ORIGINAL CONTRIBUTION. A Clinicopathological Study of Vascular Progressive Supranuclear Palsy

Size: px
Start display at page:

Download "ORIGINAL CONTRIBUTION. A Clinicopathological Study of Vascular Progressive Supranuclear Palsy"

Transcription

1 ORIGINAL CONTRIBUTION A Clinicopathological Study of Vascular Progressive Supranuclear Palsy A Multi-infarct Disorder Presenting as Progressive Supranuclear Palsy Keith A. Josephs, MD; Takashi Ishizawa, MD; Yoshio Tsuboi, MD; Natalie Cookson, BSc; Dennis W. Dickson, MD Background: Clinical features suggesting a diagnosis of progressive supranuclear palsy (PSP) include early falls, axial rigidity, vertical supranuclear ophthalmoplegia, and levodopa unresponsiveness. When these clinical features are present, the diagnosis is almost always PSP, yet vascular disease sometimes has a similar presentation, referred to as vascular PSP. Objective: To evaluate clinical and pathologic features of cases of vascular PSP submitted to a PSP brain bank. Design: Review of gross and microscopic neuropathological features, determination of haplotype, and medical record review of 4 patients with an antemortem diagnosis of PSP who did not meet the pathologic criteria for PSP and instead had vascular pathologic abnormalities. Results: All patients had vertical supranuclear ophthalmoplegia, a history of falls, and a gradually progressive disease course. Falls began 1 year after symptom onset, and all patients had asymmetric findings on a neurological examination. A magnetic resonance imaging scan revealed lacunar basal ganglia infarcts in one patient and an increased T2-weighted signal in the corona radiata and centrum semiovale in another. Gross and microscopic neuropathological studies demonstrated infarcts in the cerebral cortex (n=4), thalamus (n=4), basal ganglia (n=3), and cerebellum (n=4). The brainstem was affected in one patient, but no infarcts were detected in the subthalamic nucleus or substantia nigra. Of the 4 patients, 3 carried an H2 haplotype, a rare occurrence in the general population. Conclusions: Asymmetric signs, falls after 1 year of symptom onset, vascular lesions on a magnetic resonance imaging scan, and an H2 haplotype may help differentiate vascular PSP from PSP. Thalamic and basal ganglia infarcts are common in patients with vascular PSP and, when present, may contribute to misdiagnosis. Arch Neurol. 2002;59: From the Departments of Neurology (Drs Josephs and Tsuboi) and Pathology (Neuropathology) (Drs Ishizawa and Dickson and Ms Cookson), Mayo Clinic, Jacksonville, Fla. STEELE ET AL 1 first described progressive supranuclear palsy (PSP) in Since then, several studies 2-5 have tried to identify features that improve the sensitivity and specificity of clinically diagnosing this entity. Some features that are considered fairly specific to PSP include axial greater than appendicular rigidity, levodopa unresponsiveness, absence of tremor, frontal lobe dysfunction, and symmetric parkinsonism. In 1996, Litvan et al 3 published research criteria for the clinical diagnosis of PSP and defined 3 categories of possible, probable, and definite PSP. The latter was dependent on pathologic confirmation, while the others were based on a combination of clinical features, including onset at age 40 years or older, vertical supranuclear ophthalmoplegia (VSO), early falls, and no evidence of other disorders that could account for the neurological signs. The specificity of the clinical criteria for probable PSP was 100%, decreasing to 89% if exclusion criteria were not met. One of the exclusion criteria was clinical evidence of central nervous system vascular disease. Progressive supranuclear palsy is a degenerative disorder with neuronal and glial aggregates in specific cortical and subcortical locations, 6 including the motor cortex, basal ganglia, thalamus, subthalamic nucleus, brainstem, and cerebellum. The clinical phenotype of the -related diseases is related to the specific anatomical areas of involvement more than the specific biochemical or genetic aspects of the disorder, even though both are believed to be important. In any neurological condition, however, the clinical phenotype is not absolute and, hence, a differential diagnosis is necessary. As early as the 1980s, there were reports 7,8 of clinically diagnosed PSP with computed tomographic, magnetic resonance imag- 1597

2 Table 1. Clinical Features of Patients With Vascular PSP Compared With Patients With Pathologically Proved PSP* Patients With Vascular PSP Patients With Variable Pathologically Proved PSP Sex/age at death, y M/87 M/72 M/77 F/80 M or F/78.3 Haplotype H1/H1 H1/H2 H2/H2 H1/H2 H1/H1 in 88% Disease duration, y Falls 1 y after symptom onset Early dysarthria/dysphagia Levodopa resistance NA Axial rigidity Asymmetric features L Babinski sign R rigidity and resting tremor L hemiparesis and cranial nerve VII palsy L cranial nerve VII palsy and leg dystonia Symmetric Other features Retrocollis and hypomimia Bradykinesia Hypomimia (stare) Hypomimia Retrocollis and bradykinesia HTN Positive in 70% MRI/CT findings NA Increased T2-weighted signal in the corona radiata and the centrum semiovale Lacunar infarcts in the R basal ganglia and the caudate and lentiform nuclei CT findings only: calcified 2-cm L frontal mass consistent with meningioma Midbrain atrophy *A cognitive change occurred in all patients. PSP indicates progressive supranuclear palsy; +, present;, absent; L, left; R, right; HTN, history of hypertension; MRI, magnetic resonance imaging; CT, computed tomographic; and NA, data not available. Mean. ing, and autopsy evidence of vascular rather than degenerative pathologic abnormalities. The term vascular PSP was coined by Winikates and Jankovic 9 in a report of 30 cases in a clinical series of 128 patients with PSP who satisfied the criteria for vascular PSP. The characteristic features they emphasized for vascular PSP were asymmetric and lower body involvement. Subsequently, Binswanger disease presenting as PSP was described. 10 Of all the features considered specific for PSP, the one that carries the most weight is VSO. When present alone, VSO has limited value in differential diagnosis; however, in the right clinical context, it is almost pathognomonic for PSP. Differentiating VSO from vertical nuclear ophthalmoplegia is important when considering a diagnosis of PSP. The latter would suggest structural lesions involving the third and/or fourth cranial nerve nuclei or nerve roots and would not be consistent with PSP. Yet, vascular infarcts resulting in VSO have been described in patients with bilateral lesions 11 and even in those with unilateral thalamomesencephalic and rostral interstitial medial longitudinal fasciculus lesions Infarcts in the pons, substantia nigra, centrum semiovale, frontal subcortex, striatum, corona radiata, internal capsule, and basal ganglia have been described using magnetic resonance imaging, computed tomography, and an autopsy case of clinically diagnosed vascular PSP. 7,8,10 In this report, patients with a clinical diagnosis of PSP who failed to meet the pathologic criteria for PSP, but instead had vascular pathologic abnormalities, were assessed to determine if specific lesion patterns could be identified. Only a few autopsy-confirmed cases of vascular PSP have been reported since it was first defined. 7-9 To our knowledge, this is the largest clinicopathological study of vascular PSP. METHODS Two hundred seven cases from the Society for Progressive Supranuclear Palsy brain bank at Mayo Clinic were reviewed for cases that did not meet the pathologic criteria for PSP 6 but had pathologic evidence of vascular disease. All cases underwent a standard neuropathological assessment, including hematoxylineosin staining, thioflavine S fluorescent microscopy, and immunostaining with phosphorylated monoclonal antibodies (CP13 or PHF1) and a polyclonal antibody to -synuclein. Fixed and frozen tissues from all cases were dissected and analyzed for gross evidence of large- and small-vessel infarction or hemorrhage. Sections were taken from multiple cortices and the hippocampus, amygdala, basal ganglia, thalamus, mesencephalon, pons, medulla, and cerebellum. The sections were microscopically studied for evidence of infarcts, hemorrhages, and foci of ischemic gliosis. Each case underwent systematic neuropathological assessment, including determination of Braak stage, neurofibrillary tangle and senile plaque counts, semiquantitative assessment of amyloid angiopathy, and semiquantitative assessment of -related neuronal and glial pathologic features using immunohistochemistry in multiple cortical and subcortical regions. A neurologist (K.A.J.) abstracted the following information from medical records: sex, age of onset, duration of illness, history of hypertension, early vs late falls, early dysarthria or dysphagia, asymmetry, cognitive dysfunction, eye movement abnormalities, parkinsonism, levodopa responsiveness, and imaging findings. Polymerase chain reaction was used to determine haplotype from DNA extracted from frozen brain tissue using previously published methods. 15 RESULTS Four patients (3 men and 1 woman; mean±sd age, 79.0±6.3 years) with a clinical diagnosis of PSP satisfied the criteria for vascular PSP (Table 1). Of these

