spinal cord

More information

Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm

Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm Author's response to reviews Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm Authors: Julia Miro (juliamirollado@gmail.com) Pablo Ripollès (pablo.ripolles.vidal@gmail.com)

More information

Voluntary Movement. Ch. 14: Supplemental Images

Voluntary Movement. Ch. 14: Supplemental Images Voluntary Movement Ch. 14: Supplemental Images Skeletal Motor Unit: The basics Upper motor neuron: Neurons that supply input to lower motor neurons. Lower motor neuron: neuron that innervates muscles,

More information

shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all of the above.

shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all of the above. Section: Chapter 14: Multiple Choice 1. Alex the parrot: pp.529-530 shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Disrupted white matter in language and motor tracts in developmental stuttering

Disrupted white matter in language and motor tracts in developmental stuttering Disrupted white matter in language and motor tracts in developmental stuttering Article Accepted Version Connally, E., Ward, D., Howell, P. and Watkins, K. E. (2013) Disrupted white matter in language

More information

Chapter 14, Part 2! Chapter 14 Part 2 Brain/Cranial Nerves! The Cerebrum and Cranial Nerves! pp !

Chapter 14, Part 2! Chapter 14 Part 2 Brain/Cranial Nerves! The Cerebrum and Cranial Nerves! pp ! Chapter 14, Part 2! The Cerebrum and Cranial pp. 482 505! SECTION 14-9! The cerebrum, the largest region of the brain, contains motor, sensory, and association areas! 2! White Matter of the Cerebrum! 1.

More information

Anatomy Lab (1) Theoretical Part. Page (2 A) Page (2B)

Anatomy Lab (1) Theoretical Part. Page (2 A) Page (2B) Anatomy Lab (1) This sheet only includes the extra notes for the lab handout regarding the theoretical part, as for the practical part it includes everything the doctor mentioned. Theoretical Part Page

More information

Principles Arteries & Veins of the CNS LO14

Principles Arteries & Veins of the CNS LO14 Principles Arteries & Veins of the CNS LO14 14. Identify (on cadaver specimens, models and diagrams) and name the principal arteries and veins of the CNS: Why is it important to understand blood supply

More information

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D.

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D. COGNITIVE SCIENCE 107A Motor Systems: Basal Ganglia Jaime A. Pineda, Ph.D. Two major descending s Pyramidal vs. extrapyramidal Motor cortex Pyramidal system Pathway for voluntary movement Most fibers originate

More information

Chapter 14, Part 2! The Cerebrum and Cranial Nerves! pp !

Chapter 14, Part 2! The Cerebrum and Cranial Nerves! pp ! Chapter 14, Part 2! The Cerebrum and Cranial pp. 482 505! SECTION 14-9! The cerebrum, the largest region of the brain, contains motor, sensory, and association areas! 2! 1! ! Chapter 14 Part 2 Brain/Cranial

More information

Medical Neuroscience Tutorial Notes

Medical Neuroscience Tutorial Notes Medical Neuroscience Tutorial Notes Finding the Central Sulcus MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning

More information

Supporting online material for: Predicting Persuasion-Induced Behavior Change from the Brain

Supporting online material for: Predicting Persuasion-Induced Behavior Change from the Brain 1 Supporting online material for: Predicting Persuasion-Induced Behavior Change from the Brain Emily Falk, Elliot Berkman, Traci Mann, Brittany Harrison, Matthew Lieberman This document contains: Example

More information

Introduction to the Nervous System. Code: HMP 100/ UPC 103/ VNP 100. Course: Medical Physiology. Level 1 MBChB/BDS/BPharm

Introduction to the Nervous System. Code: HMP 100/ UPC 103/ VNP 100. Course: Medical Physiology. Level 1 MBChB/BDS/BPharm Introduction to the Nervous System. Code: HMP 100/ UPC 103/ VNP 100. Course: Medical Physiology Level 1 MBChB/BDS/BPharm Lecture 2. Functional Organisation of the Nervous System Lecture Outline 1.1 Introduction

More information

Brain-Behavior Network. Central Nervous System. Cerebral Cortex Gyrus and Sulcus. Nervous System

Brain-Behavior Network. Central Nervous System. Cerebral Cortex Gyrus and Sulcus. Nervous System Brain-Behavior Network Nervous System Sensory information comes into and decisions come out of the central nervous system (CNS) Central Nervous System The nerves outside the CNS are called the peripheral

More information

issn (print) issn (online) BRAIN A JOURNAL OF NEUROLOGY Volume 132 Part 8 August 2009

issn (print) issn (online) BRAIN A JOURNAL OF NEUROLOGY Volume 132 Part 8 August 2009 BRAIN A JOURNAL OF NEUROLOGY issn 0006-8950 (print) issn 1460-2156 (online) Volume 132 Part 8 August 2009 www.brain.oxfordjournals.org doi:10.1093/brain/awp185 Brain 2009: 132; 2747 2760 2747 BRAIN A JOURNAL

More information

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright.

