Development of the Nervous System

Size: px
Start display at page:

Download "Development of the Nervous System"

Transcription

1 Development of the Nervous System OBJECTIVES 1. Describe the formation and fate of the neural tube and neural crest. 2. Name and describe the formation of the primary and secondary embryological compartments of the CNS. Describe what they represent in the adult CNS. 3. Understand the role of growth factors and other molecular signals during development. 4. Understand the concept of cortical layering. Describe how cortical layers develop. Describe syndromes associated with defects in cortical proliferation and migration. 5. Understand postnatal mechanisms that result in maturation of the CNS (myelination, synaptogenesis, dendritic pruning, critical period). Development is a critical time for the nervous system. Insults that alter CNS development have great impact on the structure and function of the postnatal brain. These changes can lead to abnormal brain function involving cognition, intelligence, personality, behavior, seizures, function of sensory and motor systems and other properties. 1) During 3rd week of embryonic development: Ectoderm on the dorsal surface of the embryo thickens to become the neural plate. This invaginates to form the neural groove, which continues to deepen. The dorsal edges (neural folds) eventually fuse and the cylinder separates from the surface ectoderm to form the neural tube and neural crest. Neural crest gives rise to most of the spinal, cranial nerve, and autonomic ganglia including neurons and supporting cells (schwann cells, meninges). The neural tube becomes the central nervous system: cranial portion becomes the brain caudal portion becomes the spinal cord cavity becomes the ventricles and central canal of spinal cord Neural plate Day 15 Neural groove Neural folds Cross-section through embryo at each stage neural tube Closure of neural tube From: Neuroscience: Exploring the Brain, M.F.Bear, B.W.Connors, M.A.Paradiso, Lippincott, Developmental disorders result from failure of the neural tube to close or separate from surface ectoderm; rostral defects cause anencephaly, caudal defects cause spina bifida. 1

2 Defects vary in severity from a few defective vertebral arches (10% of population) to the CNS being an open pit continuous with the body surface. Dr Ostrow will discuss in more detail. From: Netter Spina bifida anencephaly 2

3 2) Overview of Changes in Neural Tube during Development weeks 4-36 The neural tube expands in size and undergoes bending near its anterior end in the region of the brainstem. The bending is important for the development of the cerebellum, shaping of the midbrain, pons, and medulla, and for repositioning the ventricular system toward the anterior surface Cerebral hemispheres show the greatest expansion and eventually over-grow the brainstem. Actual sizes compared to other figs. 25 days 5 months 8months 35 days 40 days 50 days 6 months 100 days 7 months 9 months From: Principles of Neural Development, Purves and Lichtman, Sinauer,

4 3) Early Changes in the Neural Tube Weeks 4-8 the neural tube develops three primary compartments (vesicles) and bends by week 4. These further develop into 5 secondary compartments by week 6, which will form the 5 major brain divisions. From: Dr. P.Phelps, Physiological Sci., UCLA Week 4 Week 4 Week 6 Dorsal View 4 weeks 6 weeks Side View Modified from Neuroanatomy by JD Fix, Williams&Wilkins, 1992 Cell proliferation and migration causes complex shape changes in the neural tube. 4

5 Fate of the embryonic compartments Prosencephalon Telencephalon Diencephalon Cerebral Hemispheres and Lateral Ventricle Dorsal Thalamus + Epi, Hypo, Sub Thalamus, Visual System, Pituitary, 3rd Ventricle Mesencephalon Mesencephalon Midbrain and Cerebral Aqueduct Rhombencephalon Metencephalon Myelencephalon Pons, Cerebellum, rostral half of 4th Ventricle Medulla, caudal half of 4th Ventricle Early Development of the Spinal Cord and Brainstem During the 5 th week, proliferating neurons in the dorsal half of the neural tube form the Alar Plate, where sensory neurons develop. This becomes the dorsal horn. The ventral half forms the Basal Plate, that will give rise to motor neurons of the ventral horn. In the spinal cord, these regions produce the characteristic butterfly appearance,. However, in the brainstem, the alar plate migrates laterally and the basal plate migrates dorsally so that sensory and motor nuclei lie lateral-medial to each other. alar plate Spinal Cord sensory areas basal plate motor areas Brainstem/Medulla Fourth ventricle Graphics from Marvin Sodicoff, Ph.D. Temple University School of Medicine 5

6 4) Nerve cells depend on molecular signals for survival and growth Nerve cell growth involves extension of axons and dendrites from the cell body, pathfinding to targets, and subsequent synaptogenesis with targets. These events are essential for development of normal structure and connectivity. To a large degree these depend on molecular signals provided by their targets. Growth Factors Nerve cells depend on growth factors for their survival; Without factor, neurons undergo apoptosis. Growth factors are synthesized and released by target tissues and they interact dynamically with nerve terminals by binding to them and modulating both survival and growth. Growth factors are limited in supply and they are available only to neurons that form synapses with targets. A key feature of neurodevelopment is that there is an initial overproduction of neurons that send axons toward their target. Since neurons depend on growth factors for their survival, only those neurons that form synapses with the target cells will be maintained. This is a fundamental way by which the nervous system allows the size of target tissues to control the number of neurons that supply them based on a competition to form a synapse with the target. Growth factors are released by many types of cells including neurons, muscle, glands and organs, and many non-neural cells (fibroblasts, macrophages, etc). Each population of nerve cells depends on a specific type of growth factor. Examples: Neurotrophins (Nerve Growth Factor family: NGF, BDNF-brain derived neurotrophic factor, NT-3, NT-4), CNTF-ciliary neurotrophic factor, GDNF-glial derived neurotrophic factor Growth factors continue to be synthesized in the ADULT brain and also regulate other important properties such as synaptic function and axon and dendrite branching. Major Questions: Are neurodegenerative diseases caused by decreased secretion of growth factors; Can growth factors be used therapeutically to rescue dying nerve cells. Growth of axons and dendrites occurs at their tips, where specialized, motile structures known as growth cones occur. Growth cones are guided to their targets by a variety of environmental signals. Extra Cellular Matrix (ECM) molecules provide an adhesive substrate for growing nerve fibers examples: collagens, fibronectin, laminins Cell Adhesion Molecules (CAMs) on cell membranes cause adhesion and fasciculation examples: NCAM, L1, cadherins (Ca ++ dependent) Secreted molecules and molecules expressed on cell membranes can attract or repel growing nerve tips. The signals that guide outgrowing nerve fibers are now recognized also to be important in guiding the growth of blood vessels to establish the vascular pattern for the body! 6