3 Table 2. Infarct Distribution in Patients With Vascular PSP Compared With NFT Distribution in Patients With Pathologically Proved PSP* Infarcts in Patients With Vascular PSP NFTs in Patients With Pathologically Region R L R L R L R L Proved PSP Frontal lobe Temporal lobe + Parietal lobe Caudate/putamen Globus pallidus Basal nucleus + Thalamus Subthalamic nucleus Red nucleus Substantia nigra Oculomotor nerve complex Superior collicolus/periaqueductal gray matter Locus coeruleus Pontine tegmentum Pontine base + + Medullary tegmentum + Inferior olive Dentate nucleus Cerebellar white matter Cerebellar cortex *PSP indicates progressive supranuclear palsy; NFT, neurofibrillary tangle; R, right; L, left; +, ischemic or hemorrhagic infarcts 1 cm or less in diameter;, absent; and ++, ischemic or hemorrhagic infarcts greater than 1 cm in diameter. Mild to moderate NFT density. Moderate to severe NFT density. patients, 3 had thorough medical records, including documented antemortem imaging studies, for review. All 4 patients had a documented neurological examination by at least one neurologist. The mean age of onset was 73 years, and the mean duration of illness was 6 years. All 4 patients had onset after the age of 40 years, VSO, and a gradually progressive disease course. All 4 patients had a history of falls, but these occurred after 1 year of symptom onset. Axial rigidity, levodopa unresponsiveness, and early dysphagia or dysarthria were also reported. All 4 patients had asymmetric findings on examination, including cranial nerve VII palsy (n=2), hemiparesis, the Babinski sign, tremor, rigidity, or leg dystonia. One patient had magnetic resonance imaging evidence of lacunar infarcts in the basal ganglia, and another showed an increased T2-weighted signal in the corona radiata and centrum semiovale. Pathologic data are summarized in Table 2. On gross examination, all 4 patients had neocortical infarcts in the frontal lobe, and 3 of the 4 had right-sided thalamic infarcts, with bilateral infarcts occurring in 1 (Figure). Three patients also had infarcts in the basal ganglia (Figure). One patient had lacunar infarcts in the pontine base and medullary tegmentum. On microscopic examination, all 4 patients had moderate to marked arteriosclerotic vascular disease, cribriform changes in the basal ganglia, and multiple foci of ischemic gliosis. Pathologic features consistent with PSP were absent in all patients. Age-related Alzheimer disease type changes were minimal. The mean Braak stage was 2.3 (range, 1-3). Cortical senile plaques were absent, except in patient 2, who had rare senile plaques in the occipital lobe. The subthalamic nucleus was not affected by infarcts or pathologic features in any patient. Similarly, the substantia nigra, superior colliculus, periaqueductal gray matter, and cerebellar deep nuclei were free of infarcts and pathologic features. A microscopic examination in all 4 patients showed small cerebellar infarcts that were not detected on gross inspection. Haplotype analysis revealed an H2 haplotype in 3 of the 4 patients (2 had the H1/H2 genotype and 1 had the H2/H2 genotype). COMMENT This study demonstrated that vascular PSP occurs because of multiple vascular lesions, without the cardinal pathologic features of idiopathic PSP. Prominent clinical features of this autopsy-confirmed vascular PSP series were characterized by VSO, axial rigidity, hypomimia, and postural instability. Some unusual features for the spectrum of PSP included left cranial nerve VII palsy in 2 patients and left hemiparesis and the Babinski sign in 1. Other asymmetric features were also seen in all 4 patients. Retrocollis and early development of dysarthria or dysphagia, commonly seen in those with PSP, were noted in the patients with vascular PSP. Interestingly, the substantia nigra, subthalamic nuclei, and periaqueductal gray matter, which are prominently affected areas in patients with PSP, 4 were not directly affected in those with vascular PSP. Instead, the right side of the thalamus in 3 patients, the left side of the thalamus in 1 patient, unilateral or bilateral globus pallidus, the puta- 1599

