A new role for meninges as a niche for stem/precursor cells with neural differentiation potential during development up to adulthood

Size: px
Start display at page:

Download "A new role for meninges as a niche for stem/precursor cells with neural differentiation potential during development up to adulthood"

Transcription

1 A new role for meninges as a niche for stem/precursor cells with neural differentiation potential during development up to adulthood Francesco Bifari, MD, PhD Mauro Krampera, MD, PhD Ilaria Decimo, PhD Guido Fumagalli, MD Stem Cell Research Laboratory Section of Hematology Dpt. of Medicine University of Verona, Italy mauro.krampera@univr.it Molecular Pharmacology Laboratory Section of Pharmacology Dpt. of Public Health and Community Medicine University of Verona, Italy guido.fumagalli@univr.it ilaria.decimo@univr.it francesco.bifari@univr.it

2 Background Neural Stem Cells (NSCs) have been found - in the main neurogenic regions of the brain, i.e. hippocampus, subventricular zone (SVZ), olfactory bulb, dentate gyrus - in some non-neurogenic regions, i.e.spinal cord and possess neural differentiation potential into neurons and glial cells Zhao C Cell. 2008, 132, neurospheres neurons glia

3 Background MENINGES Dura Mater Leptomeninges Arachnoid Pia mater role during corticogenesis anatomical peculiarities

4 Nestin + cells are present in leptomeninges of rat brain and spinal cord Bifari F, Decimo I, et al. J Cell Mol Med 2009, 13(9B): Decimo I, Bifari F, et al. Stem Cells 2011; 29(12): Nestin/Laminin/Dapi

5 Nestin + cells in meninges have specific stem cell features (Meningeal stem cells) Self-renewal Proliferating cells (rarely) doublecortin (DCX)- positive cells (neuroblast marker) at perivascular level, but NG2-negative (pericytes)

6 nestin/ki67/to-pro3 40um 180um Nestin + cells can be extracted and expanded and have NSC properties. They can be induced to differentiate into neurons in vitro and in vivo Intra-brain injection (hippocampus) MAP2/EGFP Nestin + cells are activated by injury and participate to CNS parenchymal reaction (Decimo et al. Stem Cells 2011, Nakagomi et al. Stem Cells & Development 2012). CTRL 7 days post-injury GFP-transduction (lentivirus) of meningeal cells prior to injury 7 days post-injury

7 Nestin + meningeal stem cells with neural differentiation potential Are they conserved during development from embryo to adulthood?

8 ADULT P15 P0 E20 E14 Nestin-laminin-TOPRO3 Nestin + cells are present in rat leptomeninges during embryonic stages up to adulthood E20 P1 P8 Nestin (ICH) A P15 B Adult C SVZ Nestin (ICH) top view D E F Choroi d plexus Total number of Nestin+ cells significally decreases during development (n = 9)

9 ADULT P15 P0 E20 E14 ADULT P15 E14 Nestin-Ki67-TOPRO3 Nestin + proliferating cells decrease during development but persist up to adulthood (n = 3)

10 ADULT P15 P0 E20 E14 P15 Nestin-Oct4-TOPRO 3 Nestin+ cells expressing embryonic, self renewal-related markers decrease during development but persist up to adulthood (n = 3)

11 NSC-related marker expression in meninges during development Vimentin-nestin-TOPRO3 DCX- laminin SOX2-laminin ADULT P15 P0 E20 E14

12 Expression pattern of NSC-related genes by meninges: laser capture microscopy and qrt-pcr before after

13 ADULT P15 P0 E20 Nestin + cells are in contact with different cell types pericytes endothelial cells neural crest cells nestin-ng2-topro3 nestin-cd31-topro3 nestin- p75 ADULT P15 E14

14 Nestin + cells are in contact with several extracellular matrix components E20 P0 P15 Nestin-laminin G H Nestin-fibronectin Heparan sulphate-laminin ADULT P15 E14 ADULT P0 E20

15 n of CFU / 10 5 cells of tissue extract Nestin + cells can be extracted and expanded ex-vivo as homogeneous adherent cells from embryo up to adulthood NESTIN NEUROSPHERE CULTURE E P0 P E20 P0 P15 adult Adult 50µm scale bar

16 ADULT P15 P0 Ex-vivo-expanded Nestin + cells can be induced to differentiate into neural cells MAP2/GFAP MAP2/BrdU Ca2+ imaging: response to KCl 50µm scale bar E20

17 Meningeal Niche in development EMBRYO ADULT Nestin Vimentin GFAP NG2 Ki67 Sox2 CD31 p75 Oct4 Laminin

18 CONCLUSIONS AND FUTURE DEVELOPMENTS Meningeal Nestin+ cells are present in rat leptomeninges during embryonic stages up to adulthood in a decreasing number, but with similar features: they express NSC-related, embryonic and selfrenewal-related markers, are capable of proliferating and differentiating into different neural cells, and may be expanded ex-vivo During development, meningeal Nestin+ cells are in direct contact with resident niche cells and extracellular matrix components, which are known to play a role in stem cell quiescence, self-renewal, and proliferation/differentiation in response to stimuli Further characterization of meningeal Nestin + cells in normal and pathological conditions may help to better understand their involvement in the pathogenesis of neurological diseases and their therapeutic potential

