State of Dissolved Water in Triglycerides as Determined by. Fourier Transform Infrared and Near Infrared Spectroscopy

Size: px
Start display at page:

Download "State of Dissolved Water in Triglycerides as Determined by. Fourier Transform Infrared and Near Infrared Spectroscopy"

Transcription

1 ORIGINAL State of Dissolved Water in Triglycerides as Determined by Fourier Transform Infrared and Near Infrared Spectroscopy Jun KURASHIGE**, Kyo TAKAOKA*, Masahisa TAKASAGO*, Yasunori TARU*, and Koichi KOBAYASHI* **Oils and Fats Research Laboratories, Central Research Laboratories, Ajinomoto Co. Inc. (7-41 Daikoku-cho Tsurumi-ku, Yokohama-shi, 230) *Department of Chemistry, Musashi Institute of Technology ( Tamazutsumi, Setagaya-ku, Tokyo, 158) The state of dissolved water in triglycerides (TG) such as tristearin, triolein, trilinolein, and trilinolenin, was analyzed by Fourier transform infrared and near infrared spectroscopy at 20 Ž, and compared with that of water. Water was revealed to be mainly composed of polymers larger than dimer clusters at 20 Ž, and of monomers and dimer clusters at 120 Ž. In TG, the state showed considerable variation from monomer to polymer clusters. The distribution ratios of the water clusters observed in TG depended on the kinds of fatty acids of TG. The water state was noted to change due to interactions between unsaturated bonds and dissolved water. With increase in the number of unsaturated bonds of TG, the ratio of monomer water decreased, and clusters larger than those of the original water increased. 1 Introduction Usually 300 to 600 ppm of water dissolves in edible oils opened to the air. The more the humidity in the air is, the higher becomes the water content of oils in the range of 800 to 1000 ppm. Actually, the water concentration in those oils can reach by the level of 1500 ppm, in case of oils being contacted with water. And even a small amount of water can affect hydrolysis, and autoxidation of oils under storage, and even enzymatic reactions as mentioned below; 1) In case vegetable oil containing water is stored in a metal vessel, metal is dissolved out into the water, and those dissolved metal ions catalyze to promote the autoxidation of the oil1). 2) The dissolved water in oil interacts with the dissolved oxygen and, as a result, affects oxidative deterioration of the oil2). 3) As for the autoxidation of unsaturated oil in oxygen gas, changes of POV decreased with decreasing amount of the water (200 `20 ppm) dissolved in the oil. But those of POV were almost constant in the range from about 200 to about 900 ppm of water. And POV increased with increasing water content ( about 900 to 1800 ppm) in the oil3). 4) The enzyme lipase catalyzes either esterification or hydrolysis of oil depending on the water content in the oil. However, most of lipases lose it's activity at such very low water concentration as below 300 ppm in the oil, unless being immobilized together with some of special activators4). As mentioned above, the dissolved water in oils is playing some important roles in the oil chemistry. The states of this dissolved water in the oil are proposed to be free water, structual water, and hydrogen-bonded water, and usually the main state of the water in oils, to be structual water, i. e. clusters'. However, it was not clarified yet in detailes how the states of water clusters specifically in the oils are. The states of dissolved water in oils have been investigated by means of the Fourier transform near infrared spectroscopy ( FT -NIR ), referring to a typical combination vibration (v 2+ v 3) of water appearing at around 5200 cm-1 5),6). On the other hand, the state analysis of the water itself has been developped by means of low temperature matrix method7), or molecular beam method at the range of IR (3000 `4000 cm-1 )8). The characteristic absorptions of each water cluster were determined so as to make it possible

2 J. Jpn. Oil Chem. Soc. (YUKAGAKU) to analyze monomer, dimer, -.polymer of water cluster respectively7) `9). In this paper, FT-IR (especially at 3000 `4000 cm-1) in comparison with FT-NIR (5000 `6400 cm-1) is applied to analyze the states of dissolved water in triglycerides such as tristearin TSt), triolein ( TO), trilinolein TLe) and trilinolenin TLn). 2 Experimental 2.1 Materials All of triglycerides were G. R. reagents from Sigma Corp.. All of these TG were saturated with water before measuring. 2.2 Methods A Fourier transform infrared spectorophotometer FT-IR3 of Nihon Bunko Corporation was reformed to be used for measuring absorption in the range from 8000 to 3000 cm-1 at 20 Ž. Measuring cells used were made from silica for spectoroscopy. The pass length (1 or 5 mm) of cells were selected with water contents in samples. Dissolved water in the samples was measured with a coulombmetry moisturemeter (CA-05) of Mitubishi Kasei Corporation. 3 Results and Discussion 3.1 Absorption bands of water Fig.-1 shows the IR spectra of water at 20 Ž and 120 Ž. At 20 Ž, absorption peaks are distributed in the range from 3000 to 3600 cm-1, and the main peak is at 3400 cm-1 with 80% of total absorption area. On the other hand, at 120 Ž, absorption peaks are rather widely distributed in the range from 3400 to 4000 cm-1. The common wave numbers of each water cluster are summarized in Table-1 from those data reported7) `9). Referring to Table-1 the states of structural water are estimated to be mainly bigger polymer clusters than dimer clusters at 20 Ž and to be mostly monomer water or dimer clusters at 120 C. 3.2 The states of dissolved water in triglycerides Figs.-2, 3, 4, and 5 show the spectra of IR and NIR spectra of tristearin TSt), triolein ( TO ), trilinolein TLe), and trilinolenin TLn) at 20 Ž respectively. Those % figures shown at the lower part of Figs.-2 to 5 are calculated from a share of each absorption area in total absorption area of spectra, assuming that molecular absorption coefficients are 1. 0, and that, as for IR spectra, peaks in the range from 3785 to 3925 cm-1 are grouped as the monomer water, peaks in the range from 3715 to 3538 cm-1 as the dimer clusters, and peaks in the range from 3476 to 3240 cm-1 as the polymer clusters. And as for NIR-spectra peaks are similarily grouped as shown in Figs.-2 to 5. For instance, there observed were those absorption peaks at ƒë 2 ( cm-1) + ƒë 3 in the range of NIR ( cm-1) corresponding to the absorption peaks at ƒë 3 in the range of IR (3000- Fig.-1 IR spectra of water at 20 Ž and 120 Ž in nitrogen.