7 5) Development of the Cerebral Hemispheres and Cortex weeks 8-36 Adult cerebral hemispheres: 1. Cell bodies are located in a thin region of outer cortex (gray matter), axons are located deeper in a thick fiber layer (white matter), and some nuclei (cell bodies) are buried deep in the fiber layer. 2. Cortex is layered based on the types and positions of nerve cell bodies with regional differences; Neocortex has 6 layers, archicortex and paleocortex have 3 layers. The organization of cortical layers is critical to how the brain receives, processes, and transmits information. Failure to form layers results in deficits such as seizures and mental retardation. Cell bodies/grey matter axons/white matter Coronal section of adult brain stained (nissl) to show locations of cell bodies, which lie in a thin, external cortex. Magnified view of adult cortex showing cell bodies arranged in cortical layers 7

8 Embryonic brain is composed of thin telencephalic compartments containing scattered cells surrounding the internal space that will become the ventricles. How does the complex structure of the adult brain (1. large mass, 2. cortex/cell bodies on the external surface, and 3. cortex layered) develop from the simple embryonic form? ventricles Thin region of scattered cells Embryonic brain Answer: The hemispheres develop by proliferation and migration of neuroblasts in the wall of the embryonic telencephalic vesicles. This process 1) increases the mass of the telencephalic compartments, 2) allows neurons to migrate towards the pial surface where they form the cortex, and 3) results in the formation of cortical layers for information processing. How this happens: Neuroepithelial cells proliferate in a zone (subventricular zone) adjacent to the lateral ventricle of the telencephalic vesicle. Cell bodies of differentiating neurons migrate toward the pial surface either on their own or along fibers of radial glial cells that span the width between ventricle and pial surface. Note: the subventricular zone remains an important area in some regions of the adult brain where neuronal stem cells continue to form neurons even in adults. These areas have potential for harvesting stem cells for use in repairing damaged areas of the brain. Modified from Nadarajah et al, Nature Rev Neuro. 3:

9 Becomes cortex Becomes white matter sub(retains stem cells in adult in some brain areas.) Embryonic telencephalon Neuronal proliferation and migration results in thickening of telencephalic compartment, outer cortex of cell bodies, and inner fiber layer. As proliferation and migration proceed, telencephalic vesicles grow forward, upward and backward in a C shaped path covering subcortical structures. In the adult, many structures conform to this C-shape (e.g. lateral ventricles) Local differences in rate of proliferation cause gyri, sulci, and fissures between weeks 14 and 32. You should recognize that CNS development is characterized by: proliferation, migration, differentiation, synaptogenesis, myelination (mostly postnatal) Defects in proliferation and migration cause abnormalities such as: microcephaly - decreased brain size polymicrogyria or macrogyria - abnormally small or large gyri lissencephaly smooth cortex lacking gyri and sulci heterotopias misplaced gray matter schizencephaly clefts in hemisphere abnormal development of the corpus callosum (communication between hemispheres) Defects may affect specific areas of the brain and not others. They may cause a range of syndromes differing in degree including epilepsy, mental retardation, and death. 6) Threats to Normal Prenatal Development Teratogens are environmental substances that can impair fetal development. The timing, amount of exposure, and sensitivity of organs to these substances determines the magnitude of defects. Compounds such as alcohol, thalidomide (sedative), anti-seizure drugs, retinoic 9

10 acid (accutane) and other substances are known to alter early CNS development. These substances can result in disorders that permanently impair postnatal brain function. Normal CNS development also depends on maternal thyroid hormone and iodine, which cross the placenta. Maternal hypothyroidism or iodine deficiency result in Cretinism (mental retardation and other physical defects). 7) POSTNATAL Development What Changes Occur Pre and post -natal development are characterized by the cephalocaudal principle, i.e growth follows a pattern that starts with the head and upper body and proceeds down the rest of the body. Thus, an infant s head is disproportionately larger than it s body. Postnatal CNS development occurs over a long time course, at least until the end of the teen years. In fact, development more appropriately can be considered over the span of a lifetime. The brain triples in weight and reaches 3/4 adult size during the first 2 years!! This brain growth and the subsequent acquisition of new functional capabilities are due primarily to 3 types of postnatal changes within the CNS: 1. Myelination required by larger axons to conduct action potentials. The infant CNS is not fully functional until myelination of pathways has occurred by end of year Dendritic growth and pruning provide the opportunity for adjustments in input and connections from other neurons. The growth and retraction of dendrites as well as changes in number of spines are dynamic processes that are influenced by levels of activity in neural circuits. 3. Synapse Formation communication between neurons. This is a dynamic process in which connections between neurons are strengthened or weakened based on activity. Synapses peak in number postnatally! Environmental stimulation has a major impact on all 3 of the above processes. The growth/pruning of dendrites and the subsequent formation/loss of synaptic connections are controlled to a large extent by the use/disuse of circuits in the brain. Dendritic growth and synapse formation peak postnatally and then these are subsequently refined based on how circuits are used. This provides a fantastic capacity for adjusting communication between nerve cells, allowing brain function to be shaped by use. The formation and normal function of these circuits are not specified genetically (they are too great in number) so the brain relies on experience the way an infant is stimulated by and interacts with its environment. Thus, experience provides the mechanism for establishing the basic circuitry of the brain. These capabilities still persist throughout life to enable the CNS to continue to change in response 10

