1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes.

Size: px
Start display at page:

Download "1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes."

Transcription

1 Biology 12 Cell Cycle To divide, a cell must complete several important tasks: it must grow, during which it performs protein synthesis (G1 phase) replicate its genetic material /DNA (S phase), and physically split into two daughter cells (M phase) Cells perform these tasks in an organized, predictable series of steps that make up the cell cycle. DNA Replication: Steps 1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes. 2) New complementary DNA nucleotides (present in nucleus) attach to each 1/2 of DNA strand. Base pairs join by hydrogen bonding 3) Adjacent nucleotides join - phosphate to sugar - forming sides of DNA ladder 2 identical DNA molecules are produced Final Result: Two identical DNA molecules are produced, this allows exact DNA copies to be incorporated into new daughter cells Protein Synthesis: DNA controls the production of proteins in the cell. The DNA is found in the nucleus and carries the codes for the construction of the proteins. A section of DNA that contains the code to produce 1 polypeptide is called a gene. The construction of a polypeptide will take place in the cytoplasm. There are two stages in the process of protein synthesis: A. Transcription occurs in the nucleus where a messenger RNA (mrna) molecule is made on a template of an exposed DNA molecule (gene). The mrna molecule actually transcribes the codes for the construction of protein. B. Translation the mrna leave the nucleus and travels to a ribosome. It is read by the ribosome and the correct number and order of amino acids is determined. The amino acid chain is assembled at the ribosome. The properly folded polypeptide is called a protein Mutation: A change in the base pairs of DNA eg. by deletion or insertion of base pairs. Effects of Mutation: Mutations may cause changes in mrna made during transcription and so may change amino acid sequence of polypeptide produced during translation.

2 Metabolism In this unit we will be concentrating on protein enzymes that can be secreted from the cell or used within the cell. Enzymes are catalysts that cause chemical reactions to occur at lower activation energy allow chemical reactions to occur at lower temperatures, like 37 C in the human body. Metabolism = refers to all of the chemical reactions within a cell or organism. Metabolic Pathway A series of enzyme driven chemical reactions that control the steps by which products of one reaction become substrates for the next reaction. A is the substrate for the 1 st reaction and B is the product of the 1 st reaction. B becomes the substrate for the 2 nd reaction and C is the product of the 2 nd reaction. C becomes the substrate for the 3 rd reaction and D the end product of this metabolic pathway. The numbers refer to specific enzymes for each reaction. Enzymes (called catalysts) help speed up a given reaction by lowering the energy of activation for that reaction. Energy of activation - the energy that must be supplied to cause molecules to react with one another is called the energy of activation

3 Some of the most important chemical reactions in the body are those called CELLULAR RESPIRATION that produce ATP. The overall reaction for cellular respiration is: 38 ATP is the theoretical limit for ATP production from 1 glucose molecule. C 6 H 12 O 6 + 6O 2 38 ATP + 6CO 2 + 6H 2 O Remember that ATP (Adenosine triphosphate) is a compound containing adenine and three phosphates, two of which are high energy phosphates. ATP is the "common currency" of energy for most cellular processes. A burst of energy will be released by removing the last phosphate group - this means that ATP can act as an energy store for the cell. Countless ATP's move randomly around the cell so that they are available when needed. ATP ADP + P + energy Cellular Respiration: The simplified metabolic pathway C 6 H 12 O 6 Mitochondrion B O 2 No O 2 available C D E F H 2 O 38 ATP 4 ATP Lactic acid CO 2 Lactate H + Fatty acids Amino acids Carbohydrate NH 3 Urea Follow the Possible Reactions: (ALL of these reactions are catalyzed by enzymes) 1. Reactions from C 6 H 12 O 6 B C D E F These reactions run if O 2 is available in the cell (called aerobic cellular respiration). They produce a maximum of 38 ATP + 2 wastes products (H 2 O + CO 2 ) 2. If O 2 is not available then glucose will be metabolized to lactic acid. This reaction produces a maximum of 4 ATP and is called anaerobic cellular respiration. The waste product lactic acid causes ph to drop in the surrounding tissue and blood. The point at which lactic acid begins to accumulate in the blood is directly related to the lactate threshold because lactic acid is converted to lactate. The drop in ph causes a drop in athletic performance as muscle proteins begin to denature (the burn). 3. Fatty acids can be added as a substrate to produce ATP. The enzymes responsible for metabolizing fat can be increased through exercise and diet BUT not by reducing calories. This is a complex topic and one that requires further research. Becoming a fat burner is very desirable because of the huge energy store in fat as well as other health benefits associated with reducing body fat. 4. Under some circumstances, (over exercising or poor diet), amino acids can be added as a substrate to produce ATP. The problem here is that these amino acids will be stripped away from muscle and immune system proteins to provide emergency energy. The amino acids are deaminated by removing the amine group. This leaves a carbohydrate like substance that can be used as a substrate to produce ATP. The waste product NH 3 (ammonia) is toxic and is converted to urea in the liver. Both NH 3 and urea need to excreted from the body in urine and sweat.

