CSE511 Brain & Memory Modeling. Lect03: Intro to Neuroscience

Size: px
Start display at page:

Download "CSE511 Brain & Memory Modeling. Lect03: Intro to Neuroscience"

Transcription

1 CSE511 Brain & Memory Modeling CSE511 Brain & Memory Modeling Lect02: BOSS Discrete Event Simulator Lect03: Intro to Neuroscience Chapter 1 of Purves et al., 4e Larry Wittie Computer Science, StonyBrook University and ~lw 1

2 Figure 1.1 Estimated number of genes in four animal genomes Figure 1.1 Estimated number of genes in the human genome, as well as in the genomes of the mouse, the fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis elegans. Note that the number of genes does not correlate with organismal complexity; the simpler nematode has more genes than the fruit fly and current analysis indicates that mice and humans actually have about the same number (25,000) of genes. Much genetic activity is dependent on transcription factors that regulate when and to what degree a given gene is expressed. 2

3 Figure 1.2 Some nerve cell morphologies found in the human nervous system Figure 1.2 Examples of the rich variety of nerve cell morphologies found inthe human nervous system. Tracings are from actual nerve cells stained by impregnation with silver salts (the so-called Golgi technique, the method used in the classical studies of Golgi and Cajal). Asterisks indicate that the axon runs on much farther than shown. Note that some cells, like the retinal bipolar cell, have a very short axon, and that others, like the retinal amacrine cell, have no axon at all. The drawings are not all at the same scale. The following slides show image details. 3

4 Figure 1.2 Some nerve cell morphologies found in the human nervous system (Part 1) Cranial nerves (A) originate in the midbrain, pons, and medulla at the base of the brain just above the spinal cord. (See Appendix Figure A7.) The three types of retinal cells (B-D) shown are found in the five neuronal layers at the back of each eye. (The receptor and horizontal cells of the retina are not shown. See Vision Figure 11.5.) 4

5 Figure 1.2 Some nerve cell morphologies found in the human nervous system (Part 2) 5

6 Figure 1.3 The major light and electron microscopical features of neurons Figure 1.3 The major light and electron microscopical features of neurons. (A) Diagram of nerve cells and their component parts. (B) Axon initial segment (blue) entering a myelin sheath (green). (C) Terminal boutons (blue) loaded with synaptic vesicles (arrowheads) forming synapses (arrows) with a dendrite (purple). (D) Transverse section of axons (blue) ensheathed by the processes of oligodendrocytes (gold). (E) Apical dendrites (purple) of cortical pyramidal cells. (F) Nerve cell bodies (purple) occupied by large round nuclei. (G) Portion of a myelinated axon (blue) illustrating the intervals between adjacent segments of myelin (gold) referred to as nodes of Ranvier (arrows). (Micrographs from Peters et al., 1991.) The following slides show image details. 6

7 Figure 1.3 The major light and electron microscopical features of neurons (Part 1) (A) The major components of the soma of a typical neuron plus its proximal axon and dendrites amid a background of dendrites, somas, and axons of other neurons. The regions labeled B to G are each shown in electron-micrographic detail in the following slides. 7

8 Figure 1.3 The major light and electron microscopical features of neurons (Part 2) B shows an (output) axon; C, terminal boutons at the ends of two axons that form side-by-side synapses onto one dendrite; D, cross sections through five myelinated axon(s), showing the spiral of oligodendrocytic glial membranes insulating each axon; 8

9 Figure 1.3 The major light and electron microscopical features of neurons (Part 3) E shows several branching segments of (input) dendrites for a nearby neuron; F, the soma (cell body) of another neuron with its large central nucleus full of DNA; and G, a myelinated axon showing a gap (node of Ranvier) between two insulating glial membranes where active exchanges of extracellular Na + and intracellular K + ions amplify firing spikes as they rapidly propagate along lengthy axons. 9

