The Molecular Mechanism of Intracellular Membrane Fusion. Richard H. Scheller

Size: px
Start display at page:

Download "The Molecular Mechanism of Intracellular Membrane Fusion. Richard H. Scheller"

Transcription

1 The Molecular Mechanism of Intracellular Membrane Fusion Richard H. Scheller

2 The human brain contains approximately connections between nerve cells (Figure 2). The specific formation and modulation of these connections, which are called synapses, underlies our ability to perceive sensations and to think. Modulation of the activity of synapses has been shown, by Eric Kandel and others, to underlie the formation of memories. Clearly understanding the cellular and molecular basis of how synapses work is of fundamental importance. Here I show two electron micrographs of typical synapses, one between a nerve terminal and a muscle fiber and one from the central nervous system (Figure 3). The presynaptic nerve terminal contains a number of small membrane vesicles that are filled with neurotransmitters, in this case acetylcholine and glutamate, chemical messengers of the neuromuscular junction and brain respectively. Classic studies of the neuromuscular junction revealed the vesicle cycle of neurotransmitter release. As an action potential reaches the nerve terminal channels open allowing an influx of ions including Ca ++. The Ca ++ ions trigger fusion of the vesicle membrane with the plasma membrane and release of neurotransmitter, which is then sensed by receptors on the post-synaptic membrane. Following the release process membrane is then recycled and new vesicles form (Figure 4). In the mid 1980 s I became interested in understanding the molecular mechanism of neurotransmitter release. How might one approach this problem? I trivially hypothesized that the proteins associated with synaptic vesicles would be involved in the process. It is possible to purify vesicles by a series of centrifugation steps followed by column chromatography that fractionates membrane organelles according to their size. This final stage of vesicle purification is shown in panel B of figure 5. Since the vesicles contain ATP they are easily identified. The resulting membranes are shown in panel C of figure 5, a large heterogeneous collection of membranes and the homogeneous 60 nm synaptic vesicles. We screened a cdna expression library made from the neurons of the electric lobe of the pacific electric ray Torpedo californica with an antibody raised against synaptic vesicles that was made by Reg Kelly from UCSF, and isolated a number of clones. We then made antibodies against the proteins encoded by these clones and one of them, encoding a protein we named VAMP1, clearly copurified with the synaptic vesicles. A Western blot, across the column, showing the VAMP1 immunoreactivity copurifies with the vesicle peak is shown in panel B, figure 5. VAMP1 is a relatively small protein with a carboxy terminal membrane anchor and about 100 amino acids oriented to the cytoplasm. Will have more to say about this protein later (Figure 6). The next sets of experiments were aimed at identifying proteins from the synaptic vesicle that interact with molecules on the plasma membrane. We used an antibody raised against p65 or synaptotagmin and immunoprecipated from detergent solubalized membranes. We identified a co-immunoprecipitating protein that we named syntaxin from the Greek word syntax meaning to put together in an ordered way (Figure 7). Immunohistochemical studies, first at the resolution of the light microscope and later using immunoelectoron microscopy demonstrated that syntaxin is largely localized to the plasma membrane. You can see the vesicles, stained here in red and either a green ring, or a crescent staining of presynaptic membrane active zone (Figure 8).