11 to experience (plasticity). However, the capacity to remodel the CNS is greatest early in life so that early experience has great implications for later functional capabilities of the CNS. Dangers of Lead: The earlier years are particularly sensitive to some toxic substances that can alter CNS function permanently. Heavy metal compounds such as lead can cause irreversible CNS damage and it is a constant threat to children who may ingest lead or breathe lead-based fuel byproducts from their environment. Critical Periods: Neural circuits are shaped in large part by an individual s experiences during sensitive periods of plasticity. Experiments with sensory systems have shown that normal sensory function in adults requires appropriate sensory stimulation at certain critical times during postnatal development. These critical periods are times when neuronal circuits are especially capable of dendritic and synaptic reorganization that establishes their capacity to process information. The early formation of functional circuits is required for normal function in the mature brain. For example, appropriate visual and auditory stimulation are required early in the postnatal period for subsequent normal development of vision and language capabilities. Absence of stimulation or abnormal stimulation during the critical period can permanently impair brain function. In a lesser way, sensitive periods also are recognized as opportune times in postnatal development that can influence, but not completely determine, functional capabilities in the mature brain. The concept of critical/sensitive periods probably applies to many CNS systems (sensory, motor, cognitive, emotional) because of the role of experience in the postnatal processes that control CNS maturation. The timing of sensitive periods may vary and some may extend over many years because brain structures mature at different rates and some (frontal lobes) do not complete maturation until the late teen years. Effects of Stress on Brain Development Prenatal Stress stress hormones (glucocorticoids) pass through the placenta and can affect brain development. glucocorticoids are important for normal brain maturation, axon and dendritic remodeling, and neuronal survival. However, abnormal levels of glucocorticoids can alter brain maturation with long term consequences as deficits in learning, mood (anxiety, depression), and sensitivity to addiction. Postnatal Stress a potent stimulus in animal experiments is separation of pups from the mother. This can alter glucocorticoid levels in the young with long term consequences on brain maturation and behavioral and emotional control. An environment of stable, stimulating, and protective relationships builds a strong foundation for a lifetime of effective learning. In contrast, when young children are burdened by significant adversity, stress response systems are overactivated, maturing brain circuits can be impaired, metabolic regulatory systems and developing organs can be disrupted, and the probabilities increase for long-term problems in learning, behavior, and physical and mental health. J.P.Shonkoff, Harvard Univ. Other recent studies have shown that supportive caregiving during the preschool years is associated with an increased size of brain areas involved in memory and learning. 11

12 Image References: 1. University of Leicester School of Medicine: 2. J.L.Driesen, PhD at 3. Dr. Patricia Phelps, Dept. of Physiological Science, UCLA and the Crump Institute for Biological Imaging. 12

Development of the Nervous System. Leah Militello, class of 2018

Development of the Nervous System. Leah Militello, class of 2018 Development of the Nervous System Leah Militello, class of 2018 Learning Objectives 1. Describe the formation and fate of the neural tube and neural crest including timing and germ layer involved. 2. Describe

More information

Development of the Nervous System 1 st month

Development of the Nervous System 1 st month Development of the Nervous System 1 st month day 1 - fertilization of egg day 6 - uterine implantation day 18 - trilaminar (3-layered) disc (blastoderm, embryo) ectoderm (dorsal) - nervous system and skin

More information

Neuroanatomy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Dr Maha ELBeltagy

Neuroanatomy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Dr Maha ELBeltagy Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Development of the Central Nervous System Development of the nervous system Development

More information

Biological Bases of Behavior. 3: Structure of the Nervous System

Biological Bases of Behavior. 3: Structure of the Nervous System Biological Bases of Behavior 3: Structure of the Nervous System Neuroanatomy Terms The neuraxis is an imaginary line drawn through the spinal cord up to the front of the brain Anatomical directions are

More information

Department of Cognitive Science UCSD

Department of Cognitive Science UCSD Department of Cognitive Science UCSD Verse 1: Neocortex, frontal lobe, Brain stem, brain stem, Hippocampus, neural node, Right hemisphere, Pons and cortex visual, Brain stem, brain stem, Sylvian fissure,

More information

Embryology of the Nervous System. Steven McLoon Department of Neuroscience University of Minnesota

Embryology of the Nervous System. Steven McLoon Department of Neuroscience University of Minnesota Embryology of the Nervous System Steven McLoon Department of Neuroscience University of Minnesota In the blastula stage embryo, the embryonic disk has two layers. During gastrulation, epiblast cells migrate

More information

Development of Brain Stem, Cerebellum and Cerebrum

Development of Brain Stem, Cerebellum and Cerebrum Development of Brain Stem, Cerebellum and Cerebrum The neural tube cranial to the 4th pair of somites develop into the brain. 3 dilatations and 2 flexures form at the cephalic end of the neural tube during

More information

Brain Development III

Brain Development III Brain Development III Neural Development In the developing nervous system there must be: 1. The formation of different regions of the brain. 2. The ability of a neuron to differentiate. 3. The ability

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota 1 Coffee Hour Tuesday (Sept 11) 10:00-11:00am Friday (Sept 14) 8:30-9:30am Surdyk s

