Protein Synthesis. From DNA to RNA to Protein. Biol 219 Fall 2016 Lec 6 Dr Scott. BioFlix: Protein Synthesis. Genes

Size: px
Start display at page:

Download "Protein Synthesis. From DNA to RNA to Protein. Biol 219 Fall 2016 Lec 6 Dr Scott. BioFlix: Protein Synthesis. Genes"

Transcription

1 Biol 9 Fall 06 Lec 6 Dr Scott From to to Protein Protein Synthesis Gene onstitutive proteins (essential to ongoing cell functions) are made at all times Regulated genes are turned on and off as needed (by regulatory proteins) Trans cription Synthesis of by copying information in Trans lation Synthesis of protein off the information in 06 Pearson Education, Inc. Genes A gene is a specific segment of that contains information needed to make a functional piece of, which in turn is necessary for producing a specific protein. How do we make a protein from the information within a gene? BioFlix: Protein Synthesis 06 Pearson Education, Inc. Fig..8 opyright 00 Pearson Education, Inc.

2 Biol 9 Fall 06 Lec 6 Dr Scott Transcription ast of characters: Nucleotides polymerase Trans cription factors Mg + or Mn + ATP Transcription factors guide the polymerase into place on the promoter of the gene. Fig..9 opyright 00 Pearson Education, Inc. Fig..9 opyright 00 Pearson Education, Inc. Fig..9 opyright 00 Pearson Education, Inc. polymerase binds to. The sect ion of t hat cont ains the gene unwinds. bas es bas es bind t o, creating a single of. Tem plat e Sit e of nucleot ide assem bly Lengthening transcript and the polymerase det ach f r om, and t he goes to the cytosol after pr ocessing. released Fig..9 opyright 00 Pearson Education, Inc. Figure.9 Transcription Leaves nucleus 06 Pearson Education, Inc. af t er pr ocessing

3 Biol 9 Fall 06 Lec 6 Dr Scott Synthesis polymerase Promoter Trans cription factors Alternative splicing Several possible proteins from a single gene 06 Pearson Education, Inc. Fig..0 opyright 00 Pearson Education, Inc. Translation When enters the cytoplasm, it must associate with the protein synthesis machinery ast of characters: ribosomes amino acids Translation of Trans lation components, rs, and s Ribosomes and amino acids 06 Pearson Education, Inc. Transfer attachment : Binds to a s pecific amino acid. attaches to a (phenylalanine) = yto si n e : Binds to codon on, following complementary base-pairing rules. Antic odon

4 Biol 9 Fall 06 Lec 6 Dr Scott attach es to a Fig..7 opyright 00 Pearson Education, Inc. = yto si n e attaches to a and small ribosomal ribosome and initiator fits into. A attaches to a and small ribosomal ribosome and initiator fits into. A A A G odons of incoming pairs with ne xt codon at A. = yto si n e = yto si n e attaches to a and small ribosomal ribosome and initiator fits into. A A A G odons of incoming pairs with ne xt codon at A. A A G AG Dehydration synthesis on at amino acid at A. = yto si n e

5 Biol 9 Fall 06 Lec 6 Dr Scott attaches to a and small ribosomal ribosome and initiator fits into. A A A G odons of incoming pairs with ne xt codon at A. A A G AG attaches to a and small ribosomal ribosome and initiator fits into. A A A G odons of incoming pairs with ne xt codon at A. A A G AG Ne w peptide bond on at Ne w peptide bond on at amino acid at A. amino acid at A. A G G A G G = yto si n e at leave s ribosome, ribosome shifts by one codon; previously at is now at th e. mo ve me n t 6 Stop codon Protein synthesis stops when the ribosome reaches stop codon on. = yto si n e at leave s ribosome, ribosome shifts by one codon; previously at is now at th e. Growing protein Summary of movement of ribosome along mo ve me n t omplete protein opyright 00 Pearson Education, Inc. opyright 00 Pearson Education, Inc. Post-Translational Modification Protein folding ross-linkage (disulfide bonds) leavage (if required for activation) Addition of other molecules or groups Assembly into polymeric (many part) proteins (quarternary structure, e.g., hemoglobin) opyright 00 Pearson Education, Inc.