4 What are Enzymes? Most enzymes are globular proteins either tertiary or quaternary structure proteins. Therefore, they are strings of amino acids that bend and fold into a particular 3d shape A quaternary protein When a protein folds it creates a shape that is called an active site. Substrates fit into the active site. Each enzyme is specific for one and ONLY one substrate (one lock - one key) Active site: part of the enzyme that fits with the substrate Note that the active site has a specific fit for this particular substrate and no other. This theory has some weaknesses, but it explains many basic things about enzyme function.

5 How Do Enzymes Work? Enzyme, Substrate and Product Enzyme: a protein based catalyst that speeds up a specific reaction or type of reaction. An enzyme is left unaltered by the reaction. Substrate: a reactant in a reaction controlled by an enzyme. Product: the end result of a chemical reaction. Lock and Key Theory of Enzyme Action Where: E= Enzyme, S= Substrate, ES= Enzyme/substrate complex, P=Product. Active site - This is where the substrates attach to the enzyme to become the enzyme- substrate complex. Here they are changed (joined, split or molecularly rearranged) without the enzyme being changed itself. Following disengagement, the new product is formed. Protein portion of enzyme The portion of an enzyme that deals with its specificity (the ability of the enzyme to speed up only one particular reaction). Co-enzyme The non-protein helper of an enzyme. A molecule that aids in the action of an enzyme, to which it is loosely bound. They may be large molecules that the body is incapable of synthesizing. All well known vitamins are parts of co-enzymes. Example of co-enzymes = B vitamins like Niacin (B3), Thiamine (B1) etc. Protein enzyme + Coenzyme Active Enzyme Non protein component

6 Types of Enzymes: 1. Hydrolytic Enzymes - used to digest (break apart) large molecules by hydrolysis. All enzymes found in the digestive tract and in lysosomes are hydrolytic enzymes. An Example of Lock and Key Theory 2. Dehydration Synthesis Enzymes - used to put molecules together by dehydration synthesis An example of this process occurs in the liver and muscles where enzymes connect glucose unit molecules together to produce glycogen. An Example of Lock and Key Theory

7 Factors That Can Affect the Rate of an Enzyme Driven Reaction = yield factors Certain factors influence the yield of enzymatic reactions 1. Genetic factors inheritance, mutations and gene expression 2. Denaturation 3. Concentrations of enzymes and substrates 4. Competitive inhibition 1. Genetic factors the ability to make protein enzymes is determined genetically. a. Inheritance and mutation enzyme production can be determined by the genes inherited from your parents. The one gene one enzyme theory suggests that each enzyme is produced by one gene. This hypothesis has been proven for many enzymes but does not explain the production of all enzymes in the body. Some enzymes require multiple genes for their production but we can understand the basics by understanding the one gene, one enzyme theory. Lactose intolerance - A simple example of gene inheritance and mutation. Lactase is an enzyme that breaks down the disaccharide lactose (a sugar found in milk and other dairy products). Lactase is produced by the lactase (LCT) gene. Lactose lactase Glucose + Galactose Where is the LCT gene located? The LCT gene is located on the long (q) arm of chromosome 2 at position 21. More precisely, the LCT gene is located from base pair 135,787,845 to base pair 135,837,180 on chromosome 2. Since everyone has 2 of each chromosome, each person will have 2 copies of the LCT gene. There are 2 forms (alleles) of the LCT gene the wild type gene that produces active lactase enzyme (label as A ) and the mutated gene that produces mutated non-active lactase enzyme (label as a ). Label this allele as A Label this allele as a Possible genotype (Type of genes inherited) AA homozygous wild type Aa heterozygous aa heterozygous aa homozygous mutated Phenotype (trait) Can digest lactose Can digest lactose but may be reduced Can digest lactose but may be reduced Lactose intolerant Enzyme production 2 wild type genes means person has the ability to produce sufficient lactase enzyme. 1 wild type gene and 1 mutated gene means person has ability to produce some lactase enzyme. 1 wild type gene and 1 mutated gene means person has ability to produce some lactase enzyme. 2 mutated genes means person does not have the ability to produce lactase enzyme.