More information

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004 Chapter 3 Structure and Function of the Nervous System 1 Basic Features of the Nervous System Neuraxis: An imaginary line drawn through the center of the length of the central nervous system, from the

More information

CHAPTER 48: NERVOUS SYSTEMS

CHAPTER 48: NERVOUS SYSTEMS CHAPTER 48: NERVOUS SYSTEMS Name I. AN OVERVIEW OF NERVOUS SYSTEMS A. Nervous systems perform the three overlapping functions of sensory input, integration, and motor output B. Networks of neurons with

More information

1. The basic anatomy of the Central Nervous System (CNS)

1. The basic anatomy of the Central Nervous System (CNS) Psyc 311A, fall 2008 Conference week 1 Sept 9 th to 11 th TA: Jürgen Germann; e-mail: jurgen.germann@mcgill.ca Overview: 1. The basic anatomy of the Central Nervous System (CNS) 2. Cells of the CNS 3.

More information

Review of Nervous System Anatomy

Review of Nervous System Anatomy For the real amazement, if you wish to be amazed, is this process. You start out as a single cell derived from the coupling of a sperm and an egg; this divides in two, then four, then eight, and so on,

More information

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Objectives By the end of the lecture, you should be able to: List the parts of the nervous system. List the function of the nervous system.

More information

CNS Developmental. Anke van Eekelen, PhD. Telethon Institute for Child Health Research

CNS Developmental. Anke van Eekelen, PhD. Telethon Institute for Child Health Research CNS Developmental Anke van Eekelen, PhD Telethon Institute for Child Health Research (Some slides are modified versions of Prof. Alan Harvey s Neuroscience lecture at ANHB and Dr. Joanne Britto s Dev Neuroscience

More information

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Objectives At the end of the lecture, the students should be able to: List the parts of the nervous system. List the function

More information

The Nervous System PART B

The Nervous System PART B 7 The Nervous System PART B PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Reflex Arc Reflex

More information

Nervous System: Part IV The Central Nervous System The Brain

Nervous System: Part IV The Central Nervous System The Brain Nervous System: Part IV The Central Nervous System The Brain Can you survive when part of your brain is destroyed? 2 Essential Knowledge 3.D.2 2. Cells communicate with each other through direct contact

More information

Development of the Central Nervous System

Development of the Central Nervous System Development of the Central Nervous System an ongoing process, through adolescence and maybe even adult hood? the nervous system is plastic Experience plays a key role Dire consequences when something goes

More information

The Nervous System 7PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

The Nervous System 7PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Nervous System 7PART B What is a reflex? What is a reflex? What is meant by the statement that

More information

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23 Neurodevelopment II Structure Formation Reading: BCP Chapter 23 Phases of Development Ovum + Sperm = Zygote Cell division (multiplication) Neurogenesis Induction of the neural plate Neural proliferation

More information

MIDTERM EXAM 1 COGNITIVE SCIENCE 107A

MIDTERM EXAM 1 COGNITIVE SCIENCE 107A MIDTERM EXAM 1 COGNITIVE SCIENCE 107A FALL 2011 Name: Points: / 100 PID: I. SHORT ANSWERS (6 points each for a total of 30 points) 1. Describe two contributions made by Ramon y Cajal (1852-1934) in terms

More information

Announcement. Danny to schedule a time if you are interested.

Announcement.  Danny to schedule a time if you are interested. Announcement If you need more experiments to participate in, contact Danny Sanchez (dsanchez@ucsd.edu) make sure to tell him that you are from LIGN171, so he will let me know about your credit (1 point).

More information

Neurology study of the nervous system. nervous & endocrine systems work together to maintain homeostasis

Neurology study of the nervous system. nervous & endocrine systems work together to maintain homeostasis Nervous System Neurology study of the nervous system nervous & endocrine systems work together to maintain homeostasis Nervous System works very fast Uses electrical signals called nerve impulses Short-lived

More information

Chapter 9. Nervous System

Chapter 9. Nervous System Chapter 9 Nervous System Central Nervous System (CNS) vs. Peripheral Nervous System(PNS) CNS Brain Spinal cord PNS Peripheral nerves connecting CNS to the body Cranial nerves Spinal nerves Neurons transmit

More information

Huntington s Disease & MARY ET BOYLE, PH.D. DEPARTMENT OF COGNITIVE SCIENCE

Huntington s Disease & MARY ET BOYLE, PH.D. DEPARTMENT OF COGNITIVE SCIENCE Huntington s Disease & Early Nervous System Development MARY ET BOYLE, PH.D. DEPARTMENT OF COGNITIVE SCIENCE UCSD The cups fell to the floor with a crash. Was this the alarm signal? Or was it forgetting

More information

Nervous System. Lecture 4

Nervous System. Lecture 4 Nervous System Lecture 4 Neurons Functional unit of the nervous system Also called the nerve cell Soma or body Axon Dendrites Neuroglial cells support cells Schwann cells produce myelin in PNS Oligodendrocytes

More information

The Nervous System. Functions of the Nervous System input gathering To monitor occurring inside and outside the body Changes =

The Nervous System. Functions of the Nervous System input gathering To monitor occurring inside and outside the body Changes = The Nervous System Functions of the Nervous System input gathering To monitor occurring inside and outside the body Changes = To process and sensory input and decide if is needed output A response to integrated

More information

COGNITIVE SCIENCE 107A MIDTERM EXAM 1 - FALL Name: PID: Total Pts: /100pts

COGNITIVE SCIENCE 107A MIDTERM EXAM 1 - FALL Name: PID: Total Pts: /100pts COGNITIVE SCIENCE 107A MIDTERM EXAM 1 - FALL 2009 Name: PID: Total Pts: /100pts I. SHORT ANSWERS (5 points each for a total of 30 points) 1. Label the three meningeal layers in the following diagram. Describe

More information

PSY 215 Lecture #5 (01/26/2011) (Anatomy of the Brain) Dr. Achtman PSY 215. Lecture 5 Anatomy of the Brain Chapter 4, pages 86-96

PSY 215 Lecture #5 (01/26/2011) (Anatomy of the Brain) Dr. Achtman PSY 215. Lecture 5 Anatomy of the Brain Chapter 4, pages 86-96 Corrections: none needed PSY 215 Lecture 5 Anatomy of the Brain Chapter 4, pages 86-96 Announcements: Reminder: The first midterm is in one week! Everyone is encouraged to start studying (recommend 30/night

More information

Early Development of Neural Tube Development of Medulla Spinalis and Peripheral Nervous System. Assoc.Prof. E.Elif Güzel, M.D.