4 A C Macroscopic findings of 3 patients with vascular progressive supranuclear palsy. Arrows indicate grossly apparent hemorrhages or infarcts. A and B, Patient 4 (left hemisphere). There were infarcts in the putamen and thalamus and an old slitlike hemorrhage in the lateral putamen. C, Patient 3 (right hemisphere). There were multiple infarcts in the putamen and globus pallidus and a cortical infarct. D, Patient 2 (left hemisphere). There were multiple infarcts in the putamen and periventricular white matter. Patient 1 is not shown. B D men, and the caudate were the main areas involved in those with vascular PSP. The vertical gaze control center is known to lie in mesencephalic reticular formation, which includes the Darkshevich nucleus, the interstitial nucleus of Cajal, the rostral interstitial nucleus of the medial longitudinal fasciculus, and the posterior commissure Lesions in any of these structures can produce VSO, especially at the thalamomesencephalic junction, which is regarded as important in the studies of VSO with unilateral lesions. 13,14 GABAergic neurons in the pars reticulata of the substantia nigra, which project to the tectum, are usually severely involved in patients with idiopathic PSP. 16 This is also thought to contribute to eye movement abnormalities, especially impairment in saccadic eye movements. 16 Yet, mesencephalic and nigral pathologic features were absent in all patients. Recent clinicalanatomical studies 17,18 demonstrated that unilateral or bilateral thalamic lesions can cause VSO. The location of the lesions in the present series of patients with vascular PSP suggests that thalamic lesions may also produce VSO, possibly by interrupting supranuclear vertical gaze pathways. The pathophysiological conditions of postural instability are poorly understood. It is generally thought that loss of postural reflex is related to reciprocal connections among the cortex, basal ganglia, and thalamus. 19,20 A study 21 of patients who had experienced a stroke showed that the parietal-insular cortex or adjacent structures, including the basal ganglia, may be crucial in impaired postural balance. Multiple interruptions of the cortical-striatal-pallidal-nigral-thalamiccortical loops are most likely responsible for the presence of parkinsonism in our series. Ischemic or degenerative destruction of multiple cortical, basal ganglia, and thalamic structures may also be the correlate of the unresponsiveness to high-dose levodopa therapy in those with vascular PSP and in those with idiopathic PSP. These structures depend on numerous neurotransmitters and are not limited to dopaminergic cell loss. A diagnosis of PSP was reasonable in these patients if strict research criteria were not used, 3 because all patients had VSO, parkinsonism, and frequent falls. Furthermore, there was never any apparent episodic deterioration in their histories suggestive of isolated or multiple infarcts. The reason for the lack of these episodes may have been an absence of apparent plegia, sensory disturbances, or focal cortical signs. On the other hand, none of the patients would have fulfilled the clinical research criteria proposed by Litvan et al 3 for possible or probable PSP because of the late onset of falls, asymmetric signs, and neuroradiologic abnormalities. 3 Winikates and Jankovic 9 suggested that vascular PSP should be differentiated from idiopathic PSP if the patient has a higher degree of asymmetry, lower body involvement, evidence of corticospinal and pseudobulbar signs, some neuroimaging evidence of vascular disease, and an increased frequency of risk factors for strokes. Our study showed that, in addition to asymmetry, frequent falls beginning 1 year after symptomatic onset was a common feature in all 4 patients and may be another differentiating feature. Magnetic resonance imaging is also important for detecting vascular lesions, because thalamic and unilateral or bilateral striatal involvement, which may be difficult to detect with computed tomographic scans, seems crucial for the development of vascular PSP. Baker et al 15 demonstrated increased frequency of a particular form of the extended haplotype (the H1 haplotype) in patients with PSP compared with normal control subjects, with frequencies of 93.7% in those with PSP compared with 78.4% in controls. In the present series of patients with vascular PSP, 3 of the 4 patients carried an H2 haplotype, including 1 who was homozygous for H2, a rare occurrence in the general population. These results raise the possibility that determination of the haplotype may be an ancillary aid in the differential diagnosis of vascular PSP, but a larger study is needed to confirm this observation. Accepted for publication March 8, Author contributions: Study concept and design (Drs Josephs, Ishizawa, Tsuboi, and Dickson); acquisition of 1600

5 data (Drs Josephs and Dickson and Ms Cookson); analysis and interpretation of data (Dr Josephs); drafting of the manuscript (Dr Josephs); critical revision of the manuscript for important intellectual content (Drs Josephs, Ishizawa, Tsuboi, and Dickson and Ms Cookson); statistical expertise (Dr Dickson); obtained funding (Dr Dickson); administrative, technical, and material support (Drs Josephs, Ishizawa, Tsuboi, and Dickson and Ms Cookson); study supervision (Dr Dickson). This study was supported by grants AG16574, AG17216, AG14449, AG03949, and NS40256 from the National Institutes of Health, Bethesda, Md; the Mayo Foundation, Rochester, Minn; the State of Florida Alzheimer Disease Initiative, Gainesville; and the Society for Progressive Supranuclear Palsy, Baltimore, Md. We thank Peter Davies, PhD, Albert Einstein College of Medicine, Bronx, NY, for providing the phosphorylated τ monoclonal antibodies (CP13 or PHF1). Corresponding author and reprints: Dennis W. Dickson, MD, Department of Pathology (Neuropathology), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL ( REFERENCES 1. Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. Arch Neurol. 1964;10: Collins SJ, Ahlskog JE, Parisi JE, Maraganore DM. Progressive supranuclear palsy: neuropathologically based diagnostic criteria. J Neurol Neurosurg Psychiatry. 1995;58: Litvan I, Agid Y, Calne D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP International Workshop. Neurology. 1996;47: Litvan I, Campbell G, Mangone CA, et al. Which clinical features differentiate progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) from related disorders? a clinicopathological study. Brain. 1997;120(pt 1): Verny M, Jellinger KA, Hauw JJ, Bancher C, Litvan I, Agid Y. Progressive supranuclear palsy: a clinicopathological study of 21 cases. Acta Neuropathol (Berl). 1996;91: Litvan I, Hauw JJ, Bartko JJ, et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol. 1996;55: Thajeb P, Lie SK. Multi-infarct progressive supranuclear palsy: case report. Zhonghua Yi Xue Za Zhi (Taipei). 1990;46: Dubinsky RM, Jankovic J. Progressive supranuclear palsy and a multi-infarct state. Neurology. 1987;37: Winikates J, Jankovic J. Vascular progressive supranuclear palsy. J Neural Transm Suppl. 1994;42: Mark MH, Sage JI, Walters AS, Duvoisin RC, Miller DC. Binswanger s disease presenting as levodopa-responsive parkinsonism: clinicopathologic study of three cases. Mov Disord. 1995;10: Trojanowski JQ, Wray SH. Vertical gaze ophthalmoplegia: selective paralysis of downgaze. Neurology. 1980;30: Bogousslavsky J, Miklossy J, Regli F, Janzer R. Vertical gaze palsy and selective unilateral infarction of the rostrol interstitial nucleus of the medial longitudinal fasciculus (rimlf). J Neurol Neurosurg Psychiatry. 1990;53: Takamatsu K, Takizawa T, Sato S, Yoshihisa K, Mayamoto T. A case of transient vertical gaze palsy following right thalamic and midbrain infarct [in Japanese]. No To Shinkei. 1993;45: Iijima M, Hirata A, Tadano Y, Kamakura K, Nagata N. A case of vertical gaze palsy associated with a unilateral infarct in the thalamo-mesencephalic junction on MR imaging [in Japanese]. Rinsho Shinkeigaku. 1994;34: Baker M, Litvan I, Houlden H, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet. 1999;8: Oyanagi K, Tsuchiya K, Yamazaki M, Ikeda K. Substantia nigra in progressive supranuclear palsy, corticobasal degeneration, and parkinsonism-dementia complex of Guam: specific pathological features. J Neuropathol Exp Neurol. 2001; 60: Clark JM, Albers GW. Vertical gaze palsies from medial thalamic infarctions without midbrain involvement. Stroke. 1995;6: Deleu D. Selective vertical saccadic palsy from unilateral medial thalamic infarction: clinical, neurophysiologic and MRI correlates. Acta Neurol Scand. 1997; 96: Wichmann T, DeLong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol. 1996;6: Albin RL, Young AB, Penney JB. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 1995;18: Miyai I, Mauricio RLR, Reding MJ. Parietal-insular strokes are associated with impaired standing balance as assessed by computerized dynamic posturography. J Neurol Rehabil. 1997;11:

FDG-PET e parkinsonismi

FDG-PET e parkinsonismi Parkinsonismi FDG-PET e parkinsonismi Valentina Berti Dipartimento di Scienze Biomediche, Sperimentali e Cliniche Sez. Medicina Nucleare Università degli Studi di Firenze History 140 PubMed: FDG AND parkinsonism

More information

Stroke School for Internists Part 1

Stroke School for Internists Part 1 Stroke School for Internists Part 1 November 4, 2017 Dr. Albert Jin Dr. Gurpreet Jaswal Disclosures I receive a stipend for my role as Medical Director of the Stroke Network of SEO I have no commercial

More information

The Spectrum of Age-Associated Astroglial Tauopathies. Dennis W. Dickson MD Department of Neuroscience Mayo Clinic, Jacksonville, FL

The Spectrum of Age-Associated Astroglial Tauopathies. Dennis W. Dickson MD Department of Neuroscience Mayo Clinic, Jacksonville, FL The Spectrum of Age-Associated Astroglial Tauopathies Dennis W. Dickson MD Mayo Clinic, Jacksonville, FL Thorn-shaped astrocytes TSA were first reported by Ikeda (1995), as tau-positive astrocytes in various

More information

ORIGINAL CONTRIBUTION. Neuropathological Correlates of Dysarthria in Progressive Supranuclear Palsy. feature of progressive supranuclear

ORIGINAL CONTRIBUTION. Neuropathological Correlates of Dysarthria in Progressive Supranuclear Palsy. feature of progressive supranuclear ORIGINAL CONTRIBUTION Neuropathological Correlates of Dysarthria in Progressive Supranuclear Palsy Karen J. Kluin, MS, CCC, BC-NCD; Sid Gilman, MD; Norman L. Foster, MD; Anders A. F. Sima, MD, PhD; Constance

More information

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens Systems Neuroscience Dan Kiper Today: Wolfger von der Behrens wolfger@ini.ethz.ch 18.9.2018 Neurons Pyramidal neuron by Santiago Ramón y Cajal (1852-1934, Nobel prize with Camillo Golgi in 1906) Neurons

More information

1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas:

1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas: DENT/OBHS 131 2009 Take-home test 4 Week 6: Take-home test (2/11/09 close 2/18/09) 1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas: Hypothalamus

More information

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004 Chapter 3 Structure and Function of the Nervous System 1 Basic Features of the Nervous System Neuraxis: An imaginary line drawn through the center of the length of the central nervous system, from the

More information

A. General features of the basal ganglia, one of our 3 major motor control centers:

A. General features of the basal ganglia, one of our 3 major motor control centers: Reading: Waxman pp. 141-146 are not very helpful! Computer Resources: HyperBrain, Chapter 12 Dental Neuroanatomy Suzanne S. Stensaas, Ph.D. April 22, 2010 THE BASAL GANGLIA Objectives: 1. What are the

More information

DIFFERENTIAL DIAGNOSIS SARAH MARRINAN

DIFFERENTIAL DIAGNOSIS SARAH MARRINAN Parkinson s Academy Registrar Masterclass Sheffield DIFFERENTIAL DIAGNOSIS SARAH MARRINAN 17 th September 2014 Objectives Importance of age in diagnosis Diagnostic challenges Brain Bank criteria Differential

More information

Biological Bases of Behavior. 3: Structure of the Nervous System

Biological Bases of Behavior. 3: Structure of the Nervous System Biological Bases of Behavior 3: Structure of the Nervous System Neuroanatomy Terms The neuraxis is an imaginary line drawn through the spinal cord up to the front of the brain Anatomical directions are

More information

Pathogenesis of Degenerative Diseases and Dementias. D r. Ali Eltayb ( U. of Omdurman. I ). M. Path (U. of Alexandria)

Pathogenesis of Degenerative Diseases and Dementias. D r. Ali Eltayb ( U. of Omdurman. I ). M. Path (U. of Alexandria) Pathogenesis of Degenerative Diseases and Dementias D r. Ali Eltayb ( U. of Omdurman. I ). M. Path (U. of Alexandria) Dementias Defined: as the development of memory impairment and other cognitive deficits

More information

BASAL GANGLIA. Dr JAMILA EL MEDANY

BASAL GANGLIA. Dr JAMILA EL MEDANY BASAL GANGLIA Dr JAMILA EL MEDANY OBJECTIVES At the end of the lecture, the student should be able to: Define basal ganglia and enumerate its components. Enumerate parts of Corpus Striatum and their important

More information

A. General features of the basal ganglia, one of our 3 major motor control centers:

A. General features of the basal ganglia, one of our 3 major motor control centers: Reading: Waxman pp. 141-146 are not very helpful! Computer Resources: HyperBrain, Chapter 12 Dental Neuroanatomy Suzanne S. Stensaas, Ph.D. March 1, 2012 THE BASAL GANGLIA Objectives: 1. What are the main

More information

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. Descending Tracts I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. III: To define the upper and the lower motor neurons. 1. The corticonuclear

More information

Motor System Hierarchy

Motor System Hierarchy Motor Pathways Lectures Objectives Define the terms upper and lower motor neurons with examples. Describe the corticospinal (pyramidal) tract and the direct motor pathways from the cortex to the trunk

More information

Atypical Progressive Supranuclear Palsy With Corticospinal Tract Degeneration

Atypical Progressive Supranuclear Palsy With Corticospinal Tract Degeneration J Neuropathol Exp Neurol Copyright Ó 2006 by the American Association of Neuropathologists, Inc. Vol. 65, No. 4 April 2006 pp. 396Y405 ORIGINAL ARTICLE Atypical Progressive Supranuclear Palsy With Corticospinal

More information

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II 14. Ischemia and Infarction II Lacunar infarcts are small deep parenchymal lesions involving the basal ganglia, internal capsule, thalamus, and brainstem. The vascular supply of these areas includes the

More information

Neuropathology of Neurodegenerative Disorders Prof. Jillian Kril

Neuropathology of Neurodegenerative Disorders Prof. Jillian Kril Neurodegenerative disorders to be discussed Alzheimer s disease Lewy body diseases Frontotemporal dementia and other tauopathies Huntington s disease Motor Neuron Disease 2 Neuropathology of neurodegeneration

More information

Lecture XIII. Brain Diseases I - Parkinsonism! Brain Diseases I!

Lecture XIII. Brain Diseases I - Parkinsonism! Brain Diseases I! Lecture XIII. Brain Diseases I - Parkinsonism! Bio 3411! Wednesday!! Lecture XIII. Brain Diseases - I.! 1! Brain Diseases I! NEUROSCIENCE 5 th ed! Page!!Figure!!Feature! 408 18.9 A!!Substantia Nigra in

More information

ORIGINAL CONTRIBUTION. Apolipoprotein E 4 Is a Determinant for Alzheimer-Type Pathologic Features in Tauopathies, Synucleinopathies,

ORIGINAL CONTRIBUTION. Apolipoprotein E 4 Is a Determinant for Alzheimer-Type Pathologic Features in Tauopathies, Synucleinopathies, ORIGINAL CONTRIBUTION Apolipoprotein E 4 Is a Determinant for Alzheimer-Type Pathologic Features in Tauopathies, Synucleinopathies, and Frontotemporal Degeneration Keith A. Josephs, MST, MD; Yoshio Tsuboi,

More information

Damage on one side.. (Notes) Just remember: Unilateral damage to basal ganglia causes contralateral symptoms.