3 Table-1 Absorption bands of water. All frequencies are in cm-1 Fig.-3 IR and NIR spectra of dissolved water in triolein. Fig.-2 IR and NIR spectra of dissolved water in tristearin. Fig.-4 IR and NIR spectra of dissolved water in trilinolein.

4 J. Jpn. Oil Chem. Soc. (YUKAGAKU) Fig.-5 IR and NIR spectra of dissolved water in trilinolenin. Fig.-6 IR spectra of dissolved water in unsaturated triglyceride. Table-2 Distribution rates of cluster water in triglycerides (calculated from absorption area of IR-spectroscopy.) Table-3 Distribution rates of cluster water in triglycerides (calculated from absorption area of NIR-spectroscopy) (All rates are in %) 4000 cm-1) respectively. As the peaks commonly observed at around 3465 cm-1 among all of TG are the overtone of absorption of the ester, 7% is subtracted uniformly on the calculation of absorption area rates of the peak at around 3465 cm-1. Calculated figures are summarized in Table-2, and Table-3. Those IR-spectra of water, TO, TLe, and TLn are compared with in Fig.-6. As shown in Fig.-6 and Tables-2, 3 the states of dissolved water in triglycerides are widely distributed from monomer water to polymer clus-

5 ters. The distribution of respective water clusters in TG changed depending on the kinds of those fatty acids composing TG. There observed were the sihfts of the water states caused by the interaction between unsaturated bonds and dissolved water, since all of those TG investigated consist of normal chain of fatty acids with the same carbon number numbers of unsaturated bonds. of C18, but with the different As the number of unsaturated bonds of TG increased, the rate of monomer water decreased, and the bigger clusters than those of original water increased. 4 Conclusion 1) The states of the dissolved water in triglycerides (TG) were investigated at 20 Ž by the Fourier transform infrared and near infrared spectroscopy. 2) The states of water itself were mainly bigger polymer clusters than dimer ones at 20 Ž, and mostly monomer water or the small clusters such as dimer ones at 120 Ž. 3) The states of dissolved water in TG varied widely from monomer water to polymer clusters. 4) There observed were shifts of the water states in TG at 20 Ž caused by the interaction between unsaturated bonds and dissolved water. As the number of unsuturated bonds of TG increased, the rate of monomer water decreased, and the bigger cluster water than the original water increased. References (Received July 25, 1990) 1) M. Takasago and K. Takaoka, J. Jpn. Oil Chem. Soc. (Yukagaku), 29, 162 (1980) ; 30, 558 (1981) ; 31, 167 (1982) ; 31, 438 (1982) ; 32, 315 (1983) ; 35, 1010 (1986). 2) M. Takasago and K. Takaoka, J. Jpn. Oil Chem. Soc. (Yukagaku), 31, 91 (1982). 3) M. Takasago and K. Takaoka, J. Jpn. Oil Chem. Soc. (Yukagaku), 29, 162 (1980). 4) J. Kurashige, N. Matuzaki, and K. Makabe, J. Am. Oils. Chem. Soc., 64, 1252 (1987); J. Dispersion Science and Technology, 10, 531 (1989). 5) M. Takasago and K. Takaoka, J. Jpn. Oil Chem. Soc. (Yukagaku), 33, 772 (1984); 34, 102 (1985). 6) O. Bonner and Y. Chol, J. Phys. Chem., 78, 1727 (1974). 7) D. Strommen, D. Gruen, and R. Mcbeth, J. Chem. Phys., 58, 4028 (1973) ; L. Fredin, B. Nelander, and G. Ribbegard, J. Chem.,Phys., 66, 4065 (1977) ; R. Bentwood, A. Barnes, and W. Orville-Thomas, J. Mol. Spectrosc., 84, 391 (1980); A. Pine and W. Laferty, J. Chem. Phys., 78, 2154 (1983). 8) R. Page, J. Frey, Y. Shen, and Y. Lee, Chem. Phys. Lett., 106, 373 (1984); D. Coker, R. Miller, and R. Watts, J. Chem. Phys., 82, 3554 (1985); T. Tso and E. Lee, J. Phys. Chem., 89, 1612 (1985). 9) J. Reimers and R. Watts, Chem. Phys., 85, 83 (1984).