3 This gave rise to an initial model of the vesicle docking and fusion complex where VAMP1 and synaptotagmin on the vesicle membrane interact with syntaxin on the plasma membrane. Close proximity to the Ca ++ channel would then trigger membrane fusion and transmitter release upon Ca ++ influx. Interestingly none of these proteins were known in yeast at the time because synaptotagmin is not found in yeast and VAMP and syntaxin are duplicated genes so they did not show up in mutational analysis looking for genes involved in membrane trafficking. We also predicted at the time that these proteins would be the scaffolds upon which the soluble factors, alpha-snap and NSF, would assemble (Figure 9). Clearly we were headed in the correct direction as in 1993 Rothman s group demonstrated that, in addition to alpha-snap, 3 proteins associated with the ATPase NSF when locked in the ATP state. When ATP was hydrolyzed these proteins were released from NSF. The 3 proteins were VAMP, syntaxin, and a new player, a previously characterized protein that at the time had no known function called SNAP -25. These proteins became known as SNAREs (Figure 10). From these experiments it was not clear how the NSF complex assembled. Did the SNAREs independently bind to alpha-snap or NSF. Did they bind each other, and so on. In independent experiments Tom Südhof s lab as well as our group demonstrated that a homologue of the yeast protein sec1 bound with high affinity to syntaxin. Syntaxin could not form complexes with other SNARE proteins until sec1 was released from the high affinity state of syntaxin. This was clearly shown in our crystal structure of snytaxin bound to sec1. The next major advance came in a collaboration between the laboratories of Jim Rothman and myself. Here we studied the proteins that associate with syntaxin. We demonstrated that an ATP independent complex forms between VAMP, syntaxin, SNAP-5 and synaptotagmin, the 7S complex. As alpha-snap adds to the complex, again in an ATP independent fashion, synaptotagmin is displaced. NSF binds to the complex in the ATP state and upon hydrolysis the SNARE complex is dissociated. At the time, 1993, the order of these events in the actual fusion reaction was not at all clear so it was hypothesized that the ATP hydrolysis overcame the energy barrier and drove the fusion to a state that would rapidly release transmitter upon Ca ++ influx, perhaps a hemifused sate as drawn in figure 11. The next set of experiments began to better understand structural aspects of the SNARE complex. I believe Hugh Pellham was the first to ask the question about the orientation of the vesicle VAMP and target syntaxin SNARE proteins with respect to each other. If the alignment was anti-parallel, one might propose a role in vesicle docking whereas if the alignment was parallel one might suggest that the formation of the complex would actually bring the membranes together and mediate the fusion reaction itself. Our approach was to fluorescently label the amino and carboxy terminal ends of the interacting domains of VAMP and syntaxin and to conduct fluorescent (Forster) resonance energy transfer (FRET) studies. These investigations along with the higher resolution 3-D chrystallographic studies of Brunger and Jahn established the parallel alignment of the coil domains suggesting that complex formation may drive fusion (Figure 12).

4 Thus the mechanism of membrane fusion was proposed to be as follows. Initially sec1 is bound to syntaxin and sec1 is released. An initial paring of the SNARE proteins, which I called nucleation, followed by a zippering which would lead to the full formation of the SNARE complex which itself would drive the fusion event, possibly first via a hemifused state. The nucleation and zippering terminology arose from my previous experience with nucleic acid hybridization where long polymers of DNA first associate over a short region then zipper as a long DNA duplex structure is formed. The stability of the SNARE complex is truly remarkable for a noncovalent complex in that the proteins do not dissociate until heated to 95 deg C. Thus the idea of the free energy of complex formation driving the membrane fusion became established. The role then of alpha-snap and ATP hydrolysis by NSF is to dissociate this very stable complex so the SNARE proteins can participate in another round of fusion (Figure 13). How then might one study this hypothesis? We chose to use a cracked PC12 cell system invented by Tom Martin. In this system cells are loaded with 3 H norepinephrine and then squeezed through a small space which produces a single large tear in the plasma membrane. After washing, one is then left with a cell ghost comprised of docked vesicles at the plasma membrane (Figure 14). A view from the cytoplasm of these cells looking at the plasma membrane shows the docked vesicles. One can also observe clathrin coated pits, sites of active membrane recycling (Figure 15). Then in a two step process release is stimulated. A first step is a priming reaction with MgATP and cytosol and a second step is actually triggering the release with Ca ++ (Figure 16). But how does one study the SNARE proteins in the presence of the endogeneous molecules? This is accomplished by inactivating one of the SNARE proteins by proteolytically cleaving the molecule with one of the toxins produced by Clostridium botulinum. These are some of the most potent toxins known to man. This particular toxin cleaves the C-terminal coil region of SNAP -25 releasing a 26 amino acid peptide. Now you know the molecular mechanism of the drug used to eliminate wrinkles that is so popular with some people: Botox. We were then able to rescue secretion by adding back the full coil to the cracked PC12 cells and then triggering release (Figure 17). The panel on the left shows the inactivation of release is dose dependent on the amount of neurotoxin. After washing away the toxin we are able to rescue the release by adding back the appropriate SNARE coil. Other SNARE coils do not rescue. In a series of experiments we demonstrated that in this system SNARE complex does not form during the priming reaction, only after the addition of Ca ++. Release in this system is of course much slower than in neurons (Figure 18). The crystal structure of the SNARE coil domain demonstrated the presence of 16 so called layers. 15 of these layers bury hydrophobic amino acid side chains in the center of the 4 helical bundle as shown on top with 2 valine and 2 isoluceine residues. Interestingly a central layer is comprised of polar side chains, an arginine and three glutamines which hydrogen bond to each other (Figure 19). We mutated hydrophobic residues to alanine, and the polar layer as well, and studied both the effect on the stability of the complex and the ability to support secretion.