Early Development of Neural Tube Development of Medulla Spinalis and Peripheral Nervous System. Assoc.Prof. E.Elif Güzel, M.D. Early Development of Neural Tube Development of Medulla Spinalis and Peripheral Nervous System Assoc.Prof. E.Elif Güzel, M.D. Third week of Embryogenesis Primitive streak/pit appears on the epiblast (day

More information

From Implantation to Neural Tube

From Implantation to Neural Tube By 28 weeks after conception, brain has virtually all the neurons it will ever have. At birth, the brain weighs about.75lb (25% of adult weight) At 3 years of age, 80% of adult weight. At 5 years of age,

More information

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a Chapter 13: Brain and Cranial Nerves I. Development of the CNS A. The CNS begins as a flat plate called the B. The process proceeds as: 1. The lateral sides of the become elevated as waves called a. The

More information

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System)

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Student Lab #: Date 1 Objectives: 1. Learn the main components making up a motor neuron.

More information

Fig.9.2. Structure of embryonic brain

Fig.9.2. Structure of embryonic brain T Chapter 9 Development of Ectodermal Organs he ectoderm gives rise to 3 separate cell populations: neural(plate) ectoderm, neural crest cells, and epiderm (general body ectoderm). A primordium (anlage)

More information

BRAIN DEVELOPMENT I: ESTABLISHMENT OF BASIC ARCHITECTURE. Thomas Marino, Ph.D.

BRAIN DEVELOPMENT I: ESTABLISHMENT OF BASIC ARCHITECTURE. Thomas Marino, Ph.D. BRAIN DEVELOPMENT I: ESTABLISHMENT OF BASIC ARCHITECTURE Thomas Marino, Ph.D. Development of the Brain I. Competencies: Upon completion of this section of the course, the student must be able to: 1. Understand

More information

Sheep Brain Dissection

Sheep Brain Dissection Sheep Brain Dissection Mammalian brains have many features in common. Human brains may not be available, so sheep brains often are dissected as an aid to understanding the mammalian brain since he general

More information

Parts of the Brain. Hindbrain. Controls autonomic functions Breathing, Heartbeat, Blood pressure, Swallowing, Vomiting, etc. Upper part of hindbrain

Parts of the Brain. Hindbrain. Controls autonomic functions Breathing, Heartbeat, Blood pressure, Swallowing, Vomiting, etc. Upper part of hindbrain Parts of the Brain The human brain is made up of three main parts: 1) Hindbrain (or brainstem) Which is made up of: Myelencephalon Metencephalon 2) Midbrain Which is made up of: Mesencephalon 3) Forebrain

More information

Option A: Neurobiology & Behavior HL BIOLOGY 2 ND EDITION DAMON, MCGONEGAL, TOSTO, AND

Option A: Neurobiology & Behavior HL BIOLOGY 2 ND EDITION DAMON, MCGONEGAL, TOSTO, AND Option A: Neurobiology & Behavior A1: NEURAL DEVELOPMENT USE THE INFO IN THE PRESENTATION TO COMPLETE A1 NOTES GUIDE INFORMATION TAKEN FROM: HL BIOLOGY 2 ND EDITION DAMON, MCGONEGAL, TOSTO, AND WARD BIOLOGY

More information

Central nervous system (CNS): brain and spinal cord Collections of cell body and dendrites (grey matter) are called nuclei/nucleus Nucleus can also

Central nervous system (CNS): brain and spinal cord Collections of cell body and dendrites (grey matter) are called nuclei/nucleus Nucleus can also Chapter 3 Part 1 Orientation Directions in the nervous system are described relatively to the neuraxis An imaginary line drawn through the center of the length of the central nervous system, from the bottom

More information

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens Systems Neuroscience Dan Kiper Today: Wolfger von der Behrens wolfger@ini.ethz.ch 18.9.2018 Neurons Pyramidal neuron by Santiago Ramón y Cajal (1852-1934, Nobel prize with Camillo Golgi in 1906) Neurons

More information

Title: Chapter 5 Recorded Lecture. Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu

Title: Chapter 5 Recorded Lecture. Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu Title: Chapter 5 Recorded Lecture Speaker: Title: What Anthony is the title Berger/Angela of this lecture? Williams Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu Chapter

More information

Biology 3201 Nervous System #2- Anatomy. Components of a Nervous System

Biology 3201 Nervous System #2- Anatomy. Components of a Nervous System Biology 3201 Nervous System #2- Anatomy Components of a Nervous System In any nervous system, there are 4 main components: (1) sensors: gather information from the external environment (sense organs) (2)

More information

Central Nervous System Practical Exam. Chapter 12 Nervous System Cells. 1. Please identify the flagged structure.

