Sense (supply of O 2 and demand for fuel) execute DIE LIVE. The metabolic basis of PAH vascular remodeling and cancer. The Republic, Plato 3/14/2009

Size: px
Start display at page:

Download "Sense (supply of O 2 and demand for fuel) execute DIE LIVE. The metabolic basis of PAH vascular remodeling and cancer. The Republic, Plato 3/14/2009"

Transcription

1 3/14/29 The metabolic basis of PAH vascular remodeling and cancer RA PA Evangelos D. Michelakis, MD, FACC, FAHA Proliferativeantiapoptotic diseases Targets unique to the pulmonary circulation Degenerative diseases No Conflicts Pulmonary Hypertension Program University of Alberta Inflammatory diseases Can match fuel generation (ATP) LIVE Sense (supply of O 2 and demand for fuel) execute Cannot match fuel generation (ATP) DIE Socrates and Polemarchus: Is not he who can best strike a blow in a boxing match or any kind of fighting, best able to ward off a blow? Certainly And he who is most skilled in preventing or escaping from a disease is best able to create one? True And is he the best guard of a camp who is best able to steal a march upon the enemy? Certainly Then he who is a good keeper of everything is also a good thief? That I suppose is to be inferred Then if the just man is good at keeping money he is good at stealing it That is implied in the argument The Republic, Plato 1

2 3/14/29 A mitochondriak + channel axis: tone, apoptosis/proliferation Otto Warburg E. K. Weir S. Archer J. Yuan Apoptosis [K+]i Cyt c AIF survivin K + H 2 O 2 I II III IV O MnSOD 2 Mitochondria Ca ++ HIF1 Ca ++ V GSK3 Nucleus Born October , Freiburg MD in1911, Heidelberg Nobel Prize 1931 For his discovery of the nature and mode of action of the respiratory enzyme Stoffwechsel der Tumoren, 1926 The Warburg effect: Cancer is caused by abnormal metabolism of the cells: due to abnormal mitochondria the cancer cells use glycolysis, and not oxidative phosphorylation for energy production, even in the absence of hypoxia. 2

3 3/14/29 MRI PET mmhg. sec Control 3 2 PASMC MITOCHONDRIA PAH + PAH + PASMC K + CURRENT Circulation 22 Circ Res 24 Circulation 26 PAH DIC therapy induces apoptosis in the PA wall and reverses vascular remodeling PCNA L L L L DIC Propidium iodide (red) TUNEL (green) 12 Control PAH + %TUNEL Normal PAH + x 7 DIC PCNA x 7 DIC Propidium iodide (red) TUNEL (green) x Control PAH + + x 7 L L x 7 L L %PCNA x4 3

4 3/14/29 AcetylCoA without affecting normal cells and rats 1x Normal PASMC Ψm Vehicle Red Fluorescence (FU) NS 1 1 Vehicle Cytosol Glycolysis lactate pyruvate PDK PDH MCD MalonylCoA Free Fatty Acids AcetylCoA AcetylCoA CPT βoxidation 6 MonoacylCoA 3ketoacyl CoA thiolase 1x Normal PASMC TUNEL Vehicle TUNEL Propidium iodide TUNEL Normal Rat PVRi (mmhgming/ml) 1 NS Vehicle Propidium iodide All %TUNEL NS Vehicle ATP P Hexokinase GSK3β Hexokinase cyt c, AIF Apoptosis e NADH e Krebs Cycle FADH 2 I II III IV V H + ROS H+ Trimetazidine Mitochondrion Relaxation Proliferation Kv channels [Ca ++ ] i Apoptosis activation inhibition 6 The MCDKO mice have a normal phenotype at normoxia and are resistant to CHPHT Pressure (mmhg) 4 2 RA. sec RV PA Normoxia KO Hypoxia Normoxia Hypoxia WT Mean PAP (mmhg).6 RV / LVS Distance (m) No Hy No Hy WT KO 4