Trans Fat Determination in the Industrially Processed Edible Oils By Transmission FT-IR Spectroscopy By

Trans Fat Determination in the Industrially Processed Edible Oils By Transmission FT-IR Spectroscopy By Trans Fat Determination in the Industrially Processed Edible Oils By Transmission FT-IR Spectroscopy By Dr. Syed Tufail Hussain Sherazi E-mail: tufail_sherazi@yahoo.com National Center of Excellence in

More information

Important reactions of lipids

Important reactions of lipids Taif University College of Medicine Preparatory Year Students Medical chemistry (2) Part II (Lipids) week 4 lectures 1435-36 Important reactions of lipids Lectures outlines Definition and importance of

More information

2.3 Carbon-Based Molecules. KEY CONCEPT Carbon-based molecules are the foundation of life.

2.3 Carbon-Based Molecules. KEY CONCEPT Carbon-based molecules are the foundation of life. KEY CONCEPT Carbon-based molecules are the foundation of life. Carbon atoms have unique bonding properties. Carbon forms covalent bonds with up to four other atoms, including other carbon atoms. Carbon-based

More information

NOTE: For studying for the final, you only have to worry about those with an asterix (*)

NOTE: For studying for the final, you only have to worry about those with an asterix (*) NOTE: For studying for the final, you only have to worry about those with an asterix (*) (*)1. An organic compound is one that: a. contains carbon b. is slightly acidic c. forms long chains d. is soluble

More information

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry Biochemistry Table of Contents Section 1 Carbon Compounds Section 2 Molecules of Life Section 1 Carbon Compounds Objectives Distinguish between organic and inorganic compounds. Explain the importance of

More information

2 3 Carbon Compounds Slide 1 of 37

2 3 Carbon Compounds Slide 1 of 37 1 of 37 The Chemistry of Carbon The Chemistry of Carbon Organic chemistry is the study of all compounds that contain bonds between carbon atoms. Carbon atoms have four valence electrons that can join with

More information

Chemical Basis For Life Open Ended Questions:

Chemical Basis For Life Open Ended Questions: Chemical Basis For Life Open Ended Questions: Answer the following questions to the best of your ability: Make sure you read each question carefully and provide answers to all of the parts of the question.

More information

The Structure and Function of Biomolecules

The Structure and Function of Biomolecules The Structure and Function of Biomolecules The student is expected to: 9A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic

More information

Quality Analysis of Reheated Oils by Fourier Transform Infrared Spectroscopy

Quality Analysis of Reheated Oils by Fourier Transform Infrared Spectroscopy International Conference on Electromechanical Control Technology and Transportation (ICECTT 05) Quality Analysis of Reheated Oils by Fourier Transform Infrared Spectroscopy Keying Zhao, a, Lei Shi,b and

More information

Biochemistry. 2. Besides carbon, name 3 other elements that make up most organic compounds.

Biochemistry. 2. Besides carbon, name 3 other elements that make up most organic compounds. Biochemistry Carbon compounds Section 3-1 1. What is an organic compound? 2. Besides carbon, name 3 other elements that make up most organic compounds. 3. Carbon dioxide, CO 2, is NOT an organic compound.

More information

Organic Compounds. Biology-CP Mrs. Bradbury

Organic Compounds. Biology-CP Mrs. Bradbury Organic Compounds Biology-CP Mrs. Bradbury Carbon Chemistry The compounds that form the cells and tissues of the body are produced from similar compounds in the foods you eat. Common to most foods and

More information

Pyrolysis Behaviors and Thermostability of Polyglycerols and. Polyglycerol Fatty Acid Esters

Pyrolysis Behaviors and Thermostability of Polyglycerols and. Polyglycerol Fatty Acid Esters 314 J. Jpn. Oil Chem. Soc. (YUKAGAKU) ORIGINAL Pyrolysis Behaviors and Thermostability of Polyglycerols and Polyglycerol Fatty Acid Esters Toshiaki USHIKUSA*, Takenori MARUYAMA*, Isao NIIYA*, and Masakazu

More information

Unit #2: Biochemistry

Unit #2: Biochemistry Unit #2: Biochemistry STRUCTURE & FUNCTION OF FOUR MACROMOLECULES What are the four main biomolecules? How is each biomolecule structured? What are their roles in life? Where do we find them in our body?

More information

Reading. Learning Objectives. How are macromolecules assembled? 8. Macromolecules I. Contents

Reading. Learning Objectives. How are macromolecules assembled? 8. Macromolecules I. Contents Contents 1 Reading 2 Learning Objectives 3 How are macromolecules assembled? 4 Carbohydrates 4.1 Structural Carbohydrates 5 Lipids 5.1 Fats/Triglycerides 5.1.1 Saturated versus Unsaturated fats 5.2 Phospholipids

More information

Honors Biology Chapter 3: The Molecules of Cells Name Amatuzzi Carbohydrates pp Homework

Honors Biology Chapter 3: The Molecules of Cells Name Amatuzzi Carbohydrates pp Homework Honors Biology Chapter 3: The Molecules of Cells Name Amatuzzi Carbohydrates pp. 37-39 1. Which elements make up carbohydrates? a. In which ratio? 2. How do living things use most of their carbohydrates?