19 ACKNOWLEDGEMENTS Molecular Pharmacology Lab Ilaria Decimo Marjiana Kusalo Valeria Berton Vincenzo Tedesco Alessia Auber Thomas Zandonai Nazeema Sherin Marzia Di Chio Cristiano Chiamulera Stem Cell Research Laboratory Francesco Bifari Mauro Krampera Section of Pathological Anatomy Giorgio Malpeli Aldo Scarpa Eliana Amato Guido Fumagalli

20 Thank you for your attention!

21

Neural Stem Cell Niches in Health and Diseases

Neural Stem Cell Niches in Health and Diseases Neural Stem Cell Niches in Health and Diseases Current Pharmaceutical Design, 2012, 18, 1755-1783 1755 Ilaria Decimo 1,*,#, Francesco Bifari 2,#, Mauro Krampera 2 and Guido Fumagalli 1, * 1 Department

More information

Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse

Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse Supplemental figure legends Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse hippocampus targets GFAP-positive but not NeuN-positive cells. (A) Stereotaxic

More information

Primary Mouse Cerebral Cortex Neurons V: 80% TE: 70%

Primary Mouse Cerebral Cortex Neurons V: 80% TE: 70% Primary Mouse Cerebral Cortex Neurons V: 80% TE: 70% Pictures: 9 days after electroporation Red: MAP2 Blue: GFAP Green: GFP The cells were from Embryonic Day 14 Mouse Cerebral Cortex Primary Mouse Hippocampal

More information

Prss56, a novel marker of adult neurogenesis in the mouse brain. - Supplemental Figures 1 to 5- Brain Structure and Function

Prss56, a novel marker of adult neurogenesis in the mouse brain. - Supplemental Figures 1 to 5- Brain Structure and Function Prss56, a novel marker of adult neurogenesis in the mouse brain - Supplemental Figures 1 to 5- Brain Structure and Function Alexandre Jourdon 1,2, Aurélie Gresset 1, Nathalie Spassky 1, Patrick Charnay

More information

Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus

Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus a: Expression of Vimentin, GFAP, Sox2 and Nestin in anterior, central and posterior hypothalamus. In the anterior

More information

Olfactory ensheathing glia

Olfactory ensheathing glia Olfactory ensheathing glia From Wikipedia, the free encyclopedia Neuroglia of the brain shown by Golgi's method. Olfactory ensheathing glia (OEG), also known as olfactory ensheathing cells (OECs) or olfactory

More information

NEURAL STEM CELL NICHES IN THE ADULT MAMMALIAN BRAIN

NEURAL STEM CELL NICHES IN THE ADULT MAMMALIAN BRAIN УДК 591.398:611.018.82 Tsupykov O. M. Bogomoletz Institute of Physiology NAS of Ukraine, Кyiv, Ukraine State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, Kyiv, Ukraine e-mail: oleg_tsupikov@mail.ru

More information

Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1.

Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Youngsoo Lee, Sachin Katyal, Yang Li, Sherif F. El-Khamisy, Helen R. Russell, Keith W. Caldecott and Peter J. McKinnon.

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES 1 Supplementary Figure 1, Adult hippocampal QNPs and TAPs uniformly express REST a-b) Confocal images of adult hippocampal mouse sections showing GFAP (green), Sox2 (red), and REST

More information

Citation for published version (APA): Martina-Mamber, C. E. (2014). GFAP as an understudy in adult neurogenesis. 's-hertogenbosch: Boxpress.

Citation for published version (APA): Martina-Mamber, C. E. (2014). GFAP as an understudy in adult neurogenesis. 's-hertogenbosch: Boxpress. UvA-DARE (Digital Academic Repository) GFAP as an understudy in adult neurogenesis Mamber, C.E. Link to publication Citation for published version (APA): Martina-Mamber, C. E. (2014). GFAP as an understudy

More information

Ontogenesis in the CNS neurogenesis during embryonic development

Ontogenesis in the CNS neurogenesis during embryonic development Ontogenesis in the CNS neurogenesis during embryonic development Formation of the neural tube neural groove neural plate neural groove neural crest notochord neural tube The developing neuroepithelium

More information

Department of Cognitive Science UCSD

Department of Cognitive Science UCSD Department of Cognitive Science UCSD Verse 1: Neocortex, frontal lobe, Brain stem, brain stem, Hippocampus, neural node, Right hemisphere, Pons and cortex visual, Brain stem, brain stem, Sylvian fissure,

More information

Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex

Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex Article Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex Graphical Abstract Authors Francesco Bifari, Ilaria Decimo, Annachiara

More information

The Nervous System: The

The Nervous System: The C h a p t e r 14 The Nervous System: The Spinal Cord and Spinal Nerves PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas Copyright 2009 Pearson Education, Inc., publishing

More information

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23 Neurodevelopment II Structure Formation Reading: BCP Chapter 23 Phases of Development Ovum + Sperm = Zygote Cell division (multiplication) Neurogenesis Induction of the neural plate Neural proliferation

More information

Gene co-expression networks in the mouse, monkey, and human brain July 16, Jeremy Miller Scientist I

Gene co-expression networks in the mouse, monkey, and human brain July 16, Jeremy Miller Scientist I Gene co-expression networks in the mouse, monkey, and human brain July 16, 2013 Jeremy Miller Scientist I jeremym@alleninstitute.org Outline 1. Brief introduction to previous WGCNA studies in brain 2.