5 Along the bottom of the figure is the thermal stability of the complex in deg C. The ability to support secretion correlated with the stability of the helical bundle complex, suggesting that it is in fact the free energy change in complex formation that is used to overcome the barrier to membrane fusion. Even a mutation of surface residues that increased the complex stability increased the rate of fusion. Mutation of the hydrophilic layer had little effect on the fusion (Figure 20). What then is the role of this highly conserved central ionic layer? We measured, in vitro, the rate of complex dissociation in over 70 mutants. Only one amino acid substitution effected this rate and that was mutation of the glutamine of the ionic layer of syntaxin (Figure 21). As shown in the previous slide these mutations had only a minor effect on the stability of the complex. Consistent with this observation, when we transfected a syntaxin mutant of this amino acid into cells we recovered a larger amount of complex than in cells transfected with the wild-type syntaxin. In other words, we had shifted the ratio of free SNARE proteins to complex due to the impaired ability of alpha-snap and NSF to dissociate the complex. From this we concluded that the ionic layer is important for the dissociation of the complex by alpha-snap and NSF perhaps being the site that initiates melting of the helical bundle upon ATP hydrolysis by NSF. Now I need to introduce a bit of nomenclature. The SNARE 4 helical bundle is comprised of 4 coil domains and to form a functional helical bundle one coil of each type is required. These coil domains became known as Qa for the syntaxin coil, Qb and Qc for the two SNAP-25 coils and R for the VAMP coil. The individual SNAREs are known as Qa, Qb, Qc and R SNARES. With the completion of the human genome sequence we were able to determine the number of different SNAREs in the genomes of various species. There are a total of 35 in humans and 21 in yeast with a distribution of the specific coils as shown in the table (Figure 22). Why are there so many of these proteins? Do they have functions outside of secretion? We characterized most of the SNARE proteins in mammals and showed that individual SNAREs are strictly localized to different compartments within the cell (Figure 23). For example, in collaboration with Judith Klumperman we demonstrated that rbet1 is localized to the vesicular tubular compartment between the ER and the Golgi, syntaxin 5 to the cisternae of the Golgi and VAMP4 to the trans Golgi network. From these and other studies it became clear that sets of SNARE proteins mediate intracellular membrane trafficking in all cells. That is for example transport from the ER to the Golgi, endocytosis, transport to lysosomes and so on (Figure 24). Using our cracked PC12 system we studied the specificity of SNARE complex formation using different Qc SNARE coils. Indeed only plasma membrane localized coil domains were able to rescue secretion in the PC12 system described earlier, not Qc SNAREs from the TGN or endosomes (Figure 25). The specific paring along with the distinct localization of these proteins within the cell determines, at least in part, which cellular membranes can fuse with each other. Thus the SNAREs comprise a component of the machinery used to organize the membrane compartments of cells. Finally, as the work progressed it became clear that not only are the proteins discussed in this talk used by vertebrates but that all eukaryotic organisms use this

6 evolutionarily ancient mechanism to fuse membranes. The yeast SNARE organization is shown on top and the mammalian SNARE organization is shown on the bottom of figure 26. Thus, as happens so often in biology, one organ, in this case the brain, has adapted a general mechanism for its special function, synaptic transmission. Many thanks are due to the folks who worked on these studies with me over the years. I would also like to thank the selection committee as well the Norwegian Academy of Sciences for this great honor (Figure 27).

THE SYNAPTIC VESICLE CYCLE

THE SYNAPTIC VESICLE CYCLE Annu. Rev. Neurosci. 2004. 27:509 47 doi: 10.1146/annurev.neuro.26.041002.131412 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on March 12, 2004

More information

Homework Hanson section MCB Course, Fall 2014

Homework Hanson section MCB Course, Fall 2014 Homework Hanson section MCB Course, Fall 2014 (1) Antitrypsin, which inhibits certain proteases, is normally secreted into the bloodstream by liver cells. Antitrypsin is absent from the bloodstream of

More information

Synaptic communication

Synaptic communication Synaptic communication Objectives: after these lectures you should be able to: - explain the differences between an electrical and chemical synapse - describe the steps involved in synaptic communication

More information

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 1 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY MCB 160 - MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY Name ID# Instructions: -Only tests written in pen will be regarded -Please submit a written request indicating where and why you deserve more points