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3.

Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3. Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3.6 Nucleic Acids Student Goals: By the end of this lecture series, students should

More information

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms Organic Compounds Carbon p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms n Gives carbon the ability to form chains that are almost unlimited in length. p Organic

More information

Name a property of. water why is it necessary for life?

Name a property of. water why is it necessary for life? 02.09.18 Name a property of + water why is it necessary for life? n Cohesion n Adhesion n Transparency n Density n Solvent n Heat capacity + Macromolecules (2.3 & some of 2.4) + Organic Molecules All molecules

More information

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding Biochemistry Table of Contents Objectives Distinguish between organic and inorganic compounds. Explain the importance of carbon bonding in biological molecules. Identify functional groups in biological

More information

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain Carbon Compounds Life s molecular diversity is based on the properties of carbon Chain Ring Branching chain The Chemistry of Carbon : carbon based Carbon can make 4 covalent bonds The foundation of organic

More information

2.2 Properties of Water

2.2 Properties of Water 2.2 Properties of Water I. Water s unique properties allow life to exist on Earth. A. Life depends on hydrogen bonds in water. B. Water is a polar molecule. 1. Polar molecules have slightly charged regions

More information

Biomolecules. The chemistry of life

Biomolecules. The chemistry of life Biomolecules The chemistry of life Knowing Word Parts can help you remember big words in Biochem Mono one, single Di two, double Poly many, much Hydro water (think: hydrate) Bio related to life (think:

More information

BIOMOLECULES. (AKA MACROMOLECULES) Name: Block:

BIOMOLECULES. (AKA MACROMOLECULES) Name: Block: BIOMOLECULES (AKA MACROMOLECULES) Name: Block: BIOMOLECULES POGIL All living things share the same chemical building blocks and depend on chemical processes for survival. Life without carbon (C) would

More information

Equation y = a + b*x Adj. R-Square Value Standard Error Intercept E Slope

Equation y = a + b*x Adj. R-Square Value Standard Error Intercept E Slope Absorbance (a.u.) 4 3 2 1 Equation y = a + b*x Adj. R-Square 0.99826 Value Standard Error Intercept 4.08326E-4 0.02916 Slope 1.58874 0.02503 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Electron concentration (mmol/l)

More information

Comparison of Water adsorption characteristics of oligo and polysaccharides of α-glucose studied by Near Infrared Spectroscopy Alfred A.

Comparison of Water adsorption characteristics of oligo and polysaccharides of α-glucose studied by Near Infrared Spectroscopy Alfred A. Comparison of Water adsorption characteristics of oligo and polysaccharides of α-glucose studied by Near Infrared Spectroscopy Alfred A. Christy, Department of Science, Faculty of Engineering and Science,

More information

January 31, Chemistry of Life. Carbohydrates. Lipids. Proteins. Biologically Important Macromolecules. Nucleic Acids

January 31, Chemistry of Life. Carbohydrates. Lipids. Proteins. Biologically Important Macromolecules. Nucleic Acids Chemistry of Life Carbohydrates Lipids Proteins Biologically Important Macromolecules Nucleic Acids Polymers Polymers are large molecules of repeating sub units (building blocks) Individual Building Blocks......can

More information

Organic Chemistry Diversity of Carbon Compounds

Organic Chemistry Diversity of Carbon Compounds Organic Chemistry Diversity of Carbon Compounds Hydrocarbons The Alkanes The Alkenes The Alkynes Naming Hydrocarbons Cyclic Hydrocarbons Alkyl Groups Aromatic Hydrocarbons Naming Complex Hydrocarbons Chemical

More information

Anatomy & Physiology I. Macromolecules

Anatomy & Physiology I. Macromolecules Anatomy & Physiology I Macromolecules Many molecules in the human body are very large, consisting of hundreds or even thousands of atoms. These are called macromolecules. Four types of macromolecules are

More information

Macromolecules Chapter 2.3

Macromolecules Chapter 2.3 Macromolecules Chapter 2.3 E.Q. What are the 4 main macromolecues found in living things and what are their functions? Carbon-Based Molecules Why is carbon called the building block of life? Carbon atoms

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

QUESTION 1 Fats and oils vary in their degree of solubility in aqueous solutions. Give a reason for this observation.

QUESTION 1 Fats and oils vary in their degree of solubility in aqueous solutions. Give a reason for this observation. QUESTIN 1 Fats and oils vary in their degree of solubility in aqueous solutions. Give a reason for this observation. QUESTIN Why are fatty acids such as palmitic acid, insoluble in water, while ethanoic

More information

M1.(a) 1. Fewer children / less likely that children with asthma eat fish; Accept converse.