More information

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system:

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system: Central Nervous System (CNS) -> brain and spinal cord Major Divisions of the nervous system: Afferent (sensory input) -> cell bodies outside of the central nervous system (CNS), carry info into the CNS

More information

Visualization of embryonic neural stem cells using Hes promoters in transgenic mice

Visualization of embryonic neural stem cells using Hes promoters in transgenic mice www.elsevier.com/locate/ymcne Mol. Cell. Neurosci. 31 (2006) 109 122 Visualization of embryonic neural stem cells using Hes promoters in transgenic mice Toshiyuki Ohtsuka, a,b, * Itaru Imayoshi, b Hiromi

More information

Neurogenesis in Adult Central Nervous System: Death of a Dogma

Neurogenesis in Adult Central Nervous System: Death of a Dogma Aristotle University of Thessaloniki, Greece, Nov. 2007 Neurogenesis in Adult Central Nervous System: Death of a Dogma Anton B. Tonchev Division of Cell Biology, Varna University of Medicine, Bulgaria

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11306 Supplementary Figures Supplementary Figure 1. Basic characterization of GFP+ RGLs in the dentate gyrus of adult nestin-gfp mice. a, Sample confocal images

More information

Chemokine Regulation of Oligodendrocyte Development in the Spinal Cord. Bob Avino Saint Louis University Senior Honors Thesis April 19, 2011

Chemokine Regulation of Oligodendrocyte Development in the Spinal Cord. Bob Avino Saint Louis University Senior Honors Thesis April 19, 2011 Chemokine Regulation of Oligodendrocyte Development in the Spinal Cord Bob Avino Saint Louis University Senior Honors Thesis April 19, 2011 Richard J. Miller, PhD Northwestern University Feinberg School

More information

Cellular components of CNS

Cellular components of CNS Cellular components of CNS Cellular components of CNS Neurons Glial cells: Astrocytes (including radial glia), oligodendrocytes, microglia, ependymal cells Epithelial cells of choroid plexus Endothelial

More information

TISSUE-SPECIFIC STEM CELLS

TISSUE-SPECIFIC STEM CELLS TISSUE-SPECIFIC STEM CELLS Running Rescues Defective Adult Neurogenesis by Shortening the Length of the Cell Cycle of Neural Stem and Progenitor Cells STEFANO FARIOLI VECCHIOLI, a ANDREA MATTERA, a LAURA

More information

Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival

Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival Article Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival Zhe Zhu, 1 Muhammad Amir Khan, 1 Markus Weiler, 2,4 Jonas Blaes, 2 Leonie Jestaedt,

More information

Supplementary Fig. 1: TBR2+ cells in different brain regions.

Supplementary Fig. 1: TBR2+ cells in different brain regions. Hip SVZ OB Cere Hypo Supplementary Fig. 1: TBR2 + cells in different brain regions. Three weeks after the last tamoxifen injection, TBR2 immunostaining images reveal a large reduction of TBR2 + cells in

More information

Brain homeostasis: VEGF receptor 1 and 2 two unequal brothers in mind

Brain homeostasis: VEGF receptor 1 and 2 two unequal brothers in mind Cell. Mol. Life Sci. (2013) 70:1705 1725 DOI 10.1007/s00018-013-1279-3 Cellular and Molecular Life Sciences MULTI-AUTHOR REVIEW Brain homeostasis: VEGF receptor 1 and 2 two unequal brothers in mind Ina

More information

CURRICULUM VITAE ILARIA DECIMO PhD

CURRICULUM VITAE ILARIA DECIMO PhD Dati biografici CURRICULUM VITAE ILARIA DECIMO PhD Nome: Ilaria Cognome:Decimo Data di nascita 5 Aprile 1977 email: ilaria.decimo@univr.it @StemMeninges Posizione RTDa EDUCAZIONE Genn 2003-Giun 2006 Ott

More information

The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory

The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory PLoS BIOLOGY Stefano Farioli-Vecchioli 1[, Daniele Saraulli 2,3[, Marco Costanzi 2,3[, Simone Pacioni 4[, Irene

More information

Are Both Embryonic Migratory Pathways Preserved in the Adult Brain Cerebral Cortex?