8 In the simplest sense, you can think of mutations as affecting the amount of particular proteins including enzymes. b. Gene expression and epigenetics To complicate the gene inheritance picture even further there are a number of factors that can affect gene expression. These factors are called epigenetic factors. Epigenetics means above the level of the genome (gene). For example, diet, exercise (activity), stress and other environmental factors can influence how often a gene is read (transcribed and translated) and so affect the amount of enzyme produced. This genetic picture is even more complicated when you consider that the production of many enzymes require multiple genes. Also, consider that metabolic pathways require many enzymes to catalyze the chemical reactions in the body. At this stage in your biology career, it is important to recognize the concept of BIOCHEMICAL INDIVIDUALITY. The uniqueness of each individual can be attributed to the combination of genetic and epigenetic factors that influence the a person s metabolism.

9 2. Enzyme denaturation the protein loses its normal shape and usually loses its function Active (functional) protein Denatured (non-functional protein Denaturation of an enzyme = alters active site so that substrate can no longer fit. Therefore, less ES complexes can be formed and fewer products produced Enzyme Denaturation Factors a. Heavy Metals - e.g. Lead and Mercury- These bond with the protein in enzymes and thereby inactivate them. b. Temperature - Extremes, high temperatures will change the shape of proteins and therefore, will damage an enzyme. Within certain limits higher temps will speed up enzyme action and cooler temperatures will slow down the action. Every enzyme has its own optimum range of action. Most human enzymes work best around 37 C. Initially, the increase in enzyme activity is due to increasing molecular movement of both substrate and enzyme. c. ph - This affects ionic bonding between the side chains of molecules, particularly the "R" groups of the proteins. This will change the shape of the mol. and therefore affect its performance. Each enzyme has its own optimum range of ph to work efficiently. environment Pepsin works in the acidic of the stomach. Trypsin works in the slightly basic environment of the small intestine

10 3. Concentrations If the concentration of the substrate is increased, the amount of the product increases; that is, the more S or E available, the more P there is within a certain amount of time. In many instances, the substrate is plentiful within the cell, but the enzyme is present only in small amounts. The amount of enzyme limits the overall rate of reaction. In other words, if there is only a small amount of enzyme present, there will be fewer products in a given unit of time. Enzymic reactions Are faster but they reach a saturation point when all the enzyme molecules are occupied. If you increase the concentration of the enzyme then reaction rate will increase too. 4. Competitive Inhibition Reduction in rate of a reaction due to the presence of a compound that competes with the enzyme for the reactant (s) so that less of the desired product is produced per unit time. Competitive inhibitors block the active site so that few ES complexes can be formed Hydrogen cyanide is an inhibitor for cytochrome oxidase (enzyme) - lethal effect on the human body.

DNA and Protein Synthesis Practice

DNA and Protein Synthesis Practice Biology 12 DNA and Protein Synthesis Practice Name: 1. DNA is often called the "code of life". Actually it contains the code for a) the sequence of amino acids in a protein b) the sequence of base pairs

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

Assignment #1: Biological Molecules & the Chemistry of Life

Assignment #1: Biological Molecules & the Chemistry of Life Assignment #1: Biological Molecules & the Chemistry of Life A. Important Inorganic Molecules Water 1. Explain why water is considered a polar molecule. The partial negative charge of the oxygen and the

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

Enzymes. Ch 3: Macromolecules

Enzymes. Ch 3: Macromolecules Enzymes Ch 3: Macromolecules Living things use different chemical reactions to get the energy needed for life Chemical Reactions Reactants = substance that is changed Products = new substance that forms

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Notes 2-4. Chemical Reactions and Enzymes

Notes 2-4. Chemical Reactions and Enzymes Notes 2-4 Chemical Reactions and Enzymes Chemical Reaction: A process that changes one set of chemicals into another set of chemicals Reactants: Elements entered into the reaction Products: Elements or

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!!

Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!! Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!! Key Words Enzyme Substrate Product Active Site Catalyst Activation Energy Denature Enzyme-Substrate Complex Lock & Key model Induced fit model

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Chapter 2: The Chemical Level of. Organization. Copyright 2009, John Wiley & Sons, Inc.

Chapter 2: The Chemical Level of. Organization. Copyright 2009, John Wiley & Sons, Inc. Chapter 2: Organization The Chemical Level of Question Of the following functions, the major propose of RNA is to A. Function in the synthesis of protein. B. Transmit genetic information to offspring.

More information

Chapter 4. Cellular Metabolism

Chapter 4. Cellular Metabolism hapter 4 ellular Metabolism opyright he Mcraw-ill ompanies, Inc. Permission required for reproduction or display. Introduction. living cell is the site of enzyme-catalyzed metabolic reactions that maintain

More information

AS Level Paper 1 and 2. A2 Level Paper 1 and 3 - Topics 1-4

AS Level Paper 1 and 2. A2 Level Paper 1 and 3 - Topics 1-4 Section 3.1: Biological Molecules 3.1.1 Monomers and Polymers 3.1.2 Carbohydrates 3.1.3 Lipids 3.1.4.1 Proteins 3.1.4.2 Enzymes 3.1.5.1 Nucleic acid structure 3.1.5.2 DNA Replication 3.1.6 ATP 3.1.7 Water

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Digestion and Human Health

Digestion and Human Health Digestion and Human Health The Molecules of Living Systems There are three main fluid components in your body Cytoplasm in your cells Fluid between your cells Fluid in your blood The also contain many

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biology Chapter 5. Biological macromolecules

Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Chapter 2: Biochemistry

Chapter 2: Biochemistry Chapter 2: Biochemistry Biochemistry Biochemistry is the study of chemical makeup and reactions of living matter All chemicals in the body are either organic & inorganic Organic compounds contain carbon

More information

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms Organic Compounds Carbon p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms n Gives carbon the ability to form chains that are almost unlimited in length. p Organic

More information

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules BIOLOGY 111 CHAPTER 2: The Chemistry of Life Biological Molecules The Chemistry of Life : Learning Outcomes 2.4) Describe the significance of carbon in forming the basis of the four classes of biological

More information

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds.

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Biology 12 Biochemistry Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Electrons in these bonds spend more time circulating around the larger Oxygen atom than the smaller Hydrogen

More information

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon Ach Chemistry of Carbon All living things rely on one particular type of molecule: carbon Carbon atom with an outer shell of four electrons can form covalent bonds with four atoms. In organic molecules,

More information

Chapter 6. Metabolism & Enzymes. AP Biology

Chapter 6. Metabolism & Enzymes. AP Biology Chapter 6. Metabolism & Enzymes Flow of energy through life Life is built on chemical reactions Chemical reactions of life Metabolism forming bonds between molecules dehydration synthesis anabolic reactions

More information

Carbon. Has four valence electrons Can bond with many elements. Can bond to other carbon atoms. Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen

Carbon. Has four valence electrons Can bond with many elements. Can bond to other carbon atoms. Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen Organic Compounds Carbon Has four valence electrons Can bond with many elements Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen Can bond to other carbon atoms Gives carbon the ability to form chains

More information

Macromolecules. Large molecules made up of smaller building blocks or subunits. Chapter

Macromolecules. Large molecules made up of smaller building blocks or subunits. Chapter Macromolecules Large molecules made up of smaller building blocks or subunits Chapter 2.8 2.21 Types of macromolecules Carbohydrates Lipids Proteins Nucleic acids Carbohydrates Primary fuel source for

More information

Topic 3: The chemistry of life (15 hours)

Topic 3: The chemistry of life (15 hours) Topic : The chemistry of life (5 hours). Chemical elements and water.. State that the most frequently occurring chemical elements in living things are carbon, hydrogen, oxygen and nitrogen...2 State that