M1.(a) 1. Fewer children / less likely that children with asthma eat fish; Accept converse. M.(a). Fewer children / less likely that children with asthma eat fish; Accept converse.. Fewer children / less likely that children with asthma eat oily fish; MP and Allow use of numbers.. Little / only

More information

The Chemistry of Life

The Chemistry of Life The Chemistry of Life Biomolecules Warm-up List the percentages of each: Total Fats Saturated Fats 25% Carbohydrates 10% Protein 7% 20% What Biomolecule would cholesterol be classified as? Lipids (fats)

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic compounds

More information

UNIT 3 CHEMISTRY OF LIFE NOTES Chapter 6 pg

UNIT 3 CHEMISTRY OF LIFE NOTES Chapter 6 pg UNIT 3 CHEMISTRY OF LIFE NOTES Chapter 6 pg. 146-173 Name Date Class Warm-up: List the percentages of each: Total Fats Saturated Fats Carbohydrates Protein What biomolecule would cholesterol be classified

More information

Carbon. Has four valence electrons Can bond with many elements. Can bond to other carbon atoms. Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen

Carbon. Has four valence electrons Can bond with many elements. Can bond to other carbon atoms. Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen Organic Compounds Carbon Has four valence electrons Can bond with many elements Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen Can bond to other carbon atoms Gives carbon the ability to form chains

More information

a. What is the stimulus? Consuming a large pumpkin spice muffin and caramel macchiato.

a. What is the stimulus? Consuming a large pumpkin spice muffin and caramel macchiato. : Homeostasis and Macromolecules Unit Study Guide Homeostasis 1. Define homeostasis and give an example. Homeostasis is the ability of the body to maintain relatively constant internal physical and chemical

More information

Factors to Consider in the Study of Biomolecules

Factors to Consider in the Study of Biomolecules Factors to Consider in the Study of Biomolecules What are the features of the basic building blocks? (ex: monosaccharides, alcohols, fatty acids, amino acids) 1) General structure and functional groups

More information

Carbohydrates, Lipids, Proteins, and Nucleic Acids

Carbohydrates, Lipids, Proteins, and Nucleic Acids Carbohydrates, Lipids, Proteins, and Nucleic Acids Is it made of carbohydrates? Organic compounds composed of carbon, hydrogen, and oxygen in a 1:2:1 ratio. A carbohydrate with 6 carbon atoms would have

More information

Chapter 15 An Introduction to Organic Chemistry, Biochemistry, and Synthetic Polymers. An Introduction to Chemistry by Mark Bishop

Chapter 15 An Introduction to Organic Chemistry, Biochemistry, and Synthetic Polymers. An Introduction to Chemistry by Mark Bishop Chapter 15 An Introduction to Organic Chemistry, Biochemistry, and Synthetic Polymers An Introduction to Chemistry by Mark Bishop Chapter Map Organic Chemistry Organic chemistry is the chemistry of carbon-based

More information

Milled Rice Surface Lipid Measurement by Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS)

Milled Rice Surface Lipid Measurement by Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) Milled Rice Surface Lipid Measurement by Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) Rahul Reddy Gangidi, Andrew Proctor*, and Jean-François Meullenet Department of Food Science,

More information

CP Biology Chapter 2: Molecules of Life Name Amatuzzi #1: Carbohydrates pp Period Homework

CP Biology Chapter 2: Molecules of Life Name Amatuzzi #1: Carbohydrates pp Period Homework Amatuzzi #1: Carbohydrates pp. 46-47 Period 1. Which elements make up carbohydrates? a. In which ratio? 2. How do living things use most of their carbohydrates? 3. How do cells get energy from carbs? a.

More information

What are the most common elements in living organisms? What is the difference between monomers, dimers and polymers?

What are the most common elements in living organisms? What is the difference between monomers, dimers and polymers? What do each of these terms mean? Atom Molecule Element Compound Organic Inorganic What are the most common elements in living organisms? What are the roles of magnesium, iron, phosphate and calcium in

More information

Identification of Aromatic Fatty Acid Ethyl Esters

Identification of Aromatic Fatty Acid Ethyl Esters Chapter 3.2 Identification of Aromatic Fatty Acid Ethyl Esters The only use of gas chromatography is not sufficient to determine which compounds are eluting from the catalytic bed. At the beginning of

More information

Thermal induction of 9t12t linoleic acid: A new pathway for the formation of Conjugated Linoleic Acids

Thermal induction of 9t12t linoleic acid: A new pathway for the formation of Conjugated Linoleic Acids Thermal induction of 9t12t linoleic acid: A new pathway for the formation of Conjugated Linoleic Acids Alfred A. Christy, Department of Science, Faculty of Engineering and science, University of Agder,

More information

3.1.3 Lipids. Source: AQA Spec

3.1.3 Lipids. Source: AQA Spec alevelbiology.co.uk SPECIFICATION Triglycerides and phospholipids are two groups of lipid. Triglycerides are formed by the condensation of one molecule of glycerol and three molecules of fatty acid. A

More information

N.S. Lecture 3 Biochemistry is broken up into 3 parts - this is part 3b

N.S. Lecture 3 Biochemistry is broken up into 3 parts - this is part 3b N.S. Lecture 3 Biochemistry is broken up into 3 parts - this is part 3b Hemoglobin carries oxygen 33 PROTEINS PROVIDE STRUCTURE AND FUNCTION TO LIFE Antibodies fight disease Fibers clot blood Fibers gives

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 2.2: Biological molecules Notes Water Water is a very important molecule which is a major component of cells, for instance: Water is a polar molecule due to uneven distribution

More information

Biological Chemistry. Is biochemistry fun? - Find it out!