Are Both Embryonic Migratory Pathways Preserved in the Adult Brain Cerebral Cortex? Prague Medical Report / Vol. 107 (2006) No. 1, p. 71 80 71) Are Both Embryonic Migratory Pathways Preserved in the Adult Brain Cerebral Cortex? Šimonová Z., Dutt J. Department of Neuroscience of the Institute

More information

( neural progeni2 tor cell), ,,,, , (neural crest) (radial glial cell) mrna [2 ]

( neural progeni2 tor cell), ,,,, , (neural crest) (radial glial cell) mrna [2 ] 246, 1999 6, 51 (3), 246 252 Acta Physiologica Sinica 3 P19 3 3 (, 200031 ;, 200031) (nestin),, RA P19,, (neural precursor cell) BMP4, (NF160), ( neural progeni2 tor cell),, : ; P19 ; BMP4 ; : Q71,,,,

More information

TISSUE-SPECIFIC STEM CELLS

TISSUE-SPECIFIC STEM CELLS TISSUE-SPECIFIC STEM CELLS Brain Insulin-Like Growth Factor-I Directs the Transition from Stem Cells to Mature Neurons During Postnatal/Adult Hippocampal Neurogenesis VANESA NIETO-ESTÉVEZ, a,b CARLOS O.

More information

Address: Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.

Address: Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA. Journal of Biology BioMed Central Research article CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo Joerg Dietrich, Ruolan Han, Yin Yang, Margot Mayer-Pröschel

More information

ErbB4 migrazione I parte. 3- ErbB4- NRG1

ErbB4 migrazione I parte. 3- ErbB4- NRG1 ErbB4 migrazione I parte 3- ErbB4- NRG1 1 In rodent brains postnatal neuronal migration is evident in three main areas: the cerebellum (CB), the hippocampus (Hipp) and the rostral migratory stream (RMS).

More information

Milestones of neuronal development in the adult hippocampus

Milestones of neuronal development in the adult hippocampus Milestones of neuronal development in the adult hippocampus Gerd Kempermann 1,2, Sebastian Jessberger 2, Barbara Steiner 2 and Golo Kronenberg 1,3 1 Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch,

More information

During Brain Development Final Destinations for Neurons and Glia Get Separated from Germinal Niches

During Brain Development Final Destinations for Neurons and Glia Get Separated from Germinal Niches During Brain Development Final Destinations for Neurons and Glia Get Separated from Germinal Niches Progenitors are Contained within Unique Domains and Tangentially Fixed. EMBRYO ADULT Migratory Behavior

More information

Epigenetic regulation of adult neural stem cells: implications for Alzheimer s disease

Epigenetic regulation of adult neural stem cells: implications for Alzheimer s disease Fitzsimons et al. Molecular Neurodegeneration 2014, 9:25 REVIEW Open Access Epigenetic regulation of adult neural stem cells: implications for Alzheimer s disease Carlos P Fitzsimons 1*, Emma van Bodegraven

More information

Supplemental Information. Induction of Expansion and Folding. in Human Cerebral Organoids

Supplemental Information. Induction of Expansion and Folding. in Human Cerebral Organoids Cell Stem Cell, Volume 20 Supplemental Information Induction of Expansion and Folding in Human Cerebral Organoids Yun Li, Julien Muffat, Attya Omer, Irene Bosch, Madeline A. Lancaster, Mriganka Sur, Lee

More information

Human Anatomy and Physiology I Laboratory

Human Anatomy and Physiology I Laboratory Human Anatomy and Physiology I Laboratory Histology of Nervous Tissue and The Spinal Cord This lab involves two laboratory exercises: 1) Histology of Nervous Tissue, and 2) Spinal Cord, Spinal Nerves,

More information

Review Article Endogenous Proliferation after Spinal Cord Injury in Animal Models

Review Article Endogenous Proliferation after Spinal Cord Injury in Animal Models Stem Cells International Volume 2012, Article ID 387513, 16 pages doi:10.1155/2012/387513 Review Article Endogenous Proliferation after Spinal Cord Injury in Animal Models Ashley McDonough 1, 2, 3 and

More information

Neurology study of the nervous system. nervous & endocrine systems work together to maintain homeostasis

Neurology study of the nervous system. nervous & endocrine systems work together to maintain homeostasis Nervous System Neurology study of the nervous system nervous & endocrine systems work together to maintain homeostasis Nervous System works very fast Uses electrical signals called nerve impulses Short-lived

More information

Migration of bone marrow progenitor cells in the adult brain of rats and rabbits

Migration of bone marrow progenitor cells in the adult brain of rats and rabbits Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.4252/wjsc.v8.i4.136 World J Stem Cells 2016 April 26; 8(4): 136-157 ISSN 1948-0210 (online)

More information

Neocortex Zbtb20 / NFIA / Sox9

Neocortex Zbtb20 / NFIA / Sox9 Neocortex / NFIA / Sox9 Supplementary Figure 1. Expression of, NFIA, and Sox9 in the mouse neocortex at. The lower panels are higher magnification views of the oxed area. Arrowheads indicate triple-positive

More information

Vascular-derived TGF-b increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain

Vascular-derived TGF-b increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain OPEN ACCESS TRANSPARENT PROCESS SOURCE DATA Vascular-derived TGF-b increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain Jose R. Pineda

More information

Erzsebet Kokovay, Susan Goderie, Yue Wang, Steve Lotz, Gang Lin, Yu Sun, Badrinath Roysam, Qin Shen,

Erzsebet Kokovay, Susan Goderie, Yue Wang, Steve Lotz, Gang Lin, Yu Sun, Badrinath Roysam, Qin Shen, Cell Stem Cell, Volume 7 Supplemental Information Adult SVZ Lineage Cells Home to and Leave the Vascular Niche via Differential Responses to SDF1/CXCR4 Signaling Erzsebet Kokovay, Susan Goderie, Yue Wang,

More information

Cancer Stem Cells & Glioblastoma

Cancer Stem Cells & Glioblastoma Cancer Stem Cells & Glioblastoma JP Hugnot «Brain plasticity, Neural stem cells and Glial tumors» INSERM U1051-UM2 Institut des Neurosciences de Montpellier Montpellier 1-Stem cells and Brain Stem Cells

More information

Changes in the Proliferation of the Subventricular Zone Neural Stem Cell Pool throughout Aging in the Murine Brain

Changes in the Proliferation of the Subventricular Zone Neural Stem Cell Pool throughout Aging in the Murine Brain University of Connecticut DigitalCommons@UConn Honors Scholar Theses Honors Scholar Program Winter 12-1-2010 Changes in the Proliferation of the Subventricular Zone Neural Stem Cell Pool throughout Aging

More information

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System)

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Student Lab #: Date 1 Objectives: 1. Learn the main components making up a motor neuron.

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice

Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice DOI 10.1007/s00429-017-1376-4 ORIGINAL ARTICLE Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice Valentina Mastrorilli 1,7 Chiara

More information

Index Note: Page numbers of article titles are in boldface type.

Index Note: Page numbers of article titles are in boldface type. Neurosurg Clin N Am 18 (2007) 191 198 Index Note: Page numbers of article titles are in boldface type. A AC133 antigen, in brain tumor cancer cells, 32 35 Activity-based restoration therapy, for spinal

More information

Early Development of Neural Tube Development of Medulla Spinalis and Peripheral Nervous System. Assoc.Prof. E.Elif Güzel, M.D.

Early Development of Neural Tube Development of Medulla Spinalis and Peripheral Nervous System. Assoc.Prof. E.Elif Güzel, M.D. Early Development of Neural Tube Development of Medulla Spinalis and Peripheral Nervous System Assoc.Prof. E.Elif Güzel, M.D. Third week of Embryogenesis Primitive streak/pit appears on the epiblast (day

More information

Human Anatomy. Spinal Cord and Spinal Nerves

Human Anatomy. Spinal Cord and Spinal Nerves Human Anatomy Spinal Cord and Spinal Nerves 1 The Spinal Cord Link between the brain and the body. Exhibits some functional independence from the brain. The spinal cord and spinal nerves serve two functions:

More information

TISSUE-SPECIFIC STEM CELLS

TISSUE-SPECIFIC STEM CELLS TISSUE-SPECIFIC STEM CELLS An Endogenous Vitamin K-Dependent Mechanism Regulates Cell Proliferation in the Brain Subventricular Stem Cell Niche AURORE GELY-PERNOT, a VALÉRIE CORONAS, a THOMAS HARNOIS,

More information

Sheep Brain Dissection

Sheep Brain Dissection Sheep Brain Dissection Mammalian brains have many features in common. Human brains may not be available, so sheep brains often are dissected as an aid to understanding the mammalian brain since he general

More information

Nervous System. Lecture 4

Nervous System. Lecture 4 Nervous System Lecture 4 Neurons Functional unit of the nervous system Also called the nerve cell Soma or body Axon Dendrites Neuroglial cells support cells Schwann cells produce myelin in PNS Oligodendrocytes

More information

TISSUE-SPECIFIC STEM CELLS

TISSUE-SPECIFIC STEM CELLS TISSUE-SPECIFIC STEM CELLS Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone : a Institute of Cell Biology, ZMBE, University of M unster, M unster,

More information

Astroglia induce neurogenesis from adult neural stem cells

Astroglia induce neurogenesis from adult neural stem cells Astroglia induce neurogenesis from adult neural stem cells Hongjun Song*, Charles F. Stevens* & Fred H. Gage * Molecular Neurobiology Laboratory, Howard Hughes Medical Institute at the Salk Institute,

More information

Typical and Atypical Neural Stem Cell Niches

Typical and Atypical Neural Stem Cell Niches Typical and Atypical Neural Stem Cell Niches Stefano Pluchino 1, *, Luca Bonfanti 2, ** 1 DIBIT and Institute of Experimental Neurology (InSpe)-San Raffaele Scientific Institute, via Olgettina 58, I-20132,

More information

Brain Development III

Brain Development III Brain Development III Neural Development In the developing nervous system there must be: 1. The formation of different regions of the brain. 2. The ability of a neuron to differentiate. 3. The ability

More information

Cell Migration II: CNS Cell Migration. Steven McLoon Department of Neuroscience University of Minnesota

Cell Migration II: CNS Cell Migration. Steven McLoon Department of Neuroscience University of Minnesota Cell Migration II: CNS Cell Migration Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Coffee Hour Wednesday (Oct 18) 9:00-10:00am Surdyk s Café in Northrop Auditorium Stop

More information

Bellringer: The central nervous system is comprised of: What is the name of the outermost layer of the brain? a. Brain. b.