Damage on one side.. (Notes) Just remember: Unilateral damage to basal ganglia causes contralateral symptoms. Lecture 20 - Basal Ganglia Basal Ganglia (Nolte 5 th Ed pp 464) Damage to the basal ganglia produces involuntary movements. Although the basal ganglia do not influence LMN directly (to cause this involuntary

More information

Connections of basal ganglia

Connections of basal ganglia Connections of basal ganglia Introduction The basal ganglia, or basal nuclei, are areas of subcortical grey matter that play a prominent role in modulating movement, as well as cognitive and emotional

More information

Introduction to the Central Nervous System: Internal Structure

Introduction to the Central Nervous System: Internal Structure Introduction to the Central Nervous System: Internal Structure Objective To understand, in general terms, the internal organization of the brain and spinal cord. To understand the 3-dimensional organization

More information

Clinicopathologic and genetic aspects of hippocampal sclerosis. Dennis W. Dickson, MD Mayo Clinic, Jacksonville, Florida USA

Clinicopathologic and genetic aspects of hippocampal sclerosis. Dennis W. Dickson, MD Mayo Clinic, Jacksonville, Florida USA Clinicopathologic and genetic aspects of hippocampal sclerosis Dennis W. Dickson, MD Mayo Clinic, Jacksonville, Florida USA The hippocampus in health & disease A major structure of the medial temporal

More information

NACC Neuropathology (NP) Diagnosis Coding Guidebook

NACC Neuropathology (NP) Diagnosis Coding Guidebook Department of Epidemiology, School of Public Health and Community Medicine, University of Washington 4311 11 th Avenue NE #300 Seattle, WA 98105 phone: (206) 543-8637; fax: (206) 616-5927 e-mail: naccmail@u.washington.edu

More information

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative ORIGINAL RESEARCH E. Matsusue S. Sugihara S. Fujii T. Kinoshita T. Nakano E. Ohama T. Ogawa Cerebral Cortical and White Matter Lesions in Amyotrophic Lateral Sclerosis with Dementia: Correlation with MR

More information

Basal Ganglia. Today s lecture is about Basal Ganglia and it covers:

Basal Ganglia. Today s lecture is about Basal Ganglia and it covers: Basal Ganglia Motor system is complex interaction between Lower motor neurons (spinal cord and brainstem circuits) and Upper motor neurons (pyramidal and extrapyramidal tracts) plus two main regulators

More information

Familial dystonia with cerebral calcification

Familial dystonia with cerebral calcification Familial dystonia with cerebral calcification case report and genetic update M. Signaevski, A.K. Wszolek, A.J. Stoessel, R. Rademakers, and I.R. Mackenzie Vancouver General Hospital, BC, Canada Mayo Clinic

More information

Lecture 4 The BRAINSTEM Medulla Oblongata

Lecture 4 The BRAINSTEM Medulla Oblongata Lecture 4 The BRAINSTEM Medulla Oblongata Introduction to brainstem 1- Medulla oblongata 2- Pons 3- Midbrain - - - occupies the posterior cranial fossa of the skull. connects the narrow spinal cord

More information

Nsci 2100: Human Neuroanatomy 2017 Examination 3

Nsci 2100: Human Neuroanatomy 2017 Examination 3 Name KEY Lab Section Nsci 2100: Human Neuroanatomy 2017 Examination 3 On this page, write your name and lab section. On your bubble answer sheet, enter your name (last name, space, first name), internet

More information

Neuroradiology in the Ocular Motility Disorders :

Neuroradiology in the Ocular Motility Disorders : Neuroradiology in the Ocular Motility Disorders : I. Supranuclear Pathway 1 H y u ng-jin Kim, M.D. 1, 2, Byung Hoon Lim, M.D. 3, Jae Bum Na, M.D. Jae Hyoung Kim, M.D., Sung Hoon Chung, M.D. The supranuclear

More information

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific

More information

14 - Central Nervous System. The Brain Taft College Human Physiology

14 - Central Nervous System. The Brain Taft College Human Physiology 14 - Central Nervous System The Brain Taft College Human Physiology Development of the Brain The brain begins as a simple tube, a neural tube. The tube or chamber (ventricle) is filled with cerebrospinal

More information

Parts of the motor circuits

Parts of the motor circuits MOVEMENT DISORDERS Parts of the motor circuits cortical centers: there are centers in all the cortical lobes subcortical centers: caudate nucleus putamen pallidum subthalamical nucleus (Luys) nucleus ruber

More information

Dementia. Stephen S. Flitman, MD Medical Director 21st Century Neurology

Dementia. Stephen S. Flitman, MD Medical Director 21st Century Neurology Dementia Stephen S. Flitman, MD Medical Director 21st Century Neurology www.neurozone.org Dementia is a syndrome Progressive memory loss, plus Progressive loss of one or more cognitive functions: Language

More information

CN V! touch! pain! Touch! P/T!

CN V! touch! pain! Touch! P/T! CN V! touch! pain! Touch! P/T! Visual Pathways! L! R! B! A! C! D! LT! E! F! RT! G! hypothalamospinal! and! ALS! Vestibular Pathways! 1. Posture/Balance!!falling! 2. Head Position! 3. Eye-Head Movements

More information

Neurodegenerative Disease. April 12, Cunningham. Department of Neurosciences

Neurodegenerative Disease. April 12, Cunningham. Department of Neurosciences Neurodegenerative Disease April 12, 2017 Cunningham Department of Neurosciences NEURODEGENERATIVE DISEASE Any of a group of hereditary and sporadic conditions characterized by progressive dysfunction,

More information

MRI OF THE THALAMUS. Mohammed J. Zafar, MD, FAAN Kalamazoo, MI

MRI OF THE THALAMUS. Mohammed J. Zafar, MD, FAAN Kalamazoo, MI 1 MRI OF THE THALAMUS Mohammed J. Zafar, MD, FAAN Kalamazoo, MI Objectives: The thalamic nuclei can be involved in a wide variety of conditions. A systematic imaging approach would be useful for narrowing

More information

The Neuroscience of Music in Therapy

The Neuroscience of Music in Therapy Course Objectives The Neuroscience of Music in Therapy Unit I. Learn Basic Brain Information Unit II. Music in the Brain; Why Music Works Unit III. Considerations for Populations a. Rehabilitation b. Habilitation

More information

Basal nuclei, cerebellum and movement

Basal nuclei, cerebellum and movement Basal nuclei, cerebellum and movement MSTN121 - Neurophysiology Session 9 Department of Myotherapy Basal Nuclei (Ganglia) Basal Nuclei (Ganglia) Role: Predict the effects of various actions, then make

More information

Strick Lecture 4 March 29, 2006 Page 1

Strick Lecture 4 March 29, 2006 Page 1 Strick Lecture 4 March 29, 2006 Page 1 Basal Ganglia OUTLINE- I. Structures included in the basal ganglia II. III. IV. Skeleton diagram of Basal Ganglia Loops with cortex Similarity with Cerebellar Loops

More information

III./3.1. Movement disorders with akinetic rigid symptoms

III./3.1. Movement disorders with akinetic rigid symptoms III./3.1. Movement disorders with akinetic rigid symptoms III./3.1.1. Parkinson s disease Parkinson s disease (PD) is the second most common neurodegenerative disorder worldwide after Alzheimer s disease.