5 3/14/29 Preserved Ψm in CHMCDKO PASMCs blocked the decrease in ROS, IK + and the rise in [Ca 2+ ] i TMRM WN WCH KON KOCH TMRM (F.U) TMZ and, inhibit CHPHT in Wtype mice Pressure (mmhg) CHPHT 6 CH+ CH+TMZ 4 CONTROL 2 Mitosox Mitosox (F.U) TUNEL DIC Merge+DAPI Fura2 IK + 1 pa ms IK + pa/pf at +7mV [Ca 2+ ] i (nm) CH+TMZ CH+ % TUNEL TMZ Decreased glycolysis in CHKO PASMC, prevents the inhibition of GSK3 and the dependent downregulation of Kv1. CHMCD +/+ +wor CHMCD +/+ MCD +/+ MCD / MCD / +GSK3i CHMCD / Kv1. GSK3β Merge+DAPI MCD / CHMCD +/+ +GSK3i MCD / +wor CHMCD +/+ MCD +/+ CHMCD / Kv1. Merge+DAPI KOCH WCH Hypoxia promotes Ψm hyperpolarization through a hexokinase II /VDAC dependent mechanism in W but not KO mice. HE Hexokinase II Mitotracker red Merge+DAPI Chronic Hypoxia, Akt, PDGF, etc [Ca ++ ] i activation GSK3β/ PGSK3β Kv1. expression GLY/GO + Hexokinase/VDAC interaction Ψm Apoptosis/Proliferation

6 3/14/29 Sense (supply of O 2 and demand for fuel) Sense (supply of O 2 and demand for fuel) execute ALTERNATE MEANS OF ENERGY GENERATION (cytoplasmic glycolysis) execute Can match fuel generation (ATP) Cannot match fuel generation (ATP) Can match fuel generation (ATP) Cannot match fuel generation (ATP) LIVE DIE LIVE DIE A49 Control TMRM intensity 12 (FU) Mitochondrial membrane potential CT scan (reconstructed tumor in blue) PET (glucose uptake) 4 M9K MCF7 SAEC Control % change by. mm Metabolism 3 2 Fatty acid oxidation Glycolysis 2 1 oxidation Cancer Cell, 27 treated Control (non small cell lung cancer) (non small cell lung cancer) TMRM: red DAPI: blue TMRM: red DAPI: blue 6

7 3/14/29 Cancer Cell, 27 NSC Lung Cancer + oxidation cmyc Untreated NSC Lung Cancer Kv1. +Kv1. & DAPI PDGF survivin Akt/PTEN p3 loss HIF activation lactate LDH + PDK AOS PDH pyruvate cyt c cyt c cyt c lactate pyruvate LDH PDH PDK AOS Depolarized mitochondria LDH sirna + AOS cell membrane K + Kv Ca ++ AOS cyt c cyt c cyt c cyt c Ca++ K + Kv +VIVIT 2ATP uptake apoptosis proliferation 36ATP uptake apoptosis proliferation activated vs quiescenttcells TMRM Inactive CD8 + Activated CD8 + Activated CD8 + w/ TNFα Ab rhtnfα Inactive CD8 + Activated CD8 + Activated CD8 + w/tnfα Ab rhtnfα A.F.U filter MitoSO A.F.U normal PASMC±drugs FLUO3 A.F.U PCNA % PCNA (+) 3 1 7

8 3/14/29 PAH: a state of insulin resistance? Mean PAP (mmhg) CONTROL MCT ETAN REV. CONTROL MCT ETAN REV. TNFα/TNFR PDH Ψm ROS Kv [Ca ++ ] i GSK3 1. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferatoractivated receptorgamma activation. Hansmann et al, Circulation, An antiproliferative BMP2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension Hansmann et al, JCI, 28 Mice with SMC targeted deletion of PPARγ develop PAH PPARγ agonists (rosiglitazone, pioglitazone) can reverse PAH by activating proapoptotic and supressing proproliferative genes Thank you Stephen Archer E.K. Weir Sebastien Bonnet Sean McMurtry Gopi Sutendra Jayan Nagendran Ken Petruk John Mackey Linda Webster Ballarina II, Joan Miro, 192 8

A Mitochondria-K + Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth

A Mitochondria-K + Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth Article A Mitochondria-K + Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth Sébastien Bonnet, 1 Stephen L. Archer, 1,2 Joan Allalunis-Turner, 3 Alois