Bellringer: The central nervous system is comprised of: What is the name of the outermost layer of the brain? a. Brain. b. Bellringer: The central is comprised of: a. Brain b. Spinal cord c. Sensory receptors d. Both a and b What is the name of the outermost layer of the brain? a. Pia mater b. Dura mater c. Arachnoid d. Pons

More information

SUPPLEMENTARY FIG. S2. Representative counting fields used in quantification of the in vitro neural differentiation of pattern of dnscs.

SUPPLEMENTARY FIG. S2. Representative counting fields used in quantification of the in vitro neural differentiation of pattern of dnscs. Supplementary Data SUPPLEMENTARY FIG. S1. Representative counting fields used in quantification of the in vitro neural differentiation of pattern of anpcs. A panel of lineage-specific markers were used

More information

GFP/Iba1/GFAP. Brain. Liver. Kidney. Lung. Hoechst/Iba1/TLR9!

GFP/Iba1/GFAP. Brain. Liver. Kidney. Lung. Hoechst/Iba1/TLR9! Supplementary information a +KA Relative expression d! Tlr9 5!! 5! NSC Neuron Astrocyte Microglia! 5! Tlr7!!!! NSC Neuron Astrocyte! GFP/Sβ/! Iba/Hoechst Microglia e Hoechst/Iba/TLR9! GFP/Iba/GFAP f Brain

More information

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Objectives At the end of the lecture, the students should be able to: List the parts of the nervous system. List the function

More information

Anatomy of the Nervous System. Brain Components

Anatomy of the Nervous System. Brain Components Anatomy of the Nervous System Brain Components NERVOUS SYSTEM INTRODUCTION Is the master system of human body, controlling the functions of rest of the body systems Nervous System CLASSIFICATION A. Anatomical

More information

action potential afferent neuron Weblike; specifically, the weblike middle layer of the three meninges. arachnoid astrocytes autonomic nervous system

action potential afferent neuron Weblike; specifically, the weblike middle layer of the three meninges. arachnoid astrocytes autonomic nervous system action potential A large transient depolarization event, including polarity reversal, that is conducted along the membrane of a muscle cell or a nerve fiber. afferent neuron Nerve cell that carries impulses

More information

Spinal Cord Workbook. Learning objec&ves

Spinal Cord Workbook. Learning objec&ves Spinal Cord Workbook Direc&ons. Watch the following video tutorials and complete this workbook: YouTubeèTheNotedAnatomistèPlaylistsèSpinal cord and nervesèwatch videos with the names of ObjecCves A-E.

More information

Dissection of the Sheep Brain

Dissection of the Sheep Brain Dissection of the Sheep Brain Laboratory Objectives After completing this lab, you should be able to: 1. Identify the main structures in the sheep brain and to compare them with those of the human brain.

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Kif1a RNAi effect on basal progenitor differentiation Related to Figure 2. Representative confocal images of the VZ and SVZ of rat cortices transfected at E16 with scrambled or Kif1a

More information

CNS TUMORS. D r. Ali Eltayb ( U. of Omdurman. I ). M. Path (U. of Alexandria)

CNS TUMORS. D r. Ali Eltayb ( U. of Omdurman. I ). M. Path (U. of Alexandria) CNS TUMORS D r. Ali Eltayb ( U. of Omdurman. I ). M. Path (U. of Alexandria) CNS TUMORS The annual incidence of intracranial tumors of the CNS ISmore than intraspinal tumors May be Primary or Secondary

More information

mir-7a regulation of Pax6 in neural stem cells controls the spatial origin of forebrain dopaminergic neurons

mir-7a regulation of Pax6 in neural stem cells controls the spatial origin of forebrain dopaminergic neurons Supplemental Material mir-7a regulation of Pax6 in neural stem cells controls the spatial origin of forebrain dopaminergic neurons Antoine de Chevigny, Nathalie Coré, Philipp Follert, Marion Gaudin, Pascal

More information

NEUROGENESIS IN THE ADULT BRAIN, GENE NETWORKS, AND ALZHEIMER S DISEASE

NEUROGENESIS IN THE ADULT BRAIN, GENE NETWORKS, AND ALZHEIMER S DISEASE NEUROGENESIS IN THE ADULT BRAIN, GENE NETWORKS, AND ALZHEIMER S DISEASE Emrin Horgusluoglu Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the

More information

Development of the Nervous System 1 st month

Development of the Nervous System 1 st month Development of the Nervous System 1 st month day 1 - fertilization of egg day 6 - uterine implantation day 18 - trilaminar (3-layered) disc (blastoderm, embryo) ectoderm (dorsal) - nervous system and skin