More information

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16 Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16 I. Introduction A. Appearance 1. physical 2. weight 3. relative weight B. Major parts of the brain 1. cerebrum 2.

More information

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a Chapter 13: Brain and Cranial Nerves I. Development of the CNS A. The CNS begins as a flat plate called the B. The process proceeds as: 1. The lateral sides of the become elevated as waves called a. The

More information

Biomedical Technology Research Center 2011 Workshop San Francisco, CA

Biomedical Technology Research Center 2011 Workshop San Francisco, CA Diffusion Tensor Imaging: Parkinson s Disease and Atypical Parkinsonism David E. Vaillancourt court1@uic.edu Associate Professor at UIC Departments t of Kinesiology i and Nutrition, Bioengineering, and

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

The Central Nervous System I. Chapter 12

The Central Nervous System I. Chapter 12 The Central Nervous System I Chapter 12 The Central Nervous System The Brain and Spinal Cord Contained within the Axial Skeleton Brain Regions and Organization Medical Scheme (4 regions) 1. Cerebral Hemispheres

More information

Organization of the nervous system 2

Organization of the nervous system 2 Organization of the nervous system 2 Raghav Rajan Bio 334 Neurobiology I August 22nd 2013 1 Orienting within the brain absolute axes and relative axes SUPERIOR (above) ANTERIOR (in front) Anterior/Posterior,

More information

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright.

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright. H2O -2 atoms of Hydrogen, 1 of Oxygen Hydrogen just has one single proton and orbited by one single electron Proton has a magnetic moment similar to the earths magnetic pole Also similar to earth in that

More information

Functional Distinctions

Functional Distinctions Functional Distinctions FUNCTION COMPONENT DEFICITS Start Basal Ganglia Spontaneous Movements Move UMN/LMN Cerebral Cortex Brainstem, Spinal cord Roots/peripheral nerves Plan Cerebellum Ataxia Adjust Cerebellum

More information

Brainstem. By Dr. Bhushan R. Kavimandan

Brainstem. By Dr. Bhushan R. Kavimandan Brainstem By Dr. Bhushan R. Kavimandan Development Ventricles in brainstem Mesencephalon cerebral aqueduct Metencephalon 4 th ventricle Mylencephalon 4 th ventricle Corpus callosum Posterior commissure

More information

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota Brainstem Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Change in Lab Sequence Week of Oct 2 Lab 5 Week of Oct 9 Lab 4 2 Goal Today Know the regions of the brainstem. Know

More information

Study Guide Unit 2 Psych 2022, Fall 2003

Study Guide Unit 2 Psych 2022, Fall 2003 Study Guide Unit 2 Psych 2022, Fall 2003 Subcortical Anatomy 1. Be able to locate the following structures and be able to indicate whether they are located in the forebrain, diencephalon, midbrain, pons,

More information

doi: /brain/awh488 Brain (2005), 128,

doi: /brain/awh488 Brain (2005), 128, doi:10.1093/brain/awh488 Brain (2005), 128, 1247 1258 Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson s syndrome and PSP-parkinsonism

More information

BRAINSTEM SYNDROMES OF NEURO-OPHTHALMOLOGICAL INTEREST

BRAINSTEM SYNDROMES OF NEURO-OPHTHALMOLOGICAL INTEREST BRAINSTEM SYNDROMES OF NEURO-OPHTHALMOLOGICAL INTEREST Steven L. Galetta, MD NYU Langone Medical Center New York, NY I. Anatomical Considerations The brain stem is about the size of a fat forefinger and

More information

The motor regulator. 1) Basal ganglia/nucleus

The motor regulator. 1) Basal ganglia/nucleus The motor regulator 1) Basal ganglia/nucleus Neural structures involved in the control of movement Basal Ganglia - Components of the basal ganglia - Function of the basal ganglia - Connection and circuits

More information

Dr. Farah Nabil Abbas. MBChB, MSc, PhD

Dr. Farah Nabil Abbas. MBChB, MSc, PhD Dr. Farah Nabil Abbas MBChB, MSc, PhD The Basal Ganglia *Functions in association with motor cortex and corticospinal pathways. *Regarded as accessory motor system besides cerebellum. *Receive most of

More information

Basal Ganglia. Steven McLoon Department of Neuroscience University of Minnesota

Basal Ganglia. Steven McLoon Department of Neuroscience University of Minnesota Basal Ganglia Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Graduate School Discussion Wednesday, Nov 1, 11:00am MoosT 2-690 with Paul Mermelstein (invite your friends)

More information

Spinal Cord Tracts DESCENDING SPINAL TRACTS: Are concerned with somatic motor function, modification of ms. tone, visceral innervation, segmental reflexes. Main tracts arise form cerebral cortex and others

More information

MULTI SYSTEM ATROPHY: REPORT OF TWO CASES Dipu Bhuyan 1, Rohit Kr. Chandak 2, Pankaj Kr. Patel 3, Sushant Agarwal 4, Debjanee Phukan 5

MULTI SYSTEM ATROPHY: REPORT OF TWO CASES Dipu Bhuyan 1, Rohit Kr. Chandak 2, Pankaj Kr. Patel 3, Sushant Agarwal 4, Debjanee Phukan 5 MULTI SYSTEM ATROPHY: REPORT OF TWO CASES Dipu Bhuyan 1, Rohit Kr. Chandak 2, Pankaj Kr. Patel 3, Sushant Agarwal 4, Debjanee Phukan 5 HOW TO CITE THIS ARTICLE: Dipu Bhuyan, Rohit Kr. Chandak, Pankaj Kr.