Biological Chemistry. Is biochemistry fun? - Find it out! Biological Chemistry Is biochemistry fun? - Find it out! 1. Key concepts Outline 2. Condensation and Hydrolysis Reactions 3. Carbohydrates 4. Lipids 5. Proteins 6. Nucleic Acids Key Concepts: 1. Organic

More information

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall Biology 1 of 37 2 of 37 The Chemistry of Carbon The Chemistry of Carbon Organic chemistry is the study of all compounds that contain bonds between carbon atoms. 3 of 37 Macromolecules Macromolecules Macromolecules

More information

the properties of carbon

the properties of carbon Carbon Compounds Learning Objectives Describe the unique qualities of carbon. Describe the structures and functions of each of the four groups of macromolecules. For each macromolecule you will need to

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Molecules of Life. Carbohydrates Lipids Proteins Nucleic Acids

Molecules of Life. Carbohydrates Lipids Proteins Nucleic Acids Molecules of Life Carbohydrates Lipids Proteins Nucleic Acids Molecules of Life All living things are composed of the following basic elements: Carbon Hydrogen Oxygen Nitrogen Phosphorous Sulfur Remember

More information

LIP I I P D I S & PROTEINS

LIP I I P D I S & PROTEINS LIPIDS & PROTEINS I. LIPIDS: Foods: butter, oil, Crisco, lard Commonly called fats & oils Contain more C-H bonds and less O atoms than carbohydrates. Ex: C 57 H 110 O 6 Nonpolar; therefore repel water

More information

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1.

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. Macromolecules The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. CARBOHYDRATES 1. LIPIDS 1. NUCLEIC ACIDS Carbon Compounds All compounds

More information

Lipids fatty, oily, or waxy hydrophobic organic compounds.

Lipids fatty, oily, or waxy hydrophobic organic compounds. Lipids Lipids Lipids fatty, oily, or waxy hydrophobic organic compounds. u long hydrocarbon chain u composed of CHO Diverse group u fats u oils u waxes u steroids Do not form polymers u big molecules made

More information

614 J. Jpn. Oil Chem. Soc. Fatty Acid Composition and Total Trans Fatty Acid. Content of Lipids in Processed Foods. I.

614 J. Jpn. Oil Chem. Soc. Fatty Acid Composition and Total Trans Fatty Acid. Content of Lipids in Processed Foods. I. 614 J. Jpn. Oil Chem. Soc. OR IGINAL Fatty Acid Composition and Total Trans Fatty Acid Content of Lipids in Processed Foods. I. Lipids in Biscuits and Crackers Nobuko KAWAI and Yukuho NAKAYAMA Osaka City

More information

Organic compounds. Lipids, Carbohydrates, Proteins, and Nucleic Acids

Organic compounds. Lipids, Carbohydrates, Proteins, and Nucleic Acids Organic compounds Lipids, Carbohydrates, Proteins, and Nucleic Acids Essential for life Organic compounds: Contain carbon Most are covalently bonded Example: C 6 H 12 O 6 (Glucose) Inorganic Compounds:

More information

Chapter 1-2 Review Assignment

Chapter 1-2 Review Assignment Class: Date: Chapter 1-2 Review Assignment Multiple Choice dentify the choice that best completes the statement or answers the question. Corn seedlings A student wanted to design an investigation to see

More information

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes)

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes) Macromolecules The Atoms of Life The most frequently found atoms in the body are Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes) What are other elements would you expect to be on this list?

More information

EH1008 Biomolecules. Inorganic & Organic Chemistry. Water. Lecture 2: Inorganic and organic chemistry.

EH1008 Biomolecules. Inorganic & Organic Chemistry. Water. Lecture 2: Inorganic and organic chemistry. EH1008 Biomolecules Lecture 2: Inorganic and organic chemistry limian.zheng@ucc.ie 1 Inorganic & Organic Chemistry Inorganic Chemistry: generally, substances that do not contain carbon Inorganic molecules:

More information

What is a Biomolecule?

What is a Biomolecule? Biology Unit 03 What is a Biomolecule? Organic molecule made by living organisms Consists mostly of carbon (C), hydrogen (H), and oxygen (O) But wait What is an Organic Molecule? Organic Molecules: Contain

More information

Macromolecules are large molecules. Macromolecules are large structures made of many smaller structures linked together.