More information

Although traditionally pulmonary arterial hypertension. Compendium. The Metabolic Theory of Pulmonary Arterial Hypertension

Although traditionally pulmonary arterial hypertension. Compendium. The Metabolic Theory of Pulmonary Arterial Hypertension Compendium Circulation Research Compendium on Pulmonary Arterial Hypertension Pulmonary Arterial Hypertension: Yesterday, Today, Tomorrow Pulmonary Arterial Hypertension: The Clinical Syndrome Current

More information

Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension

Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension Related Commentary, page 1461 Research article Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension M. Sean McMurtry, 1 Stephen

More information

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans?

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans? 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans? I. Pyruvate II. III. ATP Lactate A. I only B. I and II only C. I, II and III D. II and III

More information

Name Class Date. 1. Cellular respiration is the process by which the of "food"

Name Class Date. 1. Cellular respiration is the process by which the of food Name Class Date Cell Respiration Introduction Cellular respiration is the process by which the chemical energy of "food" molecules is released and partially captured in the form of ATP. Carbohydrates,

More information

University of Alberta

University of Alberta University of Alberta A Metabolic Basis for Vascular Remodeling in Pulmonary Arterial Hypertension by Gopinath Sutendra A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

More information

Metabolism of cardiac muscle. Dr. Mamoun Ahram Cardiovascular system, 2013

Metabolism of cardiac muscle. Dr. Mamoun Ahram Cardiovascular system, 2013 Metabolism of cardiac muscle Dr. Mamoun Ahram Cardiovascular system, 2013 References This lecture Mark s Basic Medical Biochemistry, 4 th ed., p. 890-891 Hand-out Why is this topic important? Heart failure

More information

Harvesting energy: photosynthesis & cellular respiration

Harvesting energy: photosynthesis & cellular respiration Harvesting energy: photosynthesis & cellular respiration Learning Objectives Know the relationship between photosynthesis & cellular respiration Know the formulae of the chemical reactions for photosynthesis

More information

Human recombinat MIF protein (hrmif), MW: Da. m/z. hrmif ( Da) + 4-IPP (282 Da) MWtot ~ Da. m/z.

Human recombinat MIF protein (hrmif), MW: Da. m/z. hrmif ( Da) + 4-IPP (282 Da) MWtot ~ Da. m/z. Intensity % Intensity % A Human recombinat MIF protein (hrmif), MW: 12428.31 Da m/z hrmif (12428.31 Da) + 4-IPP (282 Da) MWtot ~ 12715.21 Da m/z B HTC/C3 DAPI phistone-h3 Merge HTC/C3 DAPI phistone-h3

More information

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency

More information

Medical Biochemistry and Molecular Biology department

Medical Biochemistry and Molecular Biology department Medical Biochemistry and Molecular Biology department Cardiac Fuels [Sources of energy for the Cardiac muscle] Intended learning outcomes of the lecture: By the end of this lecture you would be able to:-

More information

Recall basic cell physiology

Recall basic cell physiology (a) Chemical level: a molecule in the membrane that encloses a cell (b) Cellular level: a cell in the stomach lining (c) Tissue level: layers of tissue in the stomach wall (d) Organ level: the stomach

More information

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy.

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Do Now: Compare and contrast the three black equations below ADP + P + Energy

More information

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.

More information

Oncology for Scientists RPN 530 Fall 2017 Cancer Cell Metabolism

Oncology for Scientists RPN 530 Fall 2017 Cancer Cell Metabolism Oncology for Scientists RPN 530 Fall 2017 Cancer Cell Metabolism Gokul Das, Ph.D. Department of Pharmacology & Therapeutics Center for Genetics & Pharmacology (CGP) Room 4-304 Tel: 845-8542 Email: gokul.das@roswellpark.org

More information

3.7 CELLULAR RESPIRATION. How are these two images related?

3.7 CELLULAR RESPIRATION. How are these two images related? 3.7 CELLULAR RESPIRATION How are these two images related? CELLULAR RESPIRATION Cellular respiration is the process whereby the body converts the energy that we get from food (glucose) into an energy form