More information

ORIGINAL CONTRIBUTION. Deformation-Based Morphometry Reveals Brain Atrophy in Frontotemporal Dementia

ORIGINAL CONTRIBUTION. Deformation-Based Morphometry Reveals Brain Atrophy in Frontotemporal Dementia ORIGINAL CONTRIBUTION Deformation-Based Morphometry Reveals Brain Atrophy in Frontotemporal Dementia Valerie A. Cardenas, PhD; Adam L. Boxer, MD, PhD; Linda L. Chao, PhD; Maria L. Gorno-Tempini, MD, PhD;

More information

Gross Morphology of the Brain

Gross Morphology of the Brain Gross Morphology of the Brain Done by : Marah Marahleh & Razan Krishan *slides in bold Principal Parts of the Brain Cerebrum : largest part of the brain Diencephalon Thalamus & hypothalamus Cerebellum

More information

NACC Vascular Consortium. NACC Vascular Consortium. NACC Vascular Consortium

NACC Vascular Consortium. NACC Vascular Consortium. NACC Vascular Consortium NACC Vascular Consortium NACC Vascular Consortium Participating centers: Oregon Health and Science University ADC Rush University ADC Mount Sinai School of Medicine ADC Boston University ADC In consultation

More information

Telencephalon (Cerebral Hemisphere)

Telencephalon (Cerebral Hemisphere) Telencephalon (Cerebral Hemisphere) OUTLINE The Cortex - Lobes, Sulci & Gyri - Functional Subdivisions - Limbic Lobe & Limbic System The Subcortex - Basal Ganglia - White Matter (Internal Capsule) - Relations

More information

1.1. Parkinson disease

1.1. Parkinson disease 1.TREMOR 1.1. Parkinson disease Parkinson Disease Progressive disorder: tremor, rigidity, and slowness of movements Neuronal loss of the substantia nigra Non motor features (dementia and dysautonomia),

More information

Extrapyramidal Motor System. Basal Ganglia or Striatum. Basal Ganglia or Striatum 3/3/2010

Extrapyramidal Motor System. Basal Ganglia or Striatum. Basal Ganglia or Striatum 3/3/2010 Extrapyramidal Motor System Basal Ganglia or Striatum Descending extrapyramidal paths receive input from other parts of motor system: From the cerebellum From the basal ganglia or corpus striatum Caudate

More information

Course Calendar - Neuroscience

Course Calendar - Neuroscience 2006-2007 Course Calendar - Neuroscience Meeting Hours for entire semester: Monday - Friday 1:00-2:20 p.m. Room 1200, COM August 28 August 29 August 30 August 31 September 1 Course introduction, Neurocytology:

More information

Cheyenne 11/28 Neurological Disorders II. Transmissible Spongiform Encephalopathy

Cheyenne 11/28 Neurological Disorders II. Transmissible Spongiform Encephalopathy Cheyenne 11/28 Neurological Disorders II Transmissible Spongiform Encephalopathy -E.g Bovine4 Spongiform Encephalopathy (BSE= mad cow disease), Creutzfeldt-Jakob disease, scrapie (animal only) -Sporadic:

More information

SPATIAL PATTERNS OF THE TAU PATHOLOGY IN PROGRESSIVE SUPRANUCLEAR PALSY

SPATIAL PATTERNS OF THE TAU PATHOLOGY IN PROGRESSIVE SUPRANUCLEAR PALSY SPATIAL PATTERNS OF THE TAU PATHOLOGY IN PROGRESSIVE SUPRANUCLEAR PALSY Richard A. Armstrong 1* and Nigel J. Cairns 2 1 Vision Sciences, Aston University, Birmingham B4 7ET, UK; 2 Departments of Neurology,

More information

ORIGINAL CONTRIBUTION. Transcranial Brain Sonography Findings in Discriminating Between Parkinsonism and Idiopathic Parkinson Disease

ORIGINAL CONTRIBUTION. Transcranial Brain Sonography Findings in Discriminating Between Parkinsonism and Idiopathic Parkinson Disease ORIGINAL CONTRIBUTION Transcranial Brain Sonography Findings in Discriminating Between Parkinsonism and Idiopathic Parkinson Disease Uwe Walter, MD; Dirk Dressler, MD; omas Probst, MD; Alexander Wolters,

More information

Pathology and Sensitivity of Current Clinical Criteria in Corticobasal Syndrome

Pathology and Sensitivity of Current Clinical Criteria in Corticobasal Syndrome RESEARCH ARTICLE Pathology and Sensitivity of Current Clinical Criteria in Corticobasal Syndrome Haruka Ouchi, MD, 1 Yasuko Toyoshima, MD, PhD, 2 Mari Tada, MD, PhD, 2 Mutsuo Oyake, MD, PhD, 3 Izumi Aida,

More information

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D.

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D. COGNITIVE SCIENCE 107A Motor Systems: Basal Ganglia Jaime A. Pineda, Ph.D. Two major descending s Pyramidal vs. extrapyramidal Motor cortex Pyramidal system Pathway for voluntary movement Most fibers originate

More information

Parkinson s Disease in the Elderly A Physicians perspective. Dr John Coyle

Parkinson s Disease in the Elderly A Physicians perspective. Dr John Coyle Parkinson s Disease in the Elderly A Physicians perspective Dr John Coyle Overview Introduction Epidemiology and aetiology Pathogenesis Diagnosis and clinical features Treatment Psychological issues/ non

More information

Biological Bases of Behavior. 8: Control of Movement

Biological Bases of Behavior. 8: Control of Movement Biological Bases of Behavior 8: Control of Movement m d Skeletal Muscle Movements of our body are accomplished by contraction of the skeletal muscles Flexion: contraction of a flexor muscle draws in a

More information

DIRECT SURGERY FOR INTRA-AXIAL

DIRECT SURGERY FOR INTRA-AXIAL Kitakanto Med. J. (S1) : 23 `28, 1998 23 DIRECT SURGERY FOR INTRA-AXIAL BRAINSTEM LESIONS Kazuhiko Kyoshima, Susumu Oikawa, Shigeaki Kobayashi Department of Neurosurgery, Shinshu University School of Medicine,

More information

CEREBRUM & CEREBRAL CORTEX

CEREBRUM & CEREBRAL CORTEX CEREBRUM & CEREBRAL CORTEX Seonghan Kim Dept. of Anatomy Inje University, College of Medicine THE BRAIN ANATOMICAL REGIONS A. Cerebrum B. Diencephalon Thalamus Hypothalamus C. Brain Stem Midbrain Pons

More information

VL VA BASAL GANGLIA. FUNCTIONAl COMPONENTS. Function Component Deficits Start/initiation Basal Ganglia Spontan movements

VL VA BASAL GANGLIA. FUNCTIONAl COMPONENTS. Function Component Deficits Start/initiation Basal Ganglia Spontan movements BASAL GANGLIA Chris Cohan, Ph.D. Dept. of Pathology/Anat Sci University at Buffalo I) Overview How do Basal Ganglia affect movement Basal ganglia enhance cortical motor activity and facilitate movement.