Bio 111 Study Guide Chapter 17 From Gene to Protein

Bio 111 Study Guide Chapter 17 From Gene to Protein Bio 111 Study Guide Chapter 17 From Gene to Protein BEFORE CLASS: Reading: Read the introduction on p. 333, skip the beginning of Concept 17.1 from p. 334 to the bottom of the first column on p. 336, and

More information

DNA codes for RNA, which guides protein synthesis.

DNA codes for RNA, which guides protein synthesis. Section 3: DNA codes for RNA, which guides protein synthesis. K What I Know W What I Want to Find Out L What I Learned Vocabulary Review synthesis New RNA messenger RNA ribosomal RNA transfer RNA transcription

More information

Sections 12.3, 13.1, 13.2

Sections 12.3, 13.1, 13.2 Sections 12.3, 13.1, 13.2 Now that the DNA has been copied, it needs to send its genetic message to the ribosomes so proteins can be made Transcription: synthesis (making of) an RNA molecule from a DNA

More information

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy 7.4 - Translation 7.4.1 - Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy Each amino acid has a specific trna-activating

More information

If DNA resides in the nucleus, and proteins are made at the ribosomes, how can DNA direct protein production?

If DNA resides in the nucleus, and proteins are made at the ribosomes, how can DNA direct protein production? Protein Synthesis If DN resides in the nucleus, and proteins are made at the ribosomes, how can DN direct protein production? cell nucleus? ribosome Summary of Protein Synthesis DN deoxyribonucleic acid

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Protein Synthesis

Protein Synthesis Protein Synthesis 10.6-10.16 Objectives - To explain the central dogma - To understand the steps of transcription and translation in order to explain how our genes create proteins necessary for survival.

More information

Chapter 4. Cellular Metabolism

Chapter 4. Cellular Metabolism hapter 4 ellular Metabolism opyright he Mcraw-ill ompanies, Inc. Permission required for reproduction or display. Introduction. living cell is the site of enzyme-catalyzed metabolic reactions that maintain

More information

RNA Processing in Eukaryotes *

RNA Processing in Eukaryotes * OpenStax-CNX module: m44532 1 RNA Processing in Eukaryotes * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you

More information

Gene Expression. 1. DNA controls a person s and. 2. Gene = 3. How many genes do humans have in each cell? 4. What are the building blocks of proteins?

Gene Expression. 1. DNA controls a person s and. 2. Gene = 3. How many genes do humans have in each cell? 4. What are the building blocks of proteins? ene Expression DN in cells controls all sorts of things such as the color of your eyes, the color of your hair, and whether or not you can digest milk. These characteristics are called traits. DN also

More information

Objective: You will be able to explain how the subcomponents of

Objective: You will be able to explain how the subcomponents of Objective: You will be able to explain how the subcomponents of nucleic acids determine the properties of that polymer. Do Now: Read the first two paragraphs from enduring understanding 4.A Essential knowledge:

More information

RNA and Protein Synthesis Guided Notes

RNA and Protein Synthesis Guided Notes RNA and Protein Synthesis Guided Notes is responsible for controlling the production of in the cell, which is essential to life! o DNARNAProteins contain several thousand, each with directions to make

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA Genetics Instructor: Dr. Jihad Abdallah Transcription of DNA 1 3.4 A 2 Expression of Genetic information DNA Double stranded In the nucleus Transcription mrna Single stranded Translation In the cytoplasm

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 NOVEMBER 2, 2006

More information

Genetic information flows from mrna to protein through the process of translation

Genetic information flows from mrna to protein through the process of translation Genetic information flows from mrn to protein through the process of translation TYPES OF RN (RIBONUCLEIC CID) RN s job - protein synthesis (assembly of amino acids into proteins) Three main types: 1.