More information

BIO 311C Spring Lecture 27 Monday 5 Apr. 1

BIO 311C Spring Lecture 27 Monday 5 Apr. 1 BIO 311C Spring 2010 Lecture 27 Monday 5 Apr. 1 Review Metabolic Pathways and Processes that Participate in Respiration - Glycolysis Occurs in the cytoplasmic matrix - Pyruvate dehydrogenase - Krebs Cycle

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Dichloroacetate, a Metabolic Modulator, Prevents and Reverses Chronic Hypoxic Pulmonary Hypertension in Rats

Dichloroacetate, a Metabolic Modulator, Prevents and Reverses Chronic Hypoxic Pulmonary Hypertension in Rats Dichloroacetate, a Metabolic Modulator, Prevents and Reverses Chronic Hypoxic Pulmonary Hypertension in Rats Role of Increased Expression and Activity of Voltage-Gated Potassium Channels Evangelos D. Michelakis,

More information

In vivo prediction of anti-tumor effect of 3- bromopyruvate in Hepatocellular Carcinoma using Tc-99m labeled annexin-v imaging

In vivo prediction of anti-tumor effect of 3- bromopyruvate in Hepatocellular Carcinoma using Tc-99m labeled annexin-v imaging In vivo prediction of anti-tumor effect of 3- bromopyruvate in Hepatocellular Carcinoma using Tc-99m labeled annexin-v imaging Won Kim, Jung-Hwan Yoon*, Gi Jeong Cheon, Tae Sup Lee, Chung Yong Kim Department

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

How Did Energy-Releasing Pathways Evolve? (cont d.)

How Did Energy-Releasing Pathways Evolve? (cont d.) How Did Energy-Releasing Pathways Evolve? (cont d.) 7.1 How Do Cells Access the Chemical Energy in Sugars? In order to use the energy stored in sugars, cells must first transfer it to ATP The energy transfer

More information

RESPIRATION Worksheet

RESPIRATION Worksheet A.P. Bio L.C. RESPIRATION Worksheet 1. In the conversion of glucose and oxygen to carbon dioxide and water a) which molecule becomes reduced? b) which molecule becomes oxidized? c) what happens to the

More information

Respiration. Energy is everything!

Respiration. Energy is everything! Respiration Energy is everything! Tesla was incredible Everyone was intrigued by Tesla Tesla showed that energy does not need to be feared So what does this have to do with twinkies? Everything! Cellular

More information

Harvesting energy: photosynthesis & cellular respiration part 1I

Harvesting energy: photosynthesis & cellular respiration part 1I Harvesting energy: photosynthesis & cellular respiration part 1I Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

2/25/2015. Anaerobic Pathways. Glycolysis. Alternate Endpoints. Gluconeogenesis fate of end products

2/25/2015. Anaerobic Pathways. Glycolysis. Alternate Endpoints. Gluconeogenesis fate of end products Anaerobic Pathways Glycolysis Glucose + 2 ATP 4 ATP + 2 Pyruvate No oxygen required Fairly low energy yield Lactate byproduct Resting levels low Tolerances 40 mmole/kg in humans, 200 mmole/kg in sea turtles

More information

ADP, ATP and Cellular Respiration

ADP, ATP and Cellular Respiration ADP, ATP and Cellular Respiration What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing highenergy Phosphate bonds Chemical Structure of ATP Adenine Base 3 Phosphates

More information

Muscle Metabolism. Dr. Nabil Bashir

Muscle Metabolism. Dr. Nabil Bashir Muscle Metabolism Dr. Nabil Bashir Learning objectives Understand how skeletal muscles derive energy at rest, moderate exercise, and strong exercise. Recognize the difference between aerobic and anaerobic

More information

What is the Warburg Effect

What is the Warburg Effect What is the Warburg Effect Roles nutrients play in the biochemistry of a cell Thus, proliferating cells must acquire more nutrients, convert them into biosynthetic building blocks, and coordinate the reactions

More information

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)

More information

Role of the Pyruvate

Role of the Pyruvate Role of the Pyruvate Dehydrogenase Complex in the Regulation of Blood Glucose Robert A. Harris Indiana University School of Medicine Indianapolis, Indiana Kyungpook National University School of Medicine