More information

Cerebral Cortex 1. Sarah Heilbronner

Cerebral Cortex 1. Sarah Heilbronner Cerebral Cortex 1 Sarah Heilbronner heilb028@umn.edu Want to meet? Coffee hour 10-11am Tuesday 11/27 Surdyk s Overview and organization of the cerebral cortex What is the cerebral cortex? Where is each

More information

The Nervous System: Sensory and Motor Tracts of the Spinal Cord

The Nervous System: Sensory and Motor Tracts of the Spinal Cord 15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska Introduction Millions of sensory

More information

Teach-SHEET Basal Ganglia

Teach-SHEET Basal Ganglia Teach-SHEET Basal Ganglia Purves D, et al. Neuroscience, 5 th Ed., Sinauer Associates, 2012 Common organizational principles Basic Circuits or Loops: Motor loop concerned with learned movements (scaling

More information

Vascular Dementia. Laura Pedelty, PhD MD The University of Illinois at Chicago and Jesse Brown VA Medical Center

Vascular Dementia. Laura Pedelty, PhD MD The University of Illinois at Chicago and Jesse Brown VA Medical Center Vascular Dementia Laura Pedelty, PhD MD The University of Illinois at Chicago and Jesse Brown VA Medical Center none Disclosures Objectives To review the definition of Vascular Cognitive Impairment (VCI);

More information

Unit VIII Problem 5 Physiology: Cerebellum

Unit VIII Problem 5 Physiology: Cerebellum Unit VIII Problem 5 Physiology: Cerebellum - The word cerebellum means: the small brain. Note that the cerebellum is not completely separated into 2 hemispheres (they are not clearly demarcated) the vermis

More information

Deep Brain Stimulation Surgery for Parkinson s Disease

Deep Brain Stimulation Surgery for Parkinson s Disease Deep Brain Stimulation Surgery for Parkinson s Disease Demystifying Medicine 24 January 2012 Kareem A. Zaghloul, MD, PhD Staff Physician, Surgical Neurology Branch NINDS Surgery for Parkinson s Disease

More information

NIH Public Access Author Manuscript Mov Disord. Author manuscript; available in PMC 2009 May 18.

NIH Public Access Author Manuscript Mov Disord. Author manuscript; available in PMC 2009 May 18. NIH Public Access Author Manuscript Published in final edited form as: Mov Disord. 2008 August 15; 23(11): 1602 1605. doi:10.1002/mds.22161. Emergence of Parkinsons Disease in Essential Tremor: A Study

More information

Internal Organisation of the Brainstem

Internal Organisation of the Brainstem Internal Organisation of the Brainstem Major tracts and nuclei of the brainstem (Notes) The brainstem is the major pathway for tracts and houses major nuclei, that contain sensory, motor and autonomics

More information

Gross Organization I The Brain. Reading: BCP Chapter 7

Gross Organization I The Brain. Reading: BCP Chapter 7 Gross Organization I The Brain Reading: BCP Chapter 7 Layout of the Nervous System Central Nervous System (CNS) Located inside of bone Includes the brain (in the skull) and the spinal cord (in the backbone)

More information

Fluorodeoxyglucose Positron Emission Tomography in Richardson s Syndrome and Progressive Supranuclear Palsy-Parkinsonism

Fluorodeoxyglucose Positron Emission Tomography in Richardson s Syndrome and Progressive Supranuclear Palsy-Parkinsonism BRIEF REPORT Fluorodeoxyglucose Positron Emission Tomography in Richardson s Syndrome and Progressive Supranuclear Palsy-Parkinsonism Karin Srulijes, MD, 1,2 Matthias Reimold, MD, 3 Rajka M. Liscic, MD,

More information

MODULE 6: CEREBELLUM AND BASAL GANGLIA

MODULE 6: CEREBELLUM AND BASAL GANGLIA MODULE 6: CEREBELLUM AND BASAL GANGLIA This module will summarize the important neuroanatomical and key clinical concepts from Chapters 15 and 16 of the textbook for the course. The first part of this

More information

NEUROPATHOLOGY BRAIN CUTTING MANUAL LAST UPDATED ON 6/22/2015

NEUROPATHOLOGY BRAIN CUTTING MANUAL LAST UPDATED ON 6/22/2015 NEUROPATHOLOGY BRAIN CUTTING MANUAL LAST UPDATED ON 6/22/2015 Neuropathology Faculty involved in Brain Cutting: Dr. Sandra Camelo-Piragua Dr. Andrew Lieberman (Chief of the Division) Dr. Kathryn A. McFadden

More information

Movement Disorders. Psychology 372 Physiological Psychology. Background. Myasthenia Gravis. Many Types

Movement Disorders. Psychology 372 Physiological Psychology. Background. Myasthenia Gravis. Many Types Background Movement Disorders Psychology 372 Physiological Psychology Steven E. Meier, Ph.D. Listen to the audio lecture while viewing these slides Early Studies Found some patients with progressive weakness

More information

Outline of the next three lectures

Outline of the next three lectures Outline of the next three lectures Lecture 35 Anatomy of the human cerebral cortex gross and microscopic cell types connections Vascular supply of the cerebral cortex Disorders involving the cerebral cortex

More information

Transcranial sonography in movement disorders

Transcranial sonography in movement disorders Transcranial sonography in movement disorders Uwe Walter 1st Residential Training of the European Society of Neurosonology and Cerebral Hemodynamics September 7-12, 2008 Bertinoro, Italy Department of

More information

SWI including phase and magnitude images

SWI including phase and magnitude images On-line Table: MRI imaging recommendation and summary of key features Sequence Pathologies Visible Key Features T1 volumetric high-resolution whole-brain reformatted in axial, coronal, and sagittal planes

More information

Medical Neuroscience Tutorial Notes

Medical Neuroscience Tutorial Notes Medical Neuroscience Tutorial Notes Blood Supply to the Brain MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning

More information

Neuroanatomy. Dr. Maha ELBeltagy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan

Neuroanatomy. Dr. Maha ELBeltagy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 Types of brain fibers THE WHITE MATTER OF THE BRAIN The white matter

More information

Brainstem. Amadi O. Ihunwo, PhD School of Anatomical Sciences

Brainstem. Amadi O. Ihunwo, PhD School of Anatomical Sciences Brainstem Amadi O. Ihunwo, PhD School of Anatomical Sciences Lecture Outline Constituents Basic general internal features of brainstem External and Internal features of Midbrain Pons Medulla Constituents

More information

The Wonders of the Basal Ganglia

The Wonders of the Basal Ganglia Basal Ganglia The Wonders of the Basal Ganglia by Mackenzie Breton and Laura Strong /// https://kin450- neurophysiology.wikispaces.com/basal+ganglia Introduction The basal ganglia are a group of nuclei

More information

Parkinson s Disease. Sirilak yimcharoen

Parkinson s Disease. Sirilak yimcharoen Parkinson s Disease Sirilak yimcharoen EPIDEMIOLOGY ~1% of people over 55 years Age range 35 85 years peak age of onset is in the early 60s ~5% of cases characterized by an earlier age of onset (typically

More information

Dementia and Healthy Ageing : is the pathology any different?

Dementia and Healthy Ageing : is the pathology any different? Dementia and Healthy Ageing : is the pathology any different? Professor David Mann, Professor of Neuropathology, University of Manchester, Hope Hospital, Salford DEMENTIA Loss of connectivity within association

More information

Basal Ganglia George R. Leichnetz, Ph.D.

Basal Ganglia George R. Leichnetz, Ph.D. Basal Ganglia George R. Leichnetz, Ph.D. OBJECTIVES 1. To understand the brain structures which constitute the basal ganglia, and their interconnections 2. To understand the consequences (clinical manifestations)

More information