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Chapter 1: Vesicular traffic. Biochimica cellulare parte B 2017/18

Chapter 1: Vesicular traffic. Biochimica cellulare parte B 2017/18 Chapter 1: Vesicular traffic Biochimica cellulare parte B 2017/18 Major Protein-sorting pathways in eukaryotic cells Secretory and endocytic pathways Unifying principle governs all protein trafficking

More information

Chapter 13: Vesicular Traffic

Chapter 13: Vesicular Traffic Chapter 13: Vesicular Traffic Know the terminology: ER, Golgi, vesicle, clathrin, COP-I, COP-II, BiP, glycosylation, KDEL, microtubule, SNAREs, dynamin, mannose-6-phosphate, M6P receptor, endocytosis,

More information

3.E.2 Continued. This is the essential knowledge statement from the curriculum framework. Detect---process--- response

3.E.2 Continued. This is the essential knowledge statement from the curriculum framework. Detect---process--- response Nervous System: Part III What Happens at a Synapse? 3.E. Continued Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. This

More information

1. endoplasmic reticulum This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

1. endoplasmic reticulum This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins. Biology 4410 Name Spring 2006 Exam 2 A. Multiple Choice, 2 pt each Pick the best choice from the list of choices, and write it in the space provided. Some choices may be used more than once, and other

More information

Vesicle Transport. Vesicle pathway: many compartments, interconnected by trafficking routes 3/17/14

Vesicle Transport. Vesicle pathway: many compartments, interconnected by trafficking routes 3/17/14 Vesicle Transport Vesicle Formation Curvature (Self Assembly of Coat complex) Sorting (Sorting Complex formation) Regulation (Sar1/Arf1 GTPases) Fission () Membrane Fusion SNARE combinations Tethers Regulation

More information

In the previous chapter we explored how proteins are targeted

In the previous chapter we explored how proteins are targeted 17 VESICULAR TRAFFIC, SECRETION, AND ENDOCYTOSIS Electron micrograph of clathrin cages, like those that surround clathrin-coated transport vesicles, formed by the in vitro polymerization of clathrin heavy

More information

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic Question No. 1 of 10 1. Which of the following statements about clathrin-coated vesicles is correct? Question #1 (A) There are

More information

Mechanism of Vesicular Transport

Mechanism of Vesicular Transport Mechanism of Vesicular Transport Transport vesicles play a central role in the traffic of molecules between different membrane-enclosed enclosed compartments. The selectivity of such transport is therefore

More information

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system endo system chapter 15 internal s endo system functions as a coordinated unit divide cytoplasm into distinct compartments controls exocytosis and endocytosis movement of molecules which cannot pass through

More information

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins. Biology 4410 Name Spring 2006 Exam 2 A. Multiple Choice, 2 pt each Pick the best choice from the list of choices, and write it in the space provided. Some choices may be used more than once, and other

More information

7.06 Cell Biology EXAM #3 April 24, 2003

7.06 Cell Biology EXAM #3 April 24, 2003 7.06 Spring 2003 Exam 3 Name 1 of 8 7.06 Cell Biology EXAM #3 April 24, 2003 This is an open book exam, and you are allowed access to books and notes. Please write your answers to the questions in the

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Protein Trafficking in the Secretory and Endocytic Pathways

Protein Trafficking in the Secretory and Endocytic Pathways Protein Trafficking in the Secretory and Endocytic Pathways The compartmentalization of eukaryotic cells has considerable functional advantages for the cell, but requires elaborate mechanisms to ensure

More information

Summary of Endomembrane-system

Summary of Endomembrane-system Summary of Endomembrane-system 1. Endomembrane System: The structural and functional relationship organelles including ER,Golgi complex, lysosome, endosomes, secretory vesicles. 2. Membrane-bound structures

More information

Zool 3200: Cell Biology Exam 4 Part II 2/3/15

Zool 3200: Cell Biology Exam 4 Part II 2/3/15 Name:Key Trask Zool 3200: Cell Biology Exam 4 Part II 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans The Brain & Homeostasis Today, scientists have a lot of information about what happens in the different parts of the brain; however they are still trying to understand how the brain functions. We know

More information

* * 11. GnRH. Molecular Biology of the Cell 5th Ed. Alberts et al., Garland Science, 2008

* * 11. GnRH. Molecular Biology of the Cell 5th Ed. Alberts et al., Garland Science, 2008 I e-mail: okay@bs.s.u-tokyo.ac.jp http://www.bs.s.u-tokyo.ac.jp/~naibunpi/lab.html Molecular Biology of the Cell 5th Ed. Alberts et al., Garland Science, 2008 Ion Channels of Excitable Membranes 3rd Ed.