Macromolecules are large molecules. Macromolecules are large structures made of many smaller structures linked together. Biomolecules Macromolecules are large molecules. Macromolecules are large structures made of many smaller structures linked together. The small single structure is a monomer (mono=one). The larger structure

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

Chapter 11 Nutrition: Food for Thought

Chapter 11 Nutrition: Food for Thought Chapter 11 Nutrition: Food for Thought Do you think about the food that goes into your body and how it affects you? How can you interpret the various nutrition information found in the press? What are

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

BCH 447. Triglyceride Determination in Serum

BCH 447. Triglyceride Determination in Serum BCH 447 Triglyceride Determination in Serum Introduction: Triglycerides are esters of fatty acids and are hydrolyzed by lipase to glycerol and free fatty acids. Triglyceride determinations when performed

More information

Triglyceride determination

Triglyceride determination Triglyceride determination Introduction: - Triglycerides are esters of fatty acids and are hydrolyzed to glycerol and free fatty acids (by lipase) - Triglyceride determinations when performed in conjunction

More information

Biomolecules. Unit 3

Biomolecules. Unit 3 Biomolecules Unit 3 Atoms Elements Compounds Periodic Table What are biomolecules? Monomers vs Polymers Carbohydrates Lipids Proteins Nucleic Acids Minerals Vitamins Enzymes Triglycerides Chemical Reactions

More information

Competitive Inhibitor

Competitive Inhibitor is a substance that reduces the activity of an enzyme by entering the active site in place of the substrate whose structure it mimics. Competitive Inhibitor Identify the following molecule: Polysaccharide

More information

Topic 3: Molecular Biology

Topic 3: Molecular Biology Topic 3: Molecular Biology 3.2 Carbohydrates and Lipids Essen=al Understanding: Carbon, hydrogen and oxygen are used to supply and store energy. Carbohydrates CARBOHYDRATES CHO sugars Primarily consist

More information

Macromolecule stations. 6 stations

Macromolecule stations. 6 stations Macromolecule stations 6 stations 1. Sugar and protein paper pieces to build (with waters) 2. Fatty acid and nucleic acid paper pieces to build with (and water) 3. DNA model with several pieces removed

More information

Organohalides and Applications of Free Radical Reactions. Dr. Sapna Gupta

Organohalides and Applications of Free Radical Reactions. Dr. Sapna Gupta Organohalides and Applications of Free Radical Reactions Dr. Sapna Gupta Applications of Radical Reactions Since these reactions are hard to control they have few practical applications. This does not

More information

MACROMOLECULES & HOMEOSTASIS

MACROMOLECULES & HOMEOSTASIS MACROMOLECULES & HOMEOSTASIS What do the prefixes Mono, Di, and Poly mean? Answer: Mono 1 Di 2 Poly - Many What is a monomer? Answer: One unit in a molecule. It is one single sugar, amino acid, nucleic

More information

½ cup of CHEX MIX contains 13 g of carbs = 4% daily value. How much more can you have the rest of the day??? _4_ = X X= 325 g

½ cup of CHEX MIX contains 13 g of carbs = 4% daily value. How much more can you have the rest of the day??? _4_ = X X= 325 g BIOCHEMISTRY ½ cup of CHEX MIX contains 13 g of carbs = 4% daily value. How much more can you have the rest of the day??? _4_ = 13 100 X X= 325 g These spinach imposters contain less than 2 percent of

More information

DEPARTMENT OF CHEMISTRY AND CHEMICAL ORGANIC CHEMISTRY II 202-BZG-05 03

DEPARTMENT OF CHEMISTRY AND CHEMICAL ORGANIC CHEMISTRY II 202-BZG-05 03 DEPARTMENT OF CHEMISTRY AND CHEMICAL TECHNOLOGY ORGANIC CHEMISTRY II 202-BZG-05 03 TEST 1 11 MARCH 2010 INSTRUCTOR: I. DIONNE PRINT YOUR NAME: Answers INSTRUCTIONS: Answer all questions in the space provided.

More information

Activity: Biologically Important Molecules

Activity: Biologically Important Molecules Activity: Biologically Important Molecules AP Biology Introduction We have already seen in our study of biochemistry that the molecules that comprise living things are carbon-based, and that they are thought

More information

BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS

BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS 1. 2. 3. 4. CARBOHYDRATES LIPIDS (fats) PROTEINS NUCLEIC ACIDS We call these four main types of carbon- based molecules

More information

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule.

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule. 1. Define organic molecule. An organic molecule is a molecule that contains carbon and is found in living things. There are many organic molecules in living things. The same (or very similar) molecules

More information

PREPARATION OF MONTMORILLONITE- POLYACRYLAMIDE INTERCALATION COMPOUNDS AND THE WATER ABSORBING PROPERTY

PREPARATION OF MONTMORILLONITE- POLYACRYLAMIDE INTERCALATION COMPOUNDS AND THE WATER ABSORBING PROPERTY Clay Science 7, 243-251 (1989) PREPARATION OF MONTMORILLONITE- POLYACRYLAMIDE INTERCALATION COMPOUNDS AND THE WATER ABSORBING PROPERTY MAKOTO OGAWA, KAZUYUKI KURODA and CHUZO KATO Department of Applied

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

Macromolecules. Honors Biology

Macromolecules. Honors Biology Macromolecules onors Biology 1 The building materials of the body are known as macromolecules because they can be very large There are four types of macromolecules: 1. Proteins 2. Nucleic acids 3. arbohydrates

More information

Elements & Macromolecules in Organisms

Elements & Macromolecules in Organisms Name: Period: Date: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.