More information

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Homework Watch the Bozeman video called, Biological Molecules Objective:

More information

Insulin mrna to Protein Kit

Insulin mrna to Protein Kit Insulin mrna to Protein Kit A 3DMD Paper BioInformatics and Mini-Toober Folding Activity Student Handout www.3dmoleculardesigns.com Insulin mrna to Protein Kit Contents Becoming Familiar with the Data...

More information

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms. PROTEIN SYNTHESIS It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.» GENES = a sequence of nucleotides in DNA that performs

More information

RNA (Ribonucleic acid)

RNA (Ribonucleic acid) RNA (Ribonucleic acid) Structure: Similar to that of DNA except: 1- it is single stranded polunucleotide chain. 2- Sugar is ribose 3- Uracil is instead of thymine There are 3 types of RNA: 1- Ribosomal

More information

Human Anatomy & Physiology

Human Anatomy & Physiology PowerPoint Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College Ninth Edition Human Anatomy & Physiology C H A P T E R 3 Annie Leibovitz/Contact Press Images 2013 Pearson Education,

More information

TRANSLATION: 3 Stages to translation, can you guess what they are?

TRANSLATION: 3 Stages to translation, can you guess what they are? TRANSLATION: Translation: is the process by which a ribosome interprets a genetic message on mrna to place amino acids in a specific sequence in order to synthesize polypeptide. 3 Stages to translation,

More information

You may use your notes to answer the following questions:

You may use your notes to answer the following questions: Build-A-Cell Name: Group members: Date: Instructions: Please use the the Lego blocks responsibly and not a device to pinch other students. Answer the pre-lab questions before you start, follow all directions,

More information

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression Chromatin Array of nuc 1 Transcriptional control in Eukaryotes: Chromatin undergoes structural changes

More information

TRANSCRIPTION. DNA à mrna

TRANSCRIPTION. DNA à mrna TRANSCRIPTION DNA à mrna Central Dogma Animation DNA: The Secret of Life (from PBS) http://www.youtube.com/watch? v=41_ne5ms2ls&list=pl2b2bd56e908da696&index=3 Transcription http://highered.mcgraw-hill.com/sites/0072507470/student_view0/

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 06

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 06 01) Match the following structures to their names. a. b. c. d. 02) ame the following structures (i) (iv) i) H ii) 2 iii) iv) H 2 CH 3 H H H H H H a. Deoxyadenosine = b. Deoxyguanosine = c. Deoxythymidine

More information

Last time we talked about the few steps in viral replication cycle and the un-coating stage:

Last time we talked about the few steps in viral replication cycle and the un-coating stage: Zeina Al-Momani Last time we talked about the few steps in viral replication cycle and the un-coating stage: Un-coating: is a general term for the events which occur after penetration, we talked about

More information

Protein Synthesis and Mutation Review

Protein Synthesis and Mutation Review Protein Synthesis and Mutation Review 1. Using the diagram of RNA below, identify at least three things different from a DNA molecule. Additionally, circle a nucleotide. 1) RNA is single stranded; DNA

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

An Introduction to Genetics. 9.1 An Introduction to Genetics. An Introduction to Genetics. An Introduction to Genetics. DNA Deoxyribonucleic acid

An Introduction to Genetics. 9.1 An Introduction to Genetics. An Introduction to Genetics. An Introduction to Genetics. DNA Deoxyribonucleic acid An Introduction to Genetics 9.1 An Introduction to Genetics DNA Deoxyribonucleic acid Information blueprint for life Reproduction, development, and everyday functioning of living things Only 2% coding

More information

Review Session 1. Control Systems and Homeostasis. Figure 1.8 A simple control system. Biol 219 Review Sessiono 1 Fall 2016

Review Session 1. Control Systems and Homeostasis. Figure 1.8 A simple control system. Biol 219 Review Sessiono 1 Fall 2016 Control Systems and Homeostasis Review Session 1 Regulated variables are kept within normal range by control mechanisms Keeps near set point, or optimum value Control systems local and reflex Input signal

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 2 FUNDAMENTAL CHEMISTRY FOR MICROBIOLOGY WHY IS THIS IMPORTANT? An understanding of chemistry is essential to understand cellular structure and function, which are paramount for your understanding

More information

Point total. Page # Exam Total (out of 90) The number next to each intermediate represents the total # of C-C and C-H bonds in that molecule.