Central Nervous System Practical Exam. Chapter 12 Nervous System Cells. 1. Please identify the flagged structure. Central Nervous System Practical Exam Chapter 12 Nervous System Cells 1. Please identify the flagged structure. 2. Please identify the flagged structure. 3. Please identify the flagged structure. 4. A

More information

Brain Architecture and Function Parts Size and Cognition

Brain Architecture and Function Parts Size and Cognition Brain Architecture and Function Parts Size and Cognition Q: In what way has paedomorphosis been important in human evolution? Brain Architecture F F F F H H 3 Q. How d we get to this point? Evolutionary

More information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information NERVOUS SYSTEM Monitor changes External / internal Integrate input Primary Functions Process, interpret, make decisions, store information Initiate a response E.g., movement, hormone release, stimulate/inhibit

More information

BRAIN PART I (A & B): VENTRICLES & MENINGES

BRAIN PART I (A & B): VENTRICLES & MENINGES BRAIN PART I (A & B): VENTRICLES & MENINGES Cranial Meninges Cranial meninges are continuous with spinal meninges Dura mater: inner layer (meningeal layer) outer layer (endosteal layer) fused to periosteum

More information

Ch 13: Central Nervous System Part 1: The Brain p 374

Ch 13: Central Nervous System Part 1: The Brain p 374 Ch 13: Central Nervous System Part 1: The Brain p 374 Discuss the organization of the brain, including the major structures and how they relate to one another! Review the meninges of the spinal cord and

More information

Somatic Nervous Systems. III. Autonomic Nervous System. Parasympathetic Nervous System. Sympathetic Nervous Systems

Somatic Nervous Systems. III. Autonomic Nervous System. Parasympathetic Nervous System. Sympathetic Nervous Systems 7/21/2014 Outline Nervous System - PNS and CNS I. II. Two Parts of the Nervous System Central Nervous System vs Peripheral Nervous System Peripheral Nervous System A. B. Brain and Spinal Cord III. Autonomic

More information

Gross Organization I The Brain. Reading: BCP Chapter 7

Gross Organization I The Brain. Reading: BCP Chapter 7 Gross Organization I The Brain Reading: BCP Chapter 7 Layout of the Nervous System Central Nervous System (CNS) Located inside of bone Includes the brain (in the skull) and the spinal cord (in the backbone)

More information

Cephalization. Nervous Systems Chapter 49 11/10/2013. Nervous systems consist of circuits of neurons and supporting cells

Cephalization. Nervous Systems Chapter 49 11/10/2013. Nervous systems consist of circuits of neurons and supporting cells Nervous Systems Chapter 49 Cephalization Nervous systems consist of circuits of neurons and supporting cells Nervous system organization usually correlates with lifestyle Organization of the vertebrate

More information

Inner ear development Nervous system development

Inner ear development Nervous system development Upcoming Sessions April 22: Nervous System Development Lecture April 24: Reviews of Axonal Pathfinding in Sensory Systems April 29: Inner Ear Development Lecture May 1: May 6: May 8: Auditory System Pathfinding

More information

Chapter 14: Nervous System Guided Notes (A-day)

Chapter 14: Nervous System Guided Notes (A-day) Chapter 14: Nervous System Guided Notes (A-day) Nervous System Overview Major Function: Control the body's and. Divided into the Nervous System (CNS=Brain and Spinal Cord) and the Nervous System (PNS=Cranial

More information

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1 Lesson 14 The Nervous System Introduction to Life Processes - SCI 102 1 Structures and Functions of Nerve Cells The nervous system has two principal cell types: Neurons (nerve cells) Glia The functions

More information

3/15/17. Outline. Nervous System - PNS and CNS. Two Parts of the Nervous System

3/15/17. Outline. Nervous System - PNS and CNS. Two Parts of the Nervous System Nervous System - PNS and CNS Bio 105 Outline I. Central Nervous System vs Peripheral Nervous System II. Peripheral Nervous System A. Autonomic Nervous Systems B. Somatic Nervous Systems III. Autonomic

More information

Nervous System - PNS and CNS. Bio 105

Nervous System - PNS and CNS. Bio 105 Nervous System - PNS and CNS Bio 105 Outline I. Central Nervous System vs Peripheral Nervous System II. Peripheral Nervous System A. Autonomic Nervous Systems B. Somatic Nervous Systems III. Autonomic

More information

Composed of gray matter and arranged in raised ridges (gyri), grooves (sulci), depressions (fissures).

Composed of gray matter and arranged in raised ridges (gyri), grooves (sulci), depressions (fissures). PSYC1020 Neuro and Pysc Notes Structure Description Major Functions Brainstem Stemlike portion of the brain, continuous with diencephalon above and spinal cord below. Composed of midbrain, pons, medulla

More information

NOTES CHAPTER 9 (Brief) The Nervous System LECTURE NOTES

NOTES CHAPTER 9 (Brief) The Nervous System LECTURE NOTES NOTES CHAPTER 9 (Brief) The Nervous System LECTURE NOTES I. Divisions of the Nervous System two major divisions A. Central Nervous System (CNS) 1. brain 2. spinal cord B. Peripheral Nervous System (PNS)

More information

Anatomy Lab (1) Theoretical Part. Page (2 A) Page (2B)

Anatomy Lab (1) Theoretical Part. Page (2 A) Page (2B) Anatomy Lab (1) This sheet only includes the extra notes for the lab handout regarding the theoretical part, as for the practical part it includes everything the doctor mentioned. Theoretical Part Page

More information

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system:

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system: Central Nervous System (CNS) -> brain and spinal cord Major Divisions of the nervous system: Afferent (sensory input) -> cell bodies outside of the central nervous system (CNS), carry info into the CNS

More information

The nervous system regulates most body systems using direct connections called nerves. It enables you to sense and respond to stimuli

The nervous system regulates most body systems using direct connections called nerves. It enables you to sense and respond to stimuli The nervous system regulates most body systems using direct connections called nerves. It enables you to sense and respond to stimuli The basic function of nervous system are: Receive sensory input internal

More information

Nervous system, integration: Overview, and peripheral nervous system:

Nervous system, integration: Overview, and peripheral nervous system: Nervous system, integration: Overview, and peripheral nervous system: Some review & misc. parts [Fig. 28.11B, p. 573]: - white matter --> looks white due to the myelinated sheaths, which are quite fatty.