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright. H2O -2 atoms of Hydrogen, 1 of Oxygen Hydrogen just has one single proton and orbited by one single electron Proton has a magnetic moment similar to the earths magnetic pole Also similar to earth in that

More information

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a Chapter 13: Brain and Cranial Nerves I. Development of the CNS A. The CNS begins as a flat plate called the B. The process proceeds as: 1. The lateral sides of the become elevated as waves called a. The

More information

Peripheral facial paralysis (right side). The patient is asked to close her eyes and to retract their mouth (From Heimer) Hemiplegia of the left side. Note the characteristic position of the arm with

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Supplementary Information Supplementary Figure 1. The mean parameter

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. Gross Anatomy and General Organization of the Central Nervous System

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. Gross Anatomy and General Organization of the Central Nervous System 3 Gross Anatomy and General Organization of the Central Nervous System C h a p t e r O u t l i n e The Long Axis of the CNS Bends at the Cephalic Flexure Hemisecting a Brain Reveals Parts of the Diencephalon,

More information

Stroke School for Internists Part 1

Stroke School for Internists Part 1 Stroke School for Internists Part 1 November 4, 2017 Dr. Albert Jin Dr. Gurpreet Jaswal Disclosures I receive a stipend for my role as Medical Director of the Stroke Network of SEO I have no commercial

More information

Gross Organization I The Brain. Reading: BCP Chapter 7

Gross Organization I The Brain. Reading: BCP Chapter 7 Gross Organization I The Brain Reading: BCP Chapter 7 Layout of the Nervous System Central Nervous System (CNS) Located inside of bone Includes the brain (in the skull) and the spinal cord (in the backbone)

More information

On the nature of Rhythm, Time & Memory. Sundeep Teki Auditory Group Wellcome Trust Centre for Neuroimaging University College London

On the nature of Rhythm, Time & Memory. Sundeep Teki Auditory Group Wellcome Trust Centre for Neuroimaging University College London On the nature of Rhythm, Time & Memory Sundeep Teki Auditory Group Wellcome Trust Centre for Neuroimaging University College London Timing substrates Timing mechanisms Rhythm and Timing Unified timing

More information

Neuroimaging data help to clarify the nosological status of schizoaffective disorder (SAD)?

Neuroimaging data help to clarify the nosological status of schizoaffective disorder (SAD)? Neuroimaging data help to clarify the nosological status of schizoaffective disorder (SAD)? Mercè Madre Rull mmadrer@gmail.com FIDMAG Research Foundation Hermanas Hospitalarias Barcelona, Spain Overview

More information

Structural connectivity of right frontal hyperactive areas scales with stuttering severity

Structural connectivity of right frontal hyperactive areas scales with stuttering severity doi:10.1093/brain/awx316 BRAIN 2018: 141; 191 204 191 Structural connectivity of right frontal hyperactive areas scales with stuttering severity Nicole E. Neef, 1,2 Alfred Anwander, 1 Christoph Bütfering,

More information

Introduction to Physiological Psychology Review

Introduction to Physiological Psychology Review Introduction to Physiological Psychology Review ksweeney@cogsci.ucsd.edu www.cogsci.ucsd.edu/~ksweeney/psy260.html n Learning and Memory n Human Communication n Emotion 1 What is memory? n Working Memory:

More information

Chapter 8. Control of movement

Chapter 8. Control of movement Chapter 8 Control of movement 1st Type: Skeletal Muscle Skeletal Muscle: Ones that moves us Muscles contract, limb flex Flexion: a movement of a limb that tends to bend its joints, contraction of a flexor

More information

By Soo-Eun Chang, Ph.D.

By Soo-Eun Chang, Ph.D. Using Brain Imaging to Unravel the Mysteries of Stuttering By Soo-Eun Chang, Ph.D. Blend Images/the Agency Collection/Getty Images Editor s note: After many decades of attributing stuttering to causes

More information

Ch 13: Central Nervous System Part 1: The Brain p 374

Ch 13: Central Nervous System Part 1: The Brain p 374 Ch 13: Central Nervous System Part 1: The Brain p 374 Discuss the organization of the brain, including the major structures and how they relate to one another! Review the meninges of the spinal cord and

More information

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ?

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ? The human brain The human brain! What is the basic physiology of this organ?! Understanding the parts of this organ provides a hypothesis space for its function perhaps different parts perform different

More information

LEC 1B ANATOMY OF THE NERVOUS SYSTEM. Cogs 17 * UCSD

LEC 1B ANATOMY OF THE NERVOUS SYSTEM. Cogs 17 * UCSD LEC 1B ANATOMY OF THE NERVOUS SYSTEM Cogs 17 * UCSD Cerebral Cortex A 6-layer sheet of cells, unfolded = < 1 m square X 3 mm thick Cortex 6 layers of cells Nissl Stain for Cell Bodies Info projected to

More information