More information

How Neurons Talk to Each Other

How Neurons Talk to Each Other How Neurons Talk to Each Other NEUROSCIENCE NEWS SEPTEMBER 24, 2016 Summary: A new paper offers an overview as to how neurons communicate with one another. Source: Max Planck Institute. Neurons are connected

More information

Chapter 3 subtitles Action potentials

Chapter 3 subtitles Action potentials CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 3 subtitles Action potentials Introduction (3:15) This third chapter explains the calcium current triggered by the arrival of the action potential in

More information

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 Terms you should know: synapse, neuromuscular junction (NMJ), pre-synaptic, post-synaptic, synaptic cleft, acetylcholine (ACh), acetylcholine

More information

Practice Exam 2 MCBII

Practice Exam 2 MCBII 1. Which feature is true for signal sequences and for stop transfer transmembrane domains (4 pts)? A. They are both 20 hydrophobic amino acids long. B. They are both found at the N-terminus of the protein.

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Synaptic transmission

Synaptic transmission Outline Synaptic transmission Sompol Tapechum M.D., Ph.D. Department of Physiology Faculty of Medicine Siriraj Hospital, Bangkok, Thailand. sisth@mahidol.ac.th 2 Structure of synapse Modes of synaptic

More information

04_polarity. The formation of synaptic vesicles

04_polarity. The formation of synaptic vesicles Brefeldin prevents assembly of the coats required for budding Nocodazole disrupts microtubules Constitutive: coatomer-coated Selected: clathrin-coated The formation of synaptic vesicles Nerve cells (and

More information

Intracellular Vesicular Traffic Chapter 13, Alberts et al.

Intracellular Vesicular Traffic Chapter 13, Alberts et al. Intracellular Vesicular Traffic Chapter 13, Alberts et al. The endocytic and biosynthetic-secretory pathways The intracellular compartments of the eucaryotic ell involved in the biosynthetic-secretory

More information

Chapter 3 Neurotransmitter release

Chapter 3 Neurotransmitter release NEUROPHYSIOLOGIE CELLULAIRE CONSTANCE HAMMOND Chapter 3 Neurotransmitter release In chapter 3, we proose 3 videos: Observation Calcium Channel, Ca 2+ Unitary and Total Currents Ca 2+ and Neurotransmitter

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

Cells: The Living Units

Cells: The Living Units Chapter 3 Part B Cells: The Living Units Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College 3.4 Active Membrane Transport Two major

More information

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons Chad Smurthwaite & Jordan Shellmire The Chemical Synapse The most common type of synapse used for signal transmission in the central

More information

MCB II MCDB 3451 Exam 1 Spring, minutes, close everything and be concise!

MCB II MCDB 3451 Exam 1 Spring, minutes, close everything and be concise! MCB II MCDB 3451 Exam 1 Spring, 2016 50 minutes, close everything and be concise! Name ID NOTE: QUESTIONS ARE NOT ALL WORTH THE SAME POINTS Total (100) Grade EXAM 1, 2016 MCBII Name 1. Which is UNIQUE

More information

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES Neurons communicate with other neurons or target cells at synapses. Chemical synapse: a very narrow

More information

Organization of ATPases

Organization of ATPases The Primary Active Transporter II: The ATPase Objectives: Organization P type with NPA domains Proton pumps of the rotary V type ATPase 1 Organization of P type, solute transport, found in plasma membranes

More information

7.06 Spring of PROBLEM SET #6

7.06 Spring of PROBLEM SET #6 7.6 Spring 23 1 of 6 7.6 PROBLEM SET #6 1. You are studying a mouse model of hypercholesterolemia, a disease characterized by high levels of cholesterol in the blood. In normal cells, LDL particles in

More information

Principles of Signaling in the Nervous system

Principles of Signaling in the Nervous system Principles of Signaling in the Nervous system Laurie Kellaway Senior Lecturer Department of Human Biology Laurie@curie.uct.ac.za Tel. +27 +21 4066 271 ELECTRICAL SYNAPSES CHEMICAL SYNAPSES Current flow