Point total. Page # Exam Total (out of 90) The number next to each intermediate represents the total # of C-C and C-H bonds in that molecule. This exam is worth 90 points. Pages 2- have questions. Page 1 is for your reference only. Honor Code Agreement - Signature: Date: (You agree to not accept or provide assistance to anyone else during this

More information

1. Cut the copier paper into strips 8.5 inches long and half an inch wide, to make at least 40 strips.

1. Cut the copier paper into strips 8.5 inches long and half an inch wide, to make at least 40 strips. 1 Unit 2: Lesson 2 Case Studies: Influenza and HIV Activity 1: Influenza Antigenic Drift Materials 4 highlighter pens colored red, green, blue and yellow Tape or glue Scissors Paper clips 2 sheets copier

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 13 Moving Proteins into Membranes and Organelles Copyright 2013 by W. H. Freeman and Company

More information

Genetics Unit Bell Work September 27 & 28, 2016

Genetics Unit Bell Work September 27 & 28, 2016 Name: Date: Genetics Unit Bell Work September 27 & 28, 2016 nswer the following questions about the process shown above. 1. What are the reactants in this process? 2. What are the products in this process?

More information

Unit IV. Chapter 04. Cellular Function. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Unit IV. Chapter 04. Cellular Function. Copyright McGraw-Hill Education. Permission required for reproduction or display. Unit IV hapter 04 ellular Function opyright McGraw-Hill Education. Permission required for reproduction or display. 1 Fig. 4.2 opyright McGraw-Hill Education. Permission required for reproduction or display.

More information

1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes.

1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes. Biology 12 Cell Cycle To divide, a cell must complete several important tasks: it must grow, during which it performs protein synthesis (G1 phase) replicate its genetic material /DNA (S phase), and physically

More information

1 By Drs. Ingrid Waldron and. Jennifer Doherty, Department of Biology, University of Pennsylvania, These Teacher

1 By Drs. Ingrid Waldron and. Jennifer Doherty, Department of Biology, University of Pennsylvania, These Teacher Teacher Preparation Notes for "From Gene to Protein via Transcription and Translation" 1 In this analysis and discussion activity, students learn (1) how genes provide the instructions for making a protein

More information

Essential Components of Food

Essential Components of Food Essential Components of Food The elements of life living things are mostly (98%) made of 6 elements: C carbon H hydrogen O oxygen P phosphorus N nitrogen S sulphur -each element makes a specific number

More information

Biochemistry 2000 Sample Question Transcription, Translation and Lipids. (1) Give brief definitions or unique descriptions of the following terms:

Biochemistry 2000 Sample Question Transcription, Translation and Lipids. (1) Give brief definitions or unique descriptions of the following terms: (1) Give brief definitions or unique descriptions of the following terms: (a) exon (b) holoenzyme (c) anticodon (d) trans fatty acid (e) poly A tail (f) open complex (g) Fluid Mosaic Model (h) embedded

More information

Gene Expression. From a gene to a protein

Gene Expression. From a gene to a protein Gene Expression From a gene to a protein Central Dogma (Crick 1958) Determines the genetic flow of information Central Dogma First step in decoding a genetic message from DNA is to copy (transcribe) it

More information

Genes and Genetic Diseases. Gene: Is a fundamental unit of information storage.

Genes and Genetic Diseases. Gene: Is a fundamental unit of information storage. GENETIC DISORDERS Genes and Genetic Diseases Gene: Is a fundamental unit of information storage. Genes determine the type of proteins and enzymes that are made by the cell. Genes control inheritance and

More information

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis!

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! Chapter 3 Part 2! Pages 65 89 (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! The Cell Theory! Living organisms are composed of one or more cells.!