More information

Helen R Barbour 2, Christine D Plant 1, Alan R Harvey 3 and Giles W Plant 1,2*

Helen R Barbour 2, Christine D Plant 1, Alan R Harvey 3 and Giles W Plant 1,2* Barbour et al. BMC Neuroscience 2013, 14:106 RESEARCH ARTICLE Open Access Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model

More information

Original Article. Kyung Mee Choi 1, Joo Yeon Kim 1 and Younghwa Kim 2 * 1

Original Article. Kyung Mee Choi 1, Joo Yeon Kim 1 and Younghwa Kim 2 * 1 http://dx.doi.org/10.5607/en.2013.22.4.277 Exp Neurobiol. 2013 Dec;22(4):277-282. pissn 1226-2560 eissn 2093-8144 Original Article Distribution of the Immunoreactivity for Glycoprotein M6B in the Neurogenic

More information

Citation for published version (APA): Martina-Mamber, C. E. (2014). GFAP as an understudy in adult neurogenesis 's-hertogenbosch: Boxpress

Citation for published version (APA): Martina-Mamber, C. E. (2014). GFAP as an understudy in adult neurogenesis 's-hertogenbosch: Boxpress UvA-DARE (Digital Academic Repository) GFAP as an understudy in adult neurogenesis Mamber, C.E. Link to publication Citation for published version (APA): Martina-Mamber, C. E. (2014). GFAP as an understudy

More information

Nervous system part 1. Danil Hammoudi.MD

Nervous system part 1. Danil Hammoudi.MD Nervous system part 1 Danil Hammoudi.MD The central nervous system (CNS) is formed by : the brain spinal cord. These elements are enclosed within the skull and spinal vertebral canal. They are covered

More information

Nervous system is the most complex system in our body. It is formed by a network of more than 100 million nerve cells (neurons) assisted by many more

Nervous system is the most complex system in our body. It is formed by a network of more than 100 million nerve cells (neurons) assisted by many more Nervous system Nervous system is the most complex system in our body. It is formed by a network of more than 100 million nerve cells (neurons) assisted by many more glial cells. Devoid from connective

More information

Nervous system. Dr. Rawaa Salim Hameed

Nervous system. Dr. Rawaa Salim Hameed Nervous system Dr. Rawaa Salim Hameed Central nervous system (CNS) CNS consists of the brain (cerebrum, cerebellum, and brainstem) and spinal cord CNS is covered by connective tissue layers, the meninges

More information

Metformin Activates an Atypical PKC-CBP Pathway to Promote Neurogenesis and Enhance Spatial Memory Formation

Metformin Activates an Atypical PKC-CBP Pathway to Promote Neurogenesis and Enhance Spatial Memory Formation rticle formin ctivates an typical PKC-CBP Pathway to Promote Neurogenesis and Enhance Spatial Memory Formation Jing Wang, 1,2 Denis Gallagher, 1,2,4,9 Loren M. DeVito, 3,9 Gonzalo I. Cancino, 1,2 David

More information

Stem Cells. Induced Stem Cells

Stem Cells. Induced Stem Cells Induced Stem Cells Stem Cells Mouse and human somatic cells can either be reprogrammed to a pluripotent state or converted to another lineage with a combination of transcription factors suggesting that

More information

BRAIN PART I (A & B): VENTRICLES & MENINGES

BRAIN PART I (A & B): VENTRICLES & MENINGES BRAIN PART I (A & B): VENTRICLES & MENINGES Cranial Meninges Cranial meninges are continuous with spinal meninges Dura mater: inner layer (meningeal layer) outer layer (endosteal layer) fused to periosteum

More information

THE EFFECTS OF SDF-1α TREATMENT ON THE MIGRATION OF NEURAL STEM/ PROGENITOR CELLS AFTER TRAUMATIC BRAIN INJURY

THE EFFECTS OF SDF-1α TREATMENT ON THE MIGRATION OF NEURAL STEM/ PROGENITOR CELLS AFTER TRAUMATIC BRAIN INJURY Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 THE EFFECTS OF SDF-1α TREATMENT ON THE MIGRATION OF NEURAL STEM/ PROGENITOR CELLS AFTER TRAUMATIC BRAIN

More information

Nervous system. The main regulation mechanism of organism's functions

Nervous system. The main regulation mechanism of organism's functions Nervous system The main regulation mechanism of organism's functions Questions Neuron The reflex arc The nervous centers Properties of the nervous centers The general principles of coordination Inhibition

More information

Human Histology The Nervous System. Dr. Rawaa Salim Hameed

Human Histology The Nervous System. Dr. Rawaa Salim Hameed Human Histology The Nervous System Dr. Rawaa Salim Hameed The organization of the nervous system Anatomically, the nervous system is divided into:- Neurohistology Structurally, nerve tissue consists of

More information

Somatic Nervous Systems. III. Autonomic Nervous System. Parasympathetic Nervous System. Sympathetic Nervous Systems