More information

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell Chapt. 10 Cell Biology and Biochemistry Cell Chapt. 10 Cell Biology and Biochemistry The cell: Lipid bilayer membrane Student Learning Outcomes: Describe basic features of typical human cell Integral transport

More information

Advanced Cell Biology. Lecture 33

Advanced Cell Biology. Lecture 33 Advanced Cell Biology. Lecture 33 Alexey Shipunov Minot State University April 22, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 33 April 22, 2013 1 / 38 Outline Questions and answers Intracellular

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 13 Moving Proteins into Membranes and Organelles Copyright 2013 by W. H. Freeman and Company

More information

LQB383 Testbank. Week 8 Cell Communication and Signaling Mechanisms

LQB383 Testbank. Week 8 Cell Communication and Signaling Mechanisms LQB383 Testbank Week 8 Cell Communication and Signaling Mechanisms Terms to learn match the terms to the definitions --------------------------------------------------------------------------------------------------------------------------

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 22 NERVE CELLS Copyright 2013 by W. H. Freeman and Company Figure 22.1 Typical morphology of

More information

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed 16 Dania Ahmad Tamer Barakat + Dania Ahmad Faisal I. Mohammed Revision: What are the basic types of neurons? sensory (afferent), motor (efferent) and interneuron (equaled association neurons). We classified

More information

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n):

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n): Section: Chapter 5: Multiple Choice 1. The structure of synapses is best viewed with a(n): p.155 electron microscope. light microscope. confocal microscope. nissle-stained microscopic procedure. 2. Electron

More information

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue Chapter 10: Muscles 37. Describe the structural components of skeletal muscle tissue from the molecular to the organ level. 38. Describe the structure, function, and importance of sarcomeres. 39. Identify

More information

NEUROCHEMISTRY Brief Review

NEUROCHEMISTRY Brief Review NEUROCHEMISTRY Brief Review UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY PBL MBBS YEAR V SEMINAR VJ Temple 1 Membrane potential Membrane potential:

More information

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

Chapter 3b Cells Membrane transport - Student Notes

Chapter 3b Cells Membrane transport - Student Notes Chapter 3b Cells Membrane transport - Student Notes 1 Transport are permeable Some molecules the membrane; others do 2 Types of Membrane Transport processes No cellular required Substance its processes

More information

Molecular Cell Biology 5068 In class Exam 1 October 2, Please print your name: Instructions:

Molecular Cell Biology 5068 In class Exam 1 October 2, Please print your name: Instructions: Molecular Cell Biology 5068 In class Exam 1 October 2, 2012 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your number

More information

PHSI3009 Frontiers in Cellular Physiology 2017

PHSI3009 Frontiers in Cellular Physiology 2017 Overview of PHSI3009 L2 Cell membrane and Principles of cell communication L3 Signalling via G protein-coupled receptor L4 Calcium Signalling L5 Signalling via Growth Factors L6 Signalling via small G-protein

More information

Name: Multiple choice questions. Pick the BEST answer (2 pts ea)

Name: Multiple choice questions. Pick the BEST answer (2 pts ea) Exam 1 202 Oct. 5, 1999 Multiple choice questions. Pick the BEST answer (2 pts ea) 1. The lipids of a red blood cell membrane are all a. phospholipids b. amphipathic c. glycolipids d. unsaturated 2. The

More information

Examples of smallmolecule. peptide neurotransmitters

Examples of smallmolecule. peptide neurotransmitters Examples of smallmolecule and peptide neurotransmitters Small- molecule transmitters are transported from the cytosol into vesicles or from the synaptic cleft to the cytosol by TRANSPORTERS Unconventional

More information

Synaptic Transmission

Synaptic Transmission Synaptic Transmission Postsynaptic Mechanisms Synapses electrical and chemical Part I Neurotransmitters categories and life cycle Neurotransmitters examples and postsynaptic effects Pathology Part II Neurotransmitter

More information

Intracellular Compartments and Protein Sorting

Intracellular Compartments and Protein Sorting Intracellular Compartments and Protein Sorting Intracellular Compartments A eukaryotic cell is elaborately subdivided into functionally distinct, membrane-enclosed compartments. Each compartment, or organelle,

More information

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D PROTEIN TRAFFICKING Dr. SARRAY Sameh, Ph.D Overview Proteins are synthesized either on free ribosomes or on ribosomes bound to endoplasmic reticulum (RER). The synthesis of nuclear, mitochondrial and peroxisomal