More information

Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer

Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer British Journal of Cancer (2008) 99, 989 994 All rights reserved 0007 0920/08 $32.00 www.bjcancer.com Minireview Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer ED Michelakis*,1,

More information

Bell Work. b. is wrong because combining two glucose molecules requires energy, it does not release energy

Bell Work. b. is wrong because combining two glucose molecules requires energy, it does not release energy Bell Work How is energy made available to the cell to move large starch molecules across the cell membrane through the process of endocytosis? a. removing a phosphate from ATP b. combining two glucose

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

Cellular Respiration. How our body makes ATP, ENERGY!!

Cellular Respiration. How our body makes ATP, ENERGY!! Cellular Respiration How our body makes ATP, ENERGY!! Useable Energy Adenosine Tri-Phosphate (ATP) Adenosine Ribose Sugar 3 Phosphates November 27, 2017 November 27, 2017 Where do our cells get energy?

More information

Does Pharmacological Exercise Mimetics Exist? Hokkaido University Graduate School of Medicine Shintaro Kinugawa

Does Pharmacological Exercise Mimetics Exist? Hokkaido University Graduate School of Medicine Shintaro Kinugawa Does Pharmacological Exercise Mimetics Exist? Hokkaido University Graduate School of Medicine Shintaro Kinugawa Survival rate (%) Peak oxygen uptake and prognosis in patients with heart failure (HF) 1

More information

Chapter 7 How Cells Release Chemical Energy

Chapter 7 How Cells Release Chemical Energy Chapter 7 How Cells Release Chemical Energy 7.1 Mighty Mitochondria More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many of those afflicted die young

More information

Oxidation of Long Chain Fatty Acids

Oxidation of Long Chain Fatty Acids Oxidation of Long Chain Fatty Acids Dr NC Bird Oxidation of long chain fatty acids is the primary source of energy supply in man and animals. Hibernating animals utilise fat stores to maintain body heat,

More information

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process. Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

NOTES: Ch 9 Cellular Respiration: Harvesting Chemical Energy Part 1: The Overview

NOTES: Ch 9 Cellular Respiration: Harvesting Chemical Energy Part 1: The Overview NOTES: Ch 9 Cellular Respiration: Harvesting Chemical Energy Part 1: The Overview Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

Tumor Metabolism. Hypoxia-inducible factor (HIF)

Tumor Metabolism. Hypoxia-inducible factor (HIF) Tumor Metabolism Kevin M. Brindle Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1GA and Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

The Krebs cycle is a central pathway for recovering energy from three major metabolites: carbohydrates, fatty acids, and amino acids.

The Krebs cycle is a central pathway for recovering energy from three major metabolites: carbohydrates, fatty acids, and amino acids. Chapter 16 - Citric Acid Cycle TCA (tricarboxylic acid cycle) Citric acid cycle and Krebs cycle. Named after Sir Hans Krebs, Nobel Laureate. He worked as an assistant professor for Otto Warburg (Nobel

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology 1 of 39 2 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells 3 of 39 Both

More information

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this! Cellular Respiration LISA Biology Cellular Respiration C 6 H 12 O 6 + 6O 2 - - - - - > 6CO 2 + 6H 2 0 + energy You need to know this! Heat + ATP 1 Did that equation look familiar? * The equation for cellular

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

Theralase Therapeutic Laser Technology Enhances Cancer Destruction

Theralase Therapeutic Laser Technology Enhances Cancer Destruction Theralase Therapeutic Laser Technology Enhances Cancer Destruction Toronto, Ontario November 27, 2017, Theralase Technologies Inc. ( Theralase or the Company ) (TSXV: TLT) (OTCQX: TLTFF), a leading biotech

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell. Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell. Can be reactions that break things down. (Catabolism) Or reactions that build things up. (Anabolism)

More information

2

2 1 2 3 4 5 6 7 8 9 10 11 What is the fate of Pyruvate? Stages of Cellular Respiration GLYCOLYSIS PYRUVATE OX. KREBS CYCLE ETC 2 The Krebs Cycle does your head suddenly hurt? 3 The Krebs Cycle An Overview