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Aylwin Ng, D.Phil Lecture Notes: Transcriptome: Molecular Biology of Gene Expression II TRANSLATION RIBOSOMES: protein synthesizing machines Translation takes place on defined

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

Macromolecules (Learning Objectives)

Macromolecules (Learning Objectives) Macromolecules (Learning Objectives) Recognize the role of water in synthesis and breakdown of polymers Name &recognize the monomer and the chemical bond that holds the polymeric structure of all biomolecules

More information

Cells and Tissues 3PART C. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Cells and Tissues 3PART C. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Cells and Tissues 3PART C Protein Synthesis Gene DNA segment that carries a blueprint for building

More information

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation Eukaryotic Gene Regulation Chapter 19: Control of Eukaryotic Genome The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different,

More information

CLASS SET. Modeling Life s Important Compounds. AP Biology

CLASS SET. Modeling Life s Important Compounds. AP Biology Modeling Life s Important Compounds AP Biology CLASS SET OBJECTIVES: Upon completion of this activity, you will be able to: Explain the connection between the sequence and the subcomponents of a biological

More information

Practice Exam 2 MCBII

Practice Exam 2 MCBII 1. Which feature is true for signal sequences and for stop transfer transmembrane domains (4 pts)? A. They are both 20 hydrophobic amino acids long. B. They are both found at the N-terminus of the protein.

More information

AP Biology

AP Biology Tour of the Cell (1) 2007-2008 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Cell Size Why organelles? Specialized structures - specialized

More information

Translation Activity Guide

Translation Activity Guide Translation Activity Guide Student Handout β-globin Translation Translation occurs in the cytoplasm of the cell and is defined as the synthesis of a protein (polypeptide) using information encoded in an

More information

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 1 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers Structure and Function of Macromolecules Chapter 5 Macromolecules Giant molecules weighing over 100,000 daltons Emergent properties not found in component parts Macromolecules Multiple Units meris = one

More information

Central Dogma. Central Dogma. Translation (mrna -> protein)

Central Dogma. Central Dogma. Translation (mrna -> protein) Central Dogma Central Dogma Translation (mrna -> protein) mrna code for amino acids 1. Codons as Triplet code 2. Redundancy 3. Open reading frames 4. Start and stop codons 5. Mistakes in translation 6.

More information

The building blocks for this molecule are A) amino acids B) simple sugars C) fats D) molecular bases

The building blocks for this molecule are A) amino acids B) simple sugars C) fats D) molecular bases 1. Base your answer to the following question on the diagram below and on your knowledge of biology. The diagram represents a portion of a starch molecule. The building blocks for this molecule are A)

More information

Chapter 4 Genetics and Cellular Function. The Nucleic Acids (medical history) Chromosome loci. Organization of the Chromatin. Nucleotide Structure

Chapter 4 Genetics and Cellular Function. The Nucleic Acids (medical history) Chromosome loci. Organization of the Chromatin. Nucleotide Structure Chapter 4 Genetics and Cellular Function The Nucleic Acids (medical history) Nucleus and nucleic acids Protein synthesis and secretion DNA replication and the cell cycle Chromosomes and heredity Organization

More information

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids and their sub-units; the role of lipids in the plasma

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Objectives: Prof.Dr. H.D.El-Yassin

Objectives: Prof.Dr. H.D.El-Yassin Protein Synthesis and drugs that inhibit protein synthesis Objectives: 1. To understand the steps involved in the translation process that leads to protein synthesis 2. To understand and know about all

More information

Section Chapter 14. Go to Section:

Section Chapter 14. Go to Section: Section 12-3 Chapter 14 Go to Section: Content Objectives Write these Down! I will be able to identify: The origin of genetic differences among organisms. The possible kinds of different mutations. The

More information

MODULE 3: TRANSCRIPTION PART II

MODULE 3: TRANSCRIPTION PART II MODULE 3: TRANSCRIPTION PART II Lesson Plan: Title S. CATHERINE SILVER KEY, CHIYEDZA SMALL Transcription Part II: What happens to the initial (premrna) transcript made by RNA pol II? Objectives Explain

More information

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins.