More information

Omar Ismail. Dana Almanzalji. Faisal Mohammad

Omar Ismail. Dana Almanzalji. Faisal Mohammad 11 Omar Ismail Dana Almanzalji Faisal Mohammad Neuronal classification: Neurons are responsible for transmitting the action potential to the brain. The speed at which the action potential is transmitted

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

Intracellular vesicular traffic. B. Balen

Intracellular vesicular traffic. B. Balen Intracellular vesicular traffic B. Balen Three types of transport in eukaryotic cells Figure 12-6 Molecular Biology of the Cell ( Garland Science 2008) Endoplasmic reticulum in all eucaryotic cells Endoplasmic

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Membrane transport D. Endocytosis and Exocytosis

More information

Signal Transduction Cascades

Signal Transduction Cascades Signal Transduction Cascades Contents of this page: Kinases & phosphatases Protein Kinase A (camp-dependent protein kinase) G-protein signal cascade Structure of G-proteins Small GTP-binding proteins,

More information

Structure & Function of Cells

Structure & Function of Cells Anatomy & Physiology 101-805 Unit 4 Structure & Function of Cells Paul Anderson 2011 Anatomy of a Generalised Cell Attached or bound ribosomes Cilia Cytosol Centriole Mitochondrion Rough endoplasmic reticulum

More information

Mohammad Tarek. Wahab Al-tekreeti Tamer Barakat. Faisal Mohammad

Mohammad Tarek. Wahab Al-tekreeti Tamer Barakat. Faisal Mohammad 15 Mohammad Tarek Wahab Al-tekreeti Tamer Barakat Faisal Mohammad Things to remember Types of synapse: Neuron types and neurotransmitters When it happens between an axon and dendrites it is called axodendritic

More information

Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson

Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson General principles Properties of lysosomes Delivery of enzymes to lysosomes Endocytic uptake clathrin, others Endocytic pathways recycling vs.

More information

Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued

Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued Cell structure of Eukaryotic cells Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued Lots of double-membraned organelles Existence of an Endo-membrane system separation of areas of cell, transport

More information

Molecular Trafficking

Molecular Trafficking SCBM 251 Molecular Trafficking Assoc. Prof. Rutaiwan Tohtong Department of Biochemistry Faculty of Science rutaiwan.toh@mahidol.ac.th Lecture outline 1. What is molecular trafficking? Why is it important?

More information

Study Guide for Biology Chapter 5

Study Guide for Biology Chapter 5 Class: Date: Study Guide for Biology Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following led to the discovery of cells? a.

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Neurons, Synapses, and Signaling The Neuron is the functional unit of the nervous system. Neurons are composed of a cell body, which contains the nucleus and organelles; Dendrites which are extensions

More information

MCB130 Midterm. GSI s Name:

MCB130 Midterm. GSI s Name: 1. Peroxisomes are small, membrane-enclosed organelles that function in the degradation of fatty acids and in the degradation of H 2 O 2. Peroxisomes are not part of the secretory pathway and peroxisomal

More information

Antigen presenting cells

Antigen presenting cells Antigen recognition by T and B cells - T and B cells exhibit fundamental differences in antigen recognition - B cells recognize antigen free in solution (native antigen). - T cells recognize antigen after

More information

Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission

Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission Jesica Raingo, Mikhail Khvotchev, Pei Liu, Frederic Darios, Ying C. Li, Denise

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve impulses - Impulse may be blocked in its transmission

More information

THE ACTIVE ZONE. Prof. U.J. McMahan IBRO Lecture December, 2003

THE ACTIVE ZONE. Prof. U.J. McMahan IBRO Lecture December, 2003 THE ACTIVE ZONE In the lecture on the structure of synapses, I pointed out that a major point of interest in the axon terminal is the active zone. It is here that the initial events in synaptic transmission

More information

7.06 Cell Biology Exam #3 April 23, 2002

7.06 Cell Biology Exam #3 April 23, 2002 RECITATION TA: NAME: 7.06 Cell Biology Exam #3 April 23, 2002 This is an open book exam and you are allowed access to books, notes, and calculators. Please limit your answers to the spaces allotted after

More information

Dr. Ahmed K. Ali Attachment and entry of viruses into cells

Dr. Ahmed K. Ali Attachment and entry of viruses into cells Lec. 6 Dr. Ahmed K. Ali Attachment and entry of viruses into cells The aim of a virus is to replicate itself, and in order to achieve this aim it needs to enter a host cell, make copies of itself and

More information

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by B.-W. Ku,

More information

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S.