More information

Review Emerging Metabolic Therapies in Pulmonary Arterial Hypertension

Review Emerging Metabolic Therapies in Pulmonary Arterial Hypertension Review Emerging Metabolic Therapies in Pulmonary Arterial Hypertension Lloyd D. Harvey 1 and Stephen Y. Chan 2, * 1 Medical Scientist Training Program, University of Pittsburgh School of Medicine and University

More information

9.2 The Process of Cellular Respiration

9.2 The Process of Cellular Respiration 9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

Cell Respiration - 1

Cell Respiration - 1 Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

INTERNATIONAL JOURNAL OF MOlecular medicine 42: , 2018

INTERNATIONAL JOURNAL OF MOlecular medicine 42: , 2018 INTERNATIONAL JOURNAL OF MOlecular medicine 42: 1391-1400, 2018 Reversal of the Warburg effect with DCA in PDGF treated human PASMC is potentiated by pyruvate dehydrogenase kinase 1 inhibition mediated

More information

Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration

Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration Chapter 9 Harvesting Chemical Energy: Cellular Respiration Life is Work!!! Biology Kevin Dees Catabolic pathways and ATP production Catabolic pathways release energy by breaking down large molecules into

More information

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25 Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell

More information

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration 9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH

More information

What is Respiration? The process of respiration is where organisms convert chemical energy into cellular energy, which is known as ATP. Adenine Ribose P P P Cellular Respiration high energy sugar low energy

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Electron Transport and Oxidative. Phosphorylation

Electron Transport and Oxidative. Phosphorylation Electron Transport and Oxidative Phosphorylation Electron-transport chain electron- Definition: The set of proteins and small molecules involved in the orderly sequence of transfer to oxygen within the

More information

Ch 9: Cellular Respiration

Ch 9: Cellular Respiration Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy

More information

c Ischemia (30 min) Reperfusion (8 w) Supplementary Figure bp 300 bp Ischemia (30 min) Reperfusion (4 h) Dox 20 mg/kg i.p.

c Ischemia (30 min) Reperfusion (8 w) Supplementary Figure bp 300 bp Ischemia (30 min) Reperfusion (4 h) Dox 20 mg/kg i.p. a Marker Ripk3 +/ 5 bp 3 bp b Ischemia (3 min) Reperfusion (4 h) d 2 mg/kg i.p. 1 w 5 w Sacrifice for IF size A subset for echocardiography and morphological analysis c Ischemia (3 min) Reperfusion (8

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen In biology and chemistry, energy is referred to

More information

CARBOHYDRATE METABOLISM

CARBOHYDRATE METABOLISM Note (Study Glycolysis, fermentation and their regulation, Gluconeogenesis and glycogenolysis, Metabolism of galactose, TCA cycle and Amphibolic role of the cycle, and Glyoxalic acid cycle, HMP shunt in

More information

Mitochondrial Energy Metabolism:

Mitochondrial Energy Metabolism: Mitochondrial Energy Metabolism: How Fa8y Acids and Other Fuels Keep Our Bodies Running David M. Koeller, MD Professor of Pediatrics Director, CDRC Metabolic Clinic What is Energy? What is Energy? What

More information

Supporting Information. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

Supporting Information. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells Supporting Information Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells Neha Kaushik, 1 Su Jae Lee, 2 Tae Gyu Choi 3, Ku Youn Baik,

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Fuel the Failing Heart: glucose or fatty acids? Rong Tian, MD, PhD Mitochondria and Metabolism Center University of Washington, Seattle

Fuel the Failing Heart: glucose or fatty acids? Rong Tian, MD, PhD Mitochondria and Metabolism Center University of Washington, Seattle Fuel the Failing Heart: glucose or fatty acids? Rong Tian, MD, PhD Mitochondria and Metabolism Center University of Washington, Seattle Metabolic Remodeling: Fatty Acids Carbohydrates PCr/ATP Glucose vs.