More information

Organic Compounds: Carbohydrates

Organic Compounds: Carbohydrates Organic Compounds: Carbohydrates Carbohydrates include sugars and starches Contain the elements C,H,O (H & O ratio like water, 2 H s to 1O), ex. glucose C 6 H 12 O 6 Word means hydrated carbon Classified

More information

Chapter 2 The Chemistry of Life Part 2

Chapter 2 The Chemistry of Life Part 2 Chapter 2 The Chemistry of Life Part 2 Carbohydrates are Polymers of Monosaccharides Three different ways to represent a monosaccharide Carbohydrates Carbohydrates are sugars and starches and provide

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 2 FUNDAMENTAL CHEMISTRY FOR MICROBIOLOGY WHY IS THIS IMPORTANT? An understanding of chemistry is essential to understand cellular structure and function, which are paramount for your understanding

More information

CHEM121. Unit 6: Enzymes. Lecture 10. At the end of the lecture, students should be able to:

CHEM121. Unit 6: Enzymes. Lecture 10. At the end of the lecture, students should be able to: CHEM121 Unit 6: Enzymes Lecture 10 At the end of the lecture, students should be able to: Define the term enzyme Name and classify enzymes according to the: type of reaction catalyzed type of specificity

More information

Bio 12 Important Organic Compounds: Biological Molecules NOTES Name:

Bio 12 Important Organic Compounds: Biological Molecules NOTES Name: Bio 12 Important Organic Compounds: Biological Molecules NOTES Name: Many molecules of life are.(means many molecules joined together) Monomers: that exist individually Polymers: Large organic molecules

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

Review of Energetics Intro

Review of Energetics Intro Review of Energetics Intro Learning Check The First Law of Thermodynamics states that energy can be Created Destroyed Converted All of the above Learning Check The second law of thermodynamics essentially

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy WH Examples dehydration synthesis Chapter 8 Metabolism & Enzymes + H 2 O hydrolysis + H 2 O Flow of energy through life Life is built on chemical reactions Examples dehydration synthesis hydrolysis 2005-2006

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

Review of Biochemistry

Review of Biochemistry Review of Biochemistry Chemical bond Functional Groups Amino Acid Protein Structure and Function Proteins are polymers of amino acids. Each amino acids in a protein contains a amino group, - NH 2,

More information

CP Biology Chapter 2: Molecules of Life Name Amatuzzi #1: Carbohydrates pp Period Homework

CP Biology Chapter 2: Molecules of Life Name Amatuzzi #1: Carbohydrates pp Period Homework Amatuzzi #1: Carbohydrates pp. 46-47 Period 1. Which elements make up carbohydrates? a. In which ratio? 2. How do living things use most of their carbohydrates? 3. How do cells get energy from carbs? a.

More information

Do Now Makeups. 4. In which organelle would water and dissolved materials be stored? A. 1 B. 2 C. 3 D. 5. A. mitochondria B.

Do Now Makeups. 4. In which organelle would water and dissolved materials be stored? A. 1 B. 2 C. 3 D. 5. A. mitochondria B. Do Now Makeups Name: Date: 1. Which organelle is primarily concerned with the conversion of potential energy of organic compounds into suitable form for immediate use by the cell? A. mitochondria B. centrosomes

More information

Dalkeith High School Higher Human Biology Homework 3

Dalkeith High School Higher Human Biology Homework 3 Dalkeith High School Higher Human Biology Homework 3 1. During which of the following chemical conversions is A T P produced? A B C Amino acids protein Glucose pyruvic acid Haemoglobin oxyhaemoglobin energy

More information

Glycerol + 3 fatty acids. B) Chemical reactions -forms macromolecules and takes them apart: Dehydration synthesis

Glycerol + 3 fatty acids. B) Chemical reactions -forms macromolecules and takes them apart: Dehydration synthesis Section 5: Molecules of Life - Macromolecules Organic molecules contain carbon and hydrogen atoms A) Type of macromolecules 4 types: Name Carbohydrates Lipids Proteins Nucleic acids subunit monosaccharides

More information

NBCE Mock Board Questions Biochemistry

NBCE Mock Board Questions Biochemistry 1. Fluid mosaic describes. A. Tertiary structure of proteins B. Ribosomal subunits C. DNA structure D. Plasma membrane structure NBCE Mock Board Questions Biochemistry 2. Where in the cell does beta oxidation