More information

Big Ideas. (e.g. puberty, immune function (autoimmune disorders)) 2011 Pearson Education, Inc.

Big Ideas. (e.g. puberty, immune function (autoimmune disorders)) 2011 Pearson Education, Inc. Nervous Systems Big Ideas 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. (e.g. puberty,

More information

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. !

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. ! Chapter 17 Sensory receptor Sensory input Integration Nervous System Motor output Brain and spinal cord Effector cells Peripheral nervous system (PNS) Central nervous system (CNS) 28.1 Nervous systems

More information

Anatomy & Physiology Central Nervous System Worksheet

Anatomy & Physiology Central Nervous System Worksheet 1. What are the two parts of the CNS? 2. What are the four functions of the CNS Anatomy & Physiology Central Nervous System Worksheet 3. What are the four functions of the meninges? (p430) 4. Starting

More information

Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon

Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon Page 22 of 237 Conduct impulses away from cell body Impulses arise from

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Levels of organization Central Nervous System 1m 10 11 neurons Neural systems and neuroanatomy Systems 10cm Networks 1mm Neurons 100μm 10 8 neurons Professor Daniel Leeds

More information

The Human Brain. I Think Therefore I am

The Human Brain. I Think Therefore I am The Human Brain I Think Therefore I am The Beginning The simplest creatures have very simple nervous systems made up of nothing but a bunch of nerve cells They have neural nets, individual neurons linked

More information

14 - Central Nervous System. The Brain Taft College Human Physiology

14 - Central Nervous System. The Brain Taft College Human Physiology 14 - Central Nervous System The Brain Taft College Human Physiology Development of the Brain The brain begins as a simple tube, a neural tube. The tube or chamber (ventricle) is filled with cerebrospinal

More information

Development of Spinal Cord & Vertebral Column. Dr. Sanaa Alshaarawi & Prof. Ahmed Fathalla

Development of Spinal Cord & Vertebral Column. Dr. Sanaa Alshaarawi & Prof. Ahmed Fathalla Development of Spinal Cord & Vertebral Column Dr. Sanaa Alshaarawi & Prof. Ahmed Fathalla OBJECTIVES At the end of the lecture, students should be able to: q Describe the development of the spinal cord

More information

CHAPTER 13&14: The Central Nervous System. Anatomy of the CNS

CHAPTER 13&14: The Central Nervous System. Anatomy of the CNS CHAPTER 13&14: The Central Nervous System Anatomy of the CNS in human consists of brain and spinal cord as stated earlier neurons have little support from their extracellular matrix and depend on glial

More information

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall Biology 1 of 37 35-3 Divisions of the Nervous 2 of 37 The Nervous The human nervous system has two major divisions: central nervous system peripheral nervous system 3 of 37 The Central Nervous The Central

More information

Chapter 7 The Nervous System

Chapter 7 The Nervous System Chapter 7 The Nervous System Fxns of the Nervous System 1. Sensory input gathering information To monitor Δs occurring inside and outside the body (Δs = stimuli) 2. Integration to process and interpret

More information

Good Morning! Take out your notes and vocab 1-10! Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Good Morning! Take out your notes and vocab 1-10! Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings Good Morning! Take out your notes and vocab 1-10! Functions of the Nervous System 1. Sensory input gathering information To monitor changes occurring inside and outside the body (changes = stimuli) 2.

More information

Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves

Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves Question No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully, (2) Work the problems on paper as needed,

More information

The Brain Worksheet Sections 5-7

The Brain Worksheet Sections 5-7 The Brain Worksheet Sections 5-7 1. neuroglia 2. autonomic nervous system 3. sensory neurons 4. oligodendrocytes 5. ascending tracts 6. descending tracts 7. saltatory propagation 8. continuous propagation

More information

All questions below pertain to mandatory material: all slides, and mandatory homework (if any).

All questions below pertain to mandatory material: all slides, and mandatory homework (if any). ECOL 182 Spring 2008 Dr. Ferriere s lectures Lecture 6: Nervous system and brain Quiz Book reference: LIFE-The Science of Biology, 8 th Edition. http://bcs.whfreeman.com/thelifewire8e/ All questions below

More information

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40 biological psychology, p. 40 The specialized branch of psychology that studies the relationship between behavior and bodily processes and system; also called biopsychology or psychobiology. neuroscience,

More information

The Central Nervous System I. Chapter 12

The Central Nervous System I. Chapter 12 The Central Nervous System I Chapter 12 The Central Nervous System The Brain and Spinal Cord Contained within the Axial Skeleton Brain Regions and Organization Medical Scheme (4 regions) 1. Cerebral Hemispheres

More information

BIOL241 - Lecture 12a

BIOL241 - Lecture 12a Cranial Nerves, source: training.seer.cancer.gov Nervous System Overview BIOL241 - Lecture 12a 1 Topics Divisions of the NS: CNS and PNS Structure and types of neurons Synapses Structure and function of

More information

Okami Study Guide: Chapter 2 1

Okami Study Guide: Chapter 2 1 Okami Study Guide: Chapter 2 1 Chapter Test 1. A cell that receives information and transmits it to other cells via an electrochemical process is called a(n) a. neuron b. hormone c. glia d. endorphin Answer:

More information

Introduction and Basic structural organization of the nervous system

Introduction and Basic structural organization of the nervous system Introduction and Basic structural organization of the nervous system **the slides are in bold and the book is in red Done by : razan krishan & marah marahleh INTRODUCTION The nervous system, along with

More information

Leah Militello, class of 2018

Leah Militello, class of 2018 Leah Militello, class of 2018 Objectives 1. Describe the general organization of cerebral hemispheres. 2. Describe the locations and features of the different functional areas of cortex. 3. Understand

More information

The Nervous System: Central Nervous System

The Nervous System: Central Nervous System The Nervous System: Central Nervous System I. Anatomy of the nervous system A. The CNS & the body by: 1. monitoring of the body 2. & information between parts of the body 3. acting as a to gather, store,

More information

Biology 218 Human Anatomy

Biology 218 Human Anatomy Chapter 17 Adapted form Tortora 10 th ed. LECTURE OUTLINE A. Overview of the Nervous System (p. 537) 1. The nervous system and the endocrine system are the body s major control and integrating centers.

More information

Neuroanatomy lecture (1)

Neuroanatomy lecture (1) Neuroanatomy lecture (1) Introduction: Neuroanatomy has two parts: the central and peripheral nervous system. The central nervous system is composed of brain and spinal cord. The brain has the following

More information

Unit Three. The brain includes: cerebrum, diencephalon, brain stem, & cerebellum. The brain lies within the cranial cavity of the skull.

Unit Three. The brain includes: cerebrum, diencephalon, brain stem, & cerebellum. The brain lies within the cranial cavity of the skull. Human Anatomy & Physiology 11 Divisions of the Nervous System Karen W. Smith, Instructor Unit Three BRAIN & SPINAL CORD Refer to the following URLs. Be sure to study these along with your book. http://www.sirinet.net/~jgjohnso/nervous.html

More information

Laboratory Manual for Comparative Anatomy and Physiology Figure 15.1 Transparency Master 114

Laboratory Manual for Comparative Anatomy and Physiology Figure 15.1 Transparency Master 114 Neuron Capillary Astrocyte Microglial cell Neuron Fluid-filled cavity Process of oligodendrocyte Ependymal cells Brain or spinal cord tissue Myelin sheath Nerve fibers Figure 15.1 Transparency Master 114

More information

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16:

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16: Lesson 33 Lesson Outline: Nervous System Structure and Function Neuronal Tissue Supporting Cells Neurons Nerves Functional Classification of Neuronal Tissue Organization of the Nervous System Peripheral

More information

meninges Outermost layer of the meninge dura mater arachnoid mater pia mater membranes located between bone and soft tissue of the nervous system

meninges Outermost layer of the meninge dura mater arachnoid mater pia mater membranes located between bone and soft tissue of the nervous system membranes located between bone and soft tissue of the nervous system meninges Outermost layer of the meninge dura mater middle layer of the meninges, contains no blood vessels arachnoid mater Innermost

More information

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m.

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m. Normal CNS, Special Senses, Head and Neck TOPIC: CEREBRAL HEMISPHERES FACULTY: LECTURE: READING: P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center Wednesday, 16 March

More information

Functional Organization of the Central Nervous System

Functional Organization of the Central Nervous System Functional Organization of the Central Nervous System Hierarchical orgnization CNS consists of the brain and the spinal cord The brain analyzes and interprets the information Response messages are

More information

Unit 3 : Nervous System

Unit 3 : Nervous System Unit 3 : Nervous System Mind Map Structural Classification The nervous Tissue Disorders of The nervous system Nervous System Central Nervous System Peripheral Nervous System The brain Spinal Cord Sensory

More information

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3)

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3) UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM State the 3 functions of the nervous system. Briefly describe the general function(s) of each of the following neuron types: a) SENSORY NEURONS: b) INTERNEURONS: c)

More information

Biology 4361 Developmental Biology Gilbert Ch. 12. The Emergence of the Ectoderm: Central Nervous System and Epidermis November 30, 2006

Biology 4361 Developmental Biology Gilbert Ch. 12. The Emergence of the Ectoderm: Central Nervous System and Epidermis November 30, 2006 Biology 4361 Developmental Biology Gilbert Ch. 12. The Emergence of the Ectoderm: Central Nervous System and Epidermis November 30, 2006 Establishing the Neural Cells - neural plate - portion of the dorsal

More information

The Nervous System. Lab Exercise 29. Objectives. Introduction

The Nervous System. Lab Exercise 29. Objectives. Introduction Lab Exercise The Nervous System Objectives -You should be able to recognize a neuron and identify its components. - Be able to identify the principal components of the brain and be able to name at least

More information

Lecture - Chapter 13: Central Nervous System

Lecture - Chapter 13: Central Nervous System Lecture - Chapter 13: Central Nervous System 1. Describe the following structures of the brain, what is the general function of each: a. Cerebrum b. Diencephalon c. Brain Stem d. Cerebellum 2. What structures

More information

TABLE OF CONTINENTS. PSYC1002 Notes. Neuroscience.2. Cognitive Processes Learning and Motivation. 37. Perception Mental Abilities..

TABLE OF CONTINENTS. PSYC1002 Notes. Neuroscience.2. Cognitive Processes Learning and Motivation. 37. Perception Mental Abilities.. TABLE OF CONTINENTS Neuroscience.2 Cognitive Processes...21 Learning and Motivation. 37 Perception.....54 Mental Abilities.. 83 Abnormal Psychology....103 1 Topic 1: Neuroscience Outline 1. Gross anatomy

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 14 The Brain and Cranial Nerves Introduction The purpose of the chapter is to: 1. Understand how the brain is organized, protected, and supplied

More information