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

9-1 Chemical Pathways Interactive pgs

9-1 Chemical Pathways Interactive pgs Interactive pgs. 221-225 1 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells

More information

Fluorescent Probes to Study Tubular Metabolism. Tim Sutton, MD, PhD 4/13/2017

Fluorescent Probes to Study Tubular Metabolism. Tim Sutton, MD, PhD 4/13/2017 Fluorescent Probes to Study Tubular Metabolism Tim Sutton, MD, PhD 4/13/2017 Tubular metabolism Outline Glucose uptake Mitochondrial function & Oxidant stress p53 regulates renal expression of HIF-1 and

More information

Cellular Respiration. Objectives

Cellular Respiration. Objectives Lecture 07 Objectives At the end of this series of lectures, you should be able to: Define terms. Compare the processes and locations of cellular respiration and photosynthesis. Explain how breathing and

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

NOTES: Ch 9, part & Fermentation & Regulation of Cellular Respiration

NOTES: Ch 9, part & Fermentation & Regulation of Cellular Respiration NOTES: Ch 9, part 4-9.5 & 9.6 - Fermentation & Regulation of Cellular Respiration 9.5 - Fermentation enables some cells to produce ATP without the use of oxygen Cellular respiration requires O 2 to produce

More information

Modifications of Pyruvate Handling in Health and Disease Prof. Mary Sugden

Modifications of Pyruvate Handling in Health and Disease Prof. Mary Sugden Modifications of Handling Modifications of Handling Centre for Diabetes and Metabolic Medicine Institute of Cell and Molecular Science Barts and the London School of Medicine and Dentistry 1 Potential

More information

Respiration. Energy is everything!

Respiration. Energy is everything! Respiration Energy is everything! Tesla was incredible Everyone was intrigued by Tesla Tesla showed that energy does not need to be feared So what does this have to do with twinkies? Everything! Cellular

More information

Didier Payen, MD, Ph D DAR Lariboisière Université Paris 7 Unité INSERM 1160

Didier Payen, MD, Ph D DAR Lariboisière Université Paris 7 Unité INSERM 1160 Assessing response to therapy: SvO 2, lactate, PCO 2 gap, others Didier Payen, MD, Ph D DAR Lariboisière Université Paris 7 Unité INSERM 1160 dpayen1234@orange.fr How can we see the question? Some useful

More information

Christian Frezza MRC Cancer Unit

Christian Frezza MRC Cancer Unit Christian Frezza MRC Cancer Unit What is cancer? What is cancer? Douglas Hanahan, Robert A. Weinberg; The Hallmarks of Cancer Cell, Volume 100, Issue 1, 7 January 2000, Pages 57 70 Cancer cells need energy

More information

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both.

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both. 3.7 Cell Respiration 1. Define cell respiration. Cell respiration is the controlled release of energy from organic molecules in cells to form ATP. 2. State the equation for the process of cell respiration.

More information

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology 1 of 39 EQ What is glycolysis? What are the results from the Krebs Cycle and Electron Transport? 2 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body

More information

1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell?

1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell? 1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell? glycolysis citric cycle 2 Which of the following statements is NOT correct regarding aerobic cellular respiration?

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2009-2010 Ch.8.3 Section Objectives: Compare and contrast cellular respiration and fermentation. Explain how cells obtain energy from cellular respiration.

More information

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal

More information

Roles of Lipids. principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular

Roles of Lipids. principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular Roles of Lipids principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular = Oxidation of fatty acids Central energy-yielding pathway in animals. O

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

BIOCHEMISTRY. Glycolysis. by Dr Jaya Vejayan Faculty of Industrial Sciences & Technology

BIOCHEMISTRY. Glycolysis. by Dr Jaya Vejayan Faculty of Industrial Sciences & Technology BIOCHEMISTRY Glycolysis by Dr Jaya Vejayan Faculty of Industrial Sciences & Technology email: jayavejayan@ump.edu.my Chapter Description Overview This chapter is related to carbohydrate catabolism. It

More information

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014 Structure of the Mitochondrion Cellular Respiration Chapter 9 Pgs. 163 183 Enclosed by a double membrane Outer membrane is smooth Inner, or cristae, membrane is folded - this divides the mitochondrion

More information