10 Figure 1.4 Distinctive arrangement of cytoskeletal elements in neurons Figure 1.4 Distinctive arrangements of cytoskeletal elements in neurons. (A) The cell body, axons, and dendrites are distinguished by the distribution of tubulin (green throughout cell) versus other cytoskeletal elements-in this case, the microtubule-binding protein Tau (red), which is found only in axons. (B) The localization of actin (red) to the growing tips of axonal and dendritic processes is shown here in a cultured neuron taken from the hippocampus. (C) In contrast, in a cultured epithelial cell, actin (red) is distributed in fibrils that occupy most of the cell body. (D) In astroglial cells in culture, actin (red) is also seen in fibrillar bundles. (E) Tubulin (green) is seen throughout the cell body and dendrites of neurons. (F) Although tubulin is a major component of dendrites, extending into spines, the head of the spine is enriched in actin (red). (G) The tubulin component of the cytoskeleton in non-neuronal cells is arrayed in filamentous networks. (H-K) Synapses have a distinct arrangement of cytoskeletal elements, receptors, and scaffold proteins. (H) Two axons (green; tubulin) from motor neurons are seen issuing two branches each to four muscle fibers. The red shows the clustering of postsynaptic receptors (in this case for the neurotransmitter acetylcholine). (I) A higher power view of a single motor neuron synapse shows the relationship between the axon (green) and the postsynaptic receptors (red). (J) Proteins in the extracellular space between the axon and its target muscle are labeled green. (K) Scaffolding proteins (green) localize receptors (red) and link them to other cytoskeletal elements. The scaffolding protein shown here is dystrophin, whose structure and function are compromised in the many forms of muscular dystrophy. (A courtesy of Y. N. Jan; B courtesy of E. Dent and F. Gertler; C courtesy of D. Arneman and C. Otey; D courtesy of A. Gonzales and R. Cheney; E from Sheng, 2003; F from Matus, 2000; G courtesy of T. Salmon et al.; H-K courtesy of R. Sealock.) 10

11 Figure 1.4 Distinctive arrangement of cytoskeletal elements in neurons (Part 1) (A) The cell body, axons, and dendrites are distinguished by the distribution of tubulin (green throughout cell) versus other cytoskeletal elements - in this case, the microtubule-binding protein Tau (red), which is found only in axons. (B) The localization of actin (red) to the growing tips of axonal and dendritic processes is shown here in a cultured neuron taken from the hippocampus. (C) In contrast, in a cultured epithelial (e.g., skin) cell, actin (red) is distributed in fibrils that occupy most of the cell body. (D) In astroglial cells in culture, actin (red) is also seen in fibrillar bundles. (A courtesy of Y. N. Jan; B courtesy of E. Dent and F. Gertler; C courtesy of D. Arneman and C. Otey; D courtesy of A. Gonzales and R. Cheney.) 11

12 Figure 1.4 Distinctive arrangement of cytoskeletal elements in neurons (Part 2) (E) Tubulin (green) is seen throughout the cell body and dendrites of neurons. (F) Although tubulin is a major component of dendrites, extending into the spines, the head of each spine is rich in actin (red). (G) The tubulin component of the cytoskeleton in non-neuronal cells is arrayed in filamentous networks. (E from Sheng, 2003; F from Matus, 2000; G courtesy of T. Salmon et al.) 12

13 Figure 1.4 Distinctive arrangement of cytoskeletal elements in neurons (Part 3) (H) Two axons (green; tubulin) from motor neurons are seen issuing two branches each to four muscle fibers. The red shows the clustering of postsynaptic receptors (in this case for the neurotransmitter acetylcholine). (I) A higher power view of a single motor neuron synapse shows the relationship between the axon (green) and the postsynaptic receptors (red). (J) Proteins in the extracellular space between the axon and its target muscle are labeled green. (K) Scaffolding proteins (green) localize receptors (red) and link them to other cytoskeletal elements. The scaffolding protein shown here is dystrophin, whose structure and function are compromised in the many forms of muscular dystrophy. (H-K courtesy of R. Sealock.) 13

14 Figure 1.5 Varieties of neuroglial cells Figure 1.5 Varieties of neuroglial cells. Tracings of an astrocyte (A), an oligodendrocyte (B), and a microglial cell (C) visualized using the Golgi method. The images are at approximately the same scale. (D) Astrocytes in tissue culture, labeled (red) with an antibody against an astrocyte-specific protein. (E) Oligodendroglial cells (green) in tissue culture labeled with an antibody against an oligodendroglial-specific protein. (F) Peripheral axons are ensheathed by myelin (labeled red) except at nodes of Ranvier (see Figure 1.3G). The green label indicates ion channels concentrated in the node; the blue label indicates a molecularly distinct region called the paranode. (G) Microglial cells from the spinal cord, labeled with a cell type-specific antibody. Inset: Higher-magnification image of a single microglial cell labeled with a macrophageselective marker. (A-C after Jones and Cowan, 1983; D, E courtesy of A.-S. LaMantia; F courtesy of M. Bhat; G courtesy of A. Light; inset courtesy of G. Matsushima.) 14

15 Figure 1.5 Varieties of neuroglial cells (Part 1) Tracings of an astrocyte (A), an oligodendrocyte (B), and a microglial cell (C) visualized using the Golgi method. Like macrophages in the blood, microglial cells in the nervous system are scavengers of damaged cell parts. The three images of glia are at approximately the same scale. (A-C after Jones and Cowan, 1983.) 15

16 Figure 1.5 Varieties of neuroglial