More information

a. What is the stimulus? Consuming a large pumpkin spice muffin and caramel macchiato.

a. What is the stimulus? Consuming a large pumpkin spice muffin and caramel macchiato. : Homeostasis and Macromolecules Unit Study Guide Homeostasis 1. Define homeostasis and give an example. Homeostasis is the ability of the body to maintain relatively constant internal physical and chemical

More information

Human Biochemistry. Enzymes

Human Biochemistry. Enzymes Human Biochemistry Enzymes Characteristics of Enzymes Enzymes are proteins which catalyze biological chemical reactions In enzymatic reactions, the molecules at the beginning of the process are called

More information

Biochemistry Name: Practice Questions

Biochemistry Name: Practice Questions Name: Practice Questions 1. Carbohydrate molecules A and B come in contact with the cell membrane of the same cell. Molecule A passes through the membrane readily, but molecule B does not. It is most likely

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Carbohydrates, Lipids, Proteins, and Nucleic Acids

Carbohydrates, Lipids, Proteins, and Nucleic Acids Carbohydrates, Lipids, Proteins, and Nucleic Acids Is it made of carbohydrates? Organic compounds composed of carbon, hydrogen, and oxygen in a 1:2:1 ratio. A carbohydrate with 6 carbon atoms would have

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

The Carbon Atom (cont.)

The Carbon Atom (cont.) Organic Molecules Organic Chemistry The chemistry of the living world. Organic Molecule a molecule containing carbon and hydrogen Carbon has 4 electrons in its outer shell and can share electrons with

More information

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio. CARBOHYDRATES Produce energy for living things Atoms? Carbon, hydrogen, and oxygen in 1:2:1 ratio Monomer Examples? Sugars, starches MONOSACCHARIDES--- main source of energy for cells Glucose Know formula?

More information

I. ROLE OF CARBON IN ORGANISMS:

I. ROLE OF CARBON IN ORGANISMS: Name: Period: Date: I. ROLE OF CARBON IN ORGANISMS: = compounds that contain carbon Ex: Carbohydrates, lipids, proteins = compounds that DO NOT contain carbon Ex: Vitamins, minerals, water Carbon forms

More information

9. At about 0 C., most enzymes are (1.) inactive (2.) active (3.) destroyed (4.) replicated

9. At about 0 C., most enzymes are (1.) inactive (2.) active (3.) destroyed (4.) replicated Study Guide 1. Which of the following enzymes would digest a fat? (1.) sucrase (2.) fatase (3.) protease (4.) lipase 2. At high temperatures, the rate of enzyme action decreases because the increased heat

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Chapter 2. Chemical Composition of the Body

Chapter 2. Chemical Composition of the Body Chapter 2 Chemical Composition of the Body Carbohydrates Organic molecules that contain carbon, hydrogen and oxygen General formula C n H 2n O n -ose denotes a sugar molecule Supply energy Glucose Complex

More information

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of Chapter 2 pt 2 Atoms, Molecules, and Life Including the lecture Materials of Gregory Ahearn University of North Florida with amendments and additions by John Crocker Copyright 2009 Pearson Education, Inc..

More information

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism Flow of energy through life Chapter 6 Life is built on chemical reactions Enzymes & Metabolism Chemical reactions of life Examples Metabolism Forming bonds between molecules Dehydration synthesis Anabolic

More information

BIOMOLECULES. Ms. Bosse Fall 2015

BIOMOLECULES. Ms. Bosse Fall 2015 BIOMOLECULES Ms. Bosse Fall 2015 Biology Biology is the study of the living world. Bio = life Major Molecules of Life Macromolecules giant molecules found in living cells; made from thousands of smaller

More information

Macromolecules. Molecules of Life

Macromolecules. Molecules of Life Macromolecules Molecules of Life Learning Objectives know the difference between a dehydration synthesis reaction and a hydrolysis reaction know the different types of biological macromolecules be able

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Introduction to Biochemistry

Introduction to Biochemistry Life is Organized in Increasing Levels of Complexity Introduction to Biochemistry atom simple molecule What is the chemical makeup of living things? macromolecule organ organ system organism organelle