More information

Chapter 3 The Molecules of Life

Chapter 3 The Molecules of Life Chapter 3 The Molecules of Life State Standards Standard 1.h. Standard 5.a. Standard 4.e. Organic Molecules A cell is mostly water. The rest of the cell consists mostly of carbon based molecules organic

More information

BIO 12 UNIT 2a CELL COMPOUNDS AND BIOLOGICAL MOLECULES

BIO 12 UNIT 2a CELL COMPOUNDS AND BIOLOGICAL MOLECULES IO 12 UNIT 2a LL OMPOUNS N IOLOGIL MOLULS 1. Water has many characteristics beneficial to life. ecause of (a) bonding between water molecules, it is a liquid at temperatures suitable for life. Water is

More information

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title Condensation and Hydrolysis Condensation reactions are the chemical processes by which large organic compounds are synthesized from their monomeric units. Hydrolysis reactions are the reverse process.

More information

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives Carboxylic Acid Derivatives Reading: Wade chapter 21, sections 21-1- 21-16 Study Problems: 21-45, 21-46, 21-48, 21-49, 21-50, 21-53, 21-56, 21-58, 21-63 Key Concepts and Skills: Interpret the spectra of

More information

Macromolecules Biomolecules Concept Map. The Big 4. Chapter 6. Color the molecule of carbon.

Macromolecules Biomolecules Concept Map. The Big 4. Chapter 6. Color the molecule of carbon. Biomolecules Concept Map Using the terms provided below, complete the concept map showing the characteristics of organic compounds Carbohydrates DNA Enzymes Fats Lipids Monosaccharides Nucleic Acids Nucleotides

More information

Lec 4a- BPK 110 Human Nutrition: Current Iss.

Lec 4a- BPK 110 Human Nutrition: Current Iss. Lec 4a- BPK 110 Human Nutrition: Current Iss. TOPICS FOR Lec 4a: 1. Introduction to Lipids 2. Lipid Structure 3. Saturated vs. Unsaturated Fatty Acid Chains 4. Phospholipids and Sterols (Other Lipids)

More information

Will s Pre-Test. (4) A collection of cells that work together to perform a function is termed a(n): a) Organelle b) Organ c) Cell d) Tissue e) Prison

Will s Pre-Test. (4) A collection of cells that work together to perform a function is termed a(n): a) Organelle b) Organ c) Cell d) Tissue e) Prison Will s Pre-Test This is a representative of Exam I that you will take Tuesday September 18, 2007. The actual exam will be 50 multiple choice questions. (1) The basic structural and functional unit of the

More information

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds.

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. BIOLOGY 12 BIOLOGICAL MOLECULES NAME: Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. ORGANIC MOLECULES: Organic molecules

More information

A New Method for Free Fatty Acid Reduction in Frying Oil Using Silicate Films Produced from Rice Hull Ash

A New Method for Free Fatty Acid Reduction in Frying Oil Using Silicate Films Produced from Rice Hull Ash A New Method for Free Fatty Acid Reduction in Frying Oil Using Silicate Films Produced from Rice Hull Ash U. Kalapathy* and A. Proctor Department of Food Science, University of Arkansas, Fayetteville,

More information

Chapter 11 Nutrition: Food for Thought

Chapter 11 Nutrition: Food for Thought Chapter 11 Nutrition: Food for Thought Do you think about the food that goes into your body and how it affects you? How can you interpret the various nutrition information found in the press? What are

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

NEAR INFRARED TRANSMISSION SPECTROSCOPY AS APPLIED TO FATS AND OIL

NEAR INFRARED TRANSMISSION SPECTROSCOPY AS APPLIED TO FATS AND OIL NEAR INFRARED TRANSMISSION SPECTROSCOPY AS APPLIED TO FATS AND OIL Phillip J. Clancy, NIR Technology Systems, 56 Kitchener Pde, Bankstown, NSW, Australia. Near Infrared Transmission (NIT) Spectroscopy

More information

BIOMOLECULES. Ms. Bosse Fall 2015

BIOMOLECULES. Ms. Bosse Fall 2015 BIOMOLECULES Ms. Bosse Fall 2015 Biology Biology is the study of the living world. Bio = life Major Molecules of Life Macromolecules giant molecules found in living cells; made from thousands of smaller

More information

Week 2. Macromolecules

Week 2. Macromolecules Week 2 In living organisms, smaller molecules are often attached to each other to make larger molecules. These smaller molecules are sometimes called monomers, and the larger molecules made from these

More information

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds Lesson Overview 2.3 The Chemistry of Carbon What elements does carbon bond with to make up life s molecules? Carbon can bond with many elements, including Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen

More information

Biological Molecules Ch 2: Chemistry Comes to Life

Biological Molecules Ch 2: Chemistry Comes to Life Outline Biological Molecules Ch 2: Chemistry Comes to Life Biol 105 Lecture 3 Reading Chapter 2 (pages 31 39) Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides and Nucleic

More information