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. The RNA transcribed from a complex transcription unit

More information

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5 1) Complete the following table: Class Monomer Functions Carbohydrates 1. 3. Lipids 1. 3. Proteins 1. 3. 4. 5. 6. Nucleic Acids 1. 2) Circle the atoms of these two glucose molecules that will be removed

More information

Protein. An Introduction to Protein Structure and Denaturation by Acidification and Temperature Acid. By Noel Ways

Protein. An Introduction to Protein Structure and Denaturation by Acidification and Temperature Acid. By Noel Ways Protein An Introduction to Protein Structure and Denaturation by Acidification and Temperature Acid By oel Ways Amino Acids and Protein Structure A protein is a polymer of amino acids that obtains a unique

More information

MCB Chapter 11. Topic E. Splicing mechanism Nuclear Transport Alternative control modes. Reading :

MCB Chapter 11. Topic E. Splicing mechanism Nuclear Transport Alternative control modes. Reading : MCB Chapter 11 Topic E Splicing mechanism Nuclear Transport Alternative control modes Reading : 419-449 Topic E Michal Linial 14 Jan 2004 1 Self-splicing group I introns were the first examples of catalytic

More information

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3 H HO H Short polymer Dehydration removes a water molecule, forming a new bond Unlinked monomer H 2 O HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

TRANSLATION. Translation is a process where proteins are made by the ribosomes on the mrna strand.

TRANSLATION. Translation is a process where proteins are made by the ribosomes on the mrna strand. TRANSLATION Dr. Mahesha H B, Yuvaraja s College, University of Mysore, Mysuru. Translation is a process where proteins are made by the ribosomes on the mrna strand. Or The process in the ribosomes of a

More information

Ch. 18 Regulation of Gene Expression

Ch. 18 Regulation of Gene Expression Ch. 18 Regulation of Gene Expression 1 Human genome has around 23,688 genes (Scientific American 2/2006) Essential Questions: How is transcription regulated? How are genes expressed? 2 Bacteria regulate

More information

Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued

Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued Cell structure of Eukaryotic cells Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued Lots of double-membraned organelles Existence of an Endo-membrane system separation of areas of cell, transport

More information

1. Investigate the structure of the trna Synthase in complex with a trna molecule. (pdb ID 1ASY).

1. Investigate the structure of the trna Synthase in complex with a trna molecule. (pdb ID 1ASY). Problem Set 11 (Due Nov 25 th ) 1. Investigate the structure of the trna Synthase in complex with a trna molecule. (pdb ID 1ASY). a. Why don t trna molecules contain a 5 triphosphate like other RNA molecules

More information

Macromolecules. Honors Biology

Macromolecules. Honors Biology Macromolecules onors Biology 1 The building materials of the body are known as macromolecules because they can be very large There are four types of macromolecules: 1. Proteins 2. Nucleic acids 3. arbohydrates

More information

number Done by Corrected by Doctor Ashraf

number Done by Corrected by Doctor Ashraf number 4 Done by Nedaa Bani Ata Corrected by Rama Nada Doctor Ashraf Genome replication and gene expression Remember the steps of viral replication from the last lecture: Attachment, Adsorption, Penetration,

More information

CHNOPS Simulating Protein Synthesis

CHNOPS Simulating Protein Synthesis CHNOPS Simulating Protein Synthesis Protein Synthesis Protein Forming This page has all the information you need to complete the CHNOPS assignment. Base Pairing Rules for Transcription and Paring of Codon

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Chapter 5: The Structure and Function of Large Biological Molecules 1. Name the four main classes of organic molecules found in all living things. Which of the four are classified as macromolecules. Define

More information

Ch5: Macromolecules. Proteins

Ch5: Macromolecules. Proteins Ch5: Macromolecules Proteins Essential Knowledge 4.A.1 The subcomponents of biological molecules and their sequence determine the properties of that molecule A. Structure and function of polymers are derived

More information

NBCE Mock Board Questions Biochemistry

NBCE Mock Board Questions Biochemistry 1. Fluid mosaic describes. A. Tertiary structure of proteins B. Ribosomal subunits C. DNA structure D. Plasma membrane structure NBCE Mock Board Questions Biochemistry 2. Where in the cell does beta oxidation