Somatic Nervous Systems. III. Autonomic Nervous System. Parasympathetic Nervous System. Sympathetic Nervous Systems 7/21/2014 Outline Nervous System - PNS and CNS I. II. Two Parts of the Nervous System Central Nervous System vs Peripheral Nervous System Peripheral Nervous System A. B. Brain and Spinal Cord III. Autonomic

More information

Stress effects on astrocyte communication and regulation of adult hippocampal neural stem cells

Stress effects on astrocyte communication and regulation of adult hippocampal neural stem cells Stress effects on astrocyte communication and regulation of adult hippocampal neural stem cells By David Covarrubias A dissertation submitted in partial satisfaction of the requirements for the degree

More information

Biological Bases of Behavior. 3: Structure of the Nervous System

Biological Bases of Behavior. 3: Structure of the Nervous System Biological Bases of Behavior 3: Structure of the Nervous System Neuroanatomy Terms The neuraxis is an imaginary line drawn through the spinal cord up to the front of the brain Anatomical directions are

More information

NG2 + CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration

NG2 + CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration Article NG2 + CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration Shin H. Kang, 1 Masahiro Fukaya, 2,4 Jason K. Yang, 1 Jeffrey D. Rothstein,

More information

COGNITIVE SCIENCE 107A MIDTERM EXAM 1 - FALL Name: PID: Total Pts: /100pts

COGNITIVE SCIENCE 107A MIDTERM EXAM 1 - FALL Name: PID: Total Pts: /100pts COGNITIVE SCIENCE 107A MIDTERM EXAM 1 - FALL 2009 Name: PID: Total Pts: /100pts I. SHORT ANSWERS (5 points each for a total of 30 points) 1. Label the three meningeal layers in the following diagram. Describe

More information

Central Nervous System: Part 2

Central Nervous System: Part 2 Central Nervous System: Part 2 1. Meninges 2. CSF 3. Spinal Cord and Spinal Nerves Explain spinal cord anatomy, including gray and white matter and meninges (give the general functions of this organ).

More information

CHAPTER 13&14: The Central Nervous System. Anatomy of the CNS

CHAPTER 13&14: The Central Nervous System. Anatomy of the CNS CHAPTER 13&14: The Central Nervous System Anatomy of the CNS in human consists of brain and spinal cord as stated earlier neurons have little support from their extracellular matrix and depend on glial

More information

Neuroanatomy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Dr Maha ELBeltagy

Neuroanatomy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Dr Maha ELBeltagy Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Development of the Central Nervous System Development of the nervous system Development

More information

Nerve tissue & the Nervous System

Nerve tissue & the Nervous System Nerve tissue & the Nervous System The human nervous system, by far the most complex system in the body, is formed by a network of many billion nerve cells (neurons), all assisted by many more supporting

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature25975 Supplementary Table 1 CONTROL Case No. Age Gender Experimental Use Clinical History 1 14GW F IHC, mapping spontaneous abortion 2 17GW M IHC amniotic infection

More information

NERVOUS TISSUE. 1. Functional units of the nervous system; receive, process, store and transmit information to other neurons, muscle cells or glands.

NERVOUS TISSUE. 1. Functional units of the nervous system; receive, process, store and transmit information to other neurons, muscle cells or glands. NERVOUS TISSUE LEARNING OBJECTIVES 1. Characterize and contrast the structure of neuronal cell bodies, dendrites and axons 2. List the classification of synapses and identify the basic structures of a

More information

Good Morning! Take out your notes and vocab 1-10! Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Good Morning! Take out your notes and vocab 1-10! Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings Good Morning! Take out your notes and vocab 1-10! Functions of the Nervous System 1. Sensory input gathering information To monitor changes occurring inside and outside the body (changes = stimuli) 2.

More information

Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-jun

Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-jun Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-jun Joerg D Hoeck, Anett Jandke, Sophia Maria Blake, Emma Nye, Bradley Spencer-Dene, Sebastian Brandner, Axel Behrens

More information

Neurogenic Potential of Clitoria ternatea Aqueous Root Extract A Basis for Enhancing Learning and Memory

Neurogenic Potential of Clitoria ternatea Aqueous Root Extract A Basis for Enhancing Learning and Memory Neurogenic Potential of Clitoria ternatea Aqueous Root Extract A Basis for Enhancing Learning and Memory Kiranmai S.Rai* Abstract The neurogenic potential of many herbal extracts used in Indian medicine

More information

Malignant Astrocytomas Originate from Neural Stem/Progenitor Cells in a Somatic Tumor Suppressor Mouse Model

Malignant Astrocytomas Originate from Neural Stem/Progenitor Cells in a Somatic Tumor Suppressor Mouse Model Article Malignant Astrocytomas Originate from Neural Stem/Progenitor Cells in a Somatic Tumor Suppressor Mouse Model Sheila Alcantara Llaguno, 1,4 Jian Chen, 1,4 Chang-Hyuk Kwon, 1,4,5 Erica L. Jackson,

More information