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S. PROTEIN SORTING Lecture 10 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Introduction Membranes divide the cytoplasm of eukaryotic cells into distinct compartments. The endomembrane

More information

Fundamentals of the Nervous System and Nervous Tissue: Part C

Fundamentals of the Nervous System and Nervous Tissue: Part C PowerPoint Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R 11 Fundamentals of the Nervous System and Nervous Tissue: Part C Warm Up What is a neurotransmitter? What is the

More information

What effect would an AChE inhibitor have at the neuromuscular junction?

What effect would an AChE inhibitor have at the neuromuscular junction? CASE 4 A 32-year-old woman presents to her primary care physician s office with difficulty chewing food. She states that when she eats certain foods that require a significant amount of chewing (meat),

More information

Chapter 2 Ex uno plures: Out of One, Many

Chapter 2 Ex uno plures: Out of One, Many Chapter 2 Ex uno plures: Out of One, Many R. Gutie rrez Abstract Ex uno plures, out of one (cell) many (neurotransmitters), seems to be a principle that applies to many, if not all, neuronal types. The

More information

Chapter 1 The Lipid Droplet: a Dynamic Organelle, not only Involved in the Storage and Turnover of Lipids

Chapter 1 The Lipid Droplet: a Dynamic Organelle, not only Involved in the Storage and Turnover of Lipids Chapter 1 The Lipid Droplet: a Dynamic Organelle, not only Involved in the Storage and Turnover of Lipids Sven-Olof Olofsson, Pontus Boström, Jens Lagerstedt, Linda Andersson, Martin Adiels, Jeanna Perman,

More information

Molecular Cell Biology 5068 In Class Exam 1 September 29, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 29, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 29, 2015 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

Cell Communication. Chapter 11. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece

Cell Communication. Chapter 11. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece Chapter 11 Cell Communication PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: The Cellular Internet Cell-to-cell communication Is absolutely

More information

Cell Membrane Study Guide

Cell Membrane Study Guide Cell Membrane Study Guide U1.3.1: Phospholipids form bilayers in water due to the amphipathic properties of phospholipid molecules (Oxford Biology Course Companion page 26). 1. Explain why phospholipids

More information

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface Which of the following statements is no true? Biological membranes (a) are composed partly of amphipathic lipids (b) have hydrophobic and hydrophilic regions (c) are typically in a fluid state (d) are

More information

Nervous System Communication. Nervous System Communication. The First Nerve Cells 1/2/11

Nervous System Communication. Nervous System Communication. The First Nerve Cells 1/2/11 Nervous System Communication Nervous System Communication Process information Transfer information to other neurons Generate behavior and experience The First Nerve Cells Developed in primitive animals

More information

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University.

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University. Chapter 2. The Cellular l and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 3 rd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2008. Summarized by B.-W. Ku,

More information

Neurophysiology of Nerve Impulses

Neurophysiology of Nerve Impulses M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:47 PM Page 358 3 E X E R C I S E Neurophysiology of Nerve Impulses Advance Preparation/Comments Consider doing a short introductory presentation with the following

More information

Synaptic Transmission

Synaptic Transmission 5 Synaptic Transmission Overview THE HUMAN BRAIN CONTAINS AT LEAST 1 billion neurons, each with the ability to influence many other cells. Clearly, sophisticated and highly efficient mechanisms are needed

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation

Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation Richard Steet, Ph.D. 2/21/17 glycosylation is a non-template derived phenomenon - the presence of

More information

Figure S1. (A) SDS-PAGE separation of GST-fusion proteins purified from E.coli BL21 strain is shown. An equal amount of GST-tag control, LRRK2 LRR

Figure S1. (A) SDS-PAGE separation of GST-fusion proteins purified from E.coli BL21 strain is shown. An equal amount of GST-tag control, LRRK2 LRR Figure S1. (A) SDS-PAGE separation of GST-fusion proteins purified from E.coli BL21 strain is shown. An equal amount of GST-tag control, LRRK2 LRR and LRRK2 WD40 GST fusion proteins (5 µg) were loaded

More information

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan 5 Rama Abbady Odai Bani-Monia Diala Abu-Hassan Lipid Rafts Lipid rafts are aggregates (accumulations) of sphingolipids. They re semisolid clusters (10-200 nm) of cholesterol and sphingolipids (sphingomyelin

More information