More information

BACKGROUND INFORMATION:

BACKGROUND INFORMATION: BIOLOGY 12 ENZYMES NAME: BACKGROUND INFORMATION: Energy: is defined as the ability to do or bring about change. A living organism must constantly perform work in order to maintain its organization, to

More information

small molecules that make up larger molecules organic compound made up of sugar molecules sugar that contains one sugar unit

small molecules that make up larger molecules organic compound made up of sugar molecules sugar that contains one sugar unit organic molecule carbon based compound inorganic molecule hydrocarbon functional group hydrophilic NON-carbon based compound organic molecule made of only carbon and hydrogen group of atoms bonded to a

More information

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required Enzymes Enzymes Biological catalysts proteins (& RNA) facilitate chemical reactions increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

More information

Biological Molecules. Biol 105 Lecture 3 Reading Chapter 2 (pages 25 36)

Biological Molecules. Biol 105 Lecture 3 Reading Chapter 2 (pages 25 36) Biological Molecules Biol 105 Lecture 3 Reading Chapter 2 (pages 25 36) Outline Organic compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides

More information

Outline. Biology 105: Biological Molecules. Carbon Review. Organic Compounds. Carbon 1/28/2016. Biological Molecules Functional Groups

Outline. Biology 105: Biological Molecules. Carbon Review. Organic Compounds. Carbon 1/28/2016. Biological Molecules Functional Groups Outline Biology 105: Biological Molecules Lecture 3 Reading: Chapter 2, Pages 29-40 Organic Compounds Functional Groups Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides and

More information

Biological Molecules. Biol 105 Reading Chapter 2 (pages 31 39)

Biological Molecules. Biol 105 Reading Chapter 2 (pages 31 39) Biological Molecules Biol 105 Reading Chapter 2 (pages 31 39) Outline Organic compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Proteins Nucleic Acids (DNA, RNA) Organic

More information

Warm Up #8. What is a carbohydrate? What is a protein?

Warm Up #8. What is a carbohydrate? What is a protein? Macromolecules Warm Up #8 What is a carbohydrate? What is a protein? Read Macromolecules As you read the article, complete the accompanying Biomolecule Chart This chart MUST be glued into your Notebook!

More information

½ cup of CHEX MIX contains 13 g of carbs = 4% daily value. How much more can you have the rest of the day??? _4_ = X X= 325 g

½ cup of CHEX MIX contains 13 g of carbs = 4% daily value. How much more can you have the rest of the day??? _4_ = X X= 325 g BIOCHEMISTRY ½ cup of CHEX MIX contains 13 g of carbs = 4% daily value. How much more can you have the rest of the day??? _4_ = 13 100 X X= 325 g These spinach imposters contain less than 2 percent of

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

Genetics Unit Bell Work September 27 & 28, 2016

Genetics Unit Bell Work September 27 & 28, 2016 Name: Date: Genetics Unit Bell Work September 27 & 28, 2016 nswer the following questions about the process shown above. 1. What are the reactants in this process? 2. What are the products in this process?

More information

Enzymes Biological Catalysts Review

Enzymes Biological Catalysts Review Enzymes Biological Catalysts Review Catalyst a substance that speeds up a reaction but is not actually a part of the reaction nor changes because of the reaction Catalysis the process of speeding a chemical

More information

Chapter 5-7, 10. Read P , , and

Chapter 5-7, 10. Read P , , and Chapter 5-7, 10 Read P. 75-82, 91-100, 107-117 and 173-185 Introduction to Metabolism and Enzymes Catabolic reactions (also called catabolism ) break down larger, more complex molecules into smaller molecules

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

Organic Compounds. Biology-CP Mrs. Bradbury

Organic Compounds. Biology-CP Mrs. Bradbury Organic Compounds Biology-CP Mrs. Bradbury Carbon Chemistry The compounds that form the cells and tissues of the body are produced from similar compounds in the foods you eat. Common to most foods and

More information

Chapter 1-2 Review Assignment

Chapter 1-2 Review Assignment Class: Date: Chapter 1-2 Review Assignment Multiple Choice dentify the choice that best completes the statement or answers the question. Corn seedlings A student wanted to design an investigation to see