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

B.4B Cellular Processes

B.4B Cellular Processes B.4B Cellular Processes Picture Vocabulary homeostasis The process of maintaining a constant state of balance cell membrane Cell part surrounding the cytoplasm and is also a barrier between the inside

More information

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life BIOLOGY 111 CHAPTER 3: The Cell: The Fundamental Unit of Life The Cell: The Fundamental Unit of Life Learning Outcomes 3.1 Explain the similarities and differences between prokaryotic and eukaryotic cells

More information

Study Guide Key for CHEM 109 Fall 2015

Study Guide Key for CHEM 109 Fall 2015 Study Guide Key for CEM 109 Fall 2015 Remember you will need to show your work for full credit. n the real exam always work the problems you know best first. If you get hung up on a problem, you should

More information

HOW AND WHY GENES ARE REGULATED HOW AND WHY GENES ARE REGULATED. Patterns of Gene Expression in Differentiated Cells

HOW AND WHY GENES ARE REGULATED HOW AND WHY GENES ARE REGULATED. Patterns of Gene Expression in Differentiated Cells HOW AND WHY GENES ARE REGULATED 5 HOW AND WHY GENES ARE REGULATED 6 Every somatic cell in an organism contains identical genetic instructions. They all share the same genome. So what makes cells different

More information

2.1 The Importance of Cell Division

2.1 The Importance of Cell Division 2.1 The Importance of Cell Division Functions of cell division Growth Repair Reproduction Growth All organisms begin as a single cell. Cell divisions will increase as an organism s size increases. There

More information

Cell Physiology Final Exam Fall 2008

Cell Physiology Final Exam Fall 2008 Cell Physiology Final Exam Fall 2008 Guys, The average on the test was 69.9. Before you start reading the right answers please do me a favor and remember till the end of your life that GLUCOSE TRANSPORT

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Molecular Biology (BIOL 4320) Exam #2 May 3, 2004

Molecular Biology (BIOL 4320) Exam #2 May 3, 2004 Molecular Biology (BIOL 4320) Exam #2 May 3, 2004 Name SS# This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses after the question number. Good

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

A2 LEVEL. A chain COOH. Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn H 2 N. B chain

A2 LEVEL. A chain COOH. Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn H 2 N. B chain Blood insulin concentration Meal atural insulin release in nondiabetic person Diabetic person after insulin injection 0 1 2 3 4 5 6 Insulin injection Time/h Figure 7 Insulin concentrations in the blood

More information

Intracellular Compartments and Protein Sorting

Intracellular Compartments and Protein Sorting Intracellular Compartments and Protein Sorting Intracellular Compartments A eukaryotic cell is elaborately subdivided into functionally distinct, membrane-enclosed compartments. Each compartment, or organelle,

More information

Activity: Biologically Important Molecules

Activity: Biologically Important Molecules Activity: Biologically Important Molecules AP Biology Introduction We have already seen in our study of biochemistry that the molecules that comprise living things are carbon-based, and that they are thought

More information

The Cell and Cellular transport

The Cell and Cellular transport Cell theory (1838): The Cell 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

Eukaryotic mrna is covalently processed in three ways prior to export from the nucleus:

Eukaryotic mrna is covalently processed in three ways prior to export from the nucleus: RNA Processing Eukaryotic mrna is covalently processed in three ways prior to export from the nucleus: Transcripts are capped at their 5 end with a methylated guanosine nucleotide. Introns are removed

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

AP Biology 2005 Scoring Commentary Form B

AP Biology 2005 Scoring Commentary Form B AP Biology 2005 Scoring Commentary Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al.

A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al. A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al. 2002 Chemical Bonds Ionic Electron-negativity differences cause

More information

-are poly-hydroxylated aldehydes and ketones -can cyclise -can form polymeric chains

-are poly-hydroxylated aldehydes and ketones -can cyclise -can form polymeric chains CARBOHYDRATES -compounds of C, H and O -originally thought of as hydrates of carbon e.g. glucose C 6 H 12 O 6 thought to be C(H 2 O) carbohydrates: -are poly-hydroxylated aldehydes and ketones -can cyclise

More information