More information

Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins

Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins Nucleic Acids Protein Muscles are made of proteins Enzymes

More information

c. Reaction will drive Reaction in a reaction. d. Which statement (A or B) has more energy in products than reactants?

c. Reaction will drive Reaction in a reaction. d. Which statement (A or B) has more energy in products than reactants? Energy and Enzymes (32 questions) 1. Chemical reactions involve a. Formation of chemical bonds b. Breakage of chemical bonds c. Both formation and breakage of chemical bonds d. Neither formation and breakage

More information

Classwork #10 - Enzymes Key Vocabulary protein enzyme catalyst reactant substrate active site product

Classwork #10 - Enzymes Key Vocabulary protein enzyme catalyst reactant substrate active site product Biology 2017-2018 Noble efforts change lives. Name: Excellence. Tenacity. Community. Reflection. Classwork #10 - Enzymes Key Vocabulary protein enzyme catalyst reactant substrate active site product Pre-Reading

More information

Biological Molecules Ch 2: Chemistry Comes to Life

Biological Molecules Ch 2: Chemistry Comes to Life Outline Biological Molecules Ch 2: Chemistry Comes to Life Biol 105 Lecture 3 Reading Chapter 2 (pages 31 39) Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides and Nucleic

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions A cell does three main kinds of work: Chemical Transport Mechanical To do work, cells manage energy resources

More information

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry Biochemistry Table of Contents Section 1 Carbon Compounds Section 2 Molecules of Life Section 1 Carbon Compounds Objectives Distinguish between organic and inorganic compounds. Explain the importance of

More information

INORGANIC COMPOUNDS. Ex: Water. Compounds that may be essential to life, but are not necessarily found in living things.

INORGANIC COMPOUNDS. Ex: Water. Compounds that may be essential to life, but are not necessarily found in living things. INORGANIC COMPOUNDS Compounds that may be essential to life, but are not necessarily found in living things. Ex: Water Other example: CO2 - ¾ of earth - 90% of living tissue WATER Water is a POLAR compound.

More information

Chemical Basis of Life 2.3

Chemical Basis of Life 2.3 Chemical Basis of Life 2.3 August 13, 212 Agenda General Housekeeping 2.3 Review Terminology Quiz Chapter 2 Assignments Stations Reading Building Molecules Review What is the significance of the valence

More information

Competitive Inhibitor

Competitive Inhibitor is a substance that reduces the activity of an enzyme by entering the active site in place of the substrate whose structure it mimics. Competitive Inhibitor Identify the following molecule: Polysaccharide

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic molecules

More information

30.1 Organization of the Human Body

30.1 Organization of the Human Body 30.1 Organization of the Human Body Organization of the Body The levels of organization in the body include cells, tissues, organs, and organ systems. At each level of organization, these parts of the

More information

-are poly-hydroxylated aldehydes and ketones -can cyclise -can form polymeric chains

-are poly-hydroxylated aldehydes and ketones -can cyclise -can form polymeric chains CARBOHYDRATES -compounds of C, H and O -originally thought of as hydrates of carbon e.g. glucose C 6 H 12 O 6 thought to be C(H 2 O) carbohydrates: -are poly-hydroxylated aldehydes and ketones -can cyclise

More information

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds.

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. BIOLOGY 12 BIOLOGICAL MOLECULES NAME: Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. ORGANIC MOLECULES: Organic molecules

More information

Biomolecules. Unit 3

Biomolecules. Unit 3 Biomolecules Unit 3 Atoms Elements Compounds Periodic Table What are biomolecules? Monomers vs Polymers Carbohydrates Lipids Proteins Nucleic Acids Minerals Vitamins Enzymes Triglycerides Chemical Reactions

More information

Molecule - two or more atoms held together by covalent bonds. Ex. = water, H O

Molecule - two or more atoms held together by covalent bonds. Ex. = water, H O ORGANIC CHEMISTRY NOTES Why study carbon? ORGANIC CHEMISTRY NOTES Why study carbon? * All of life is built on carbon * Cells are made up of about 72% water 3% salts (NaCl, and K) 25% carbon compounds which

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry

Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry NC Essential Standard: 1.2.1 Explain how cells use buffers to regulate cell ph 4.1.1 Compare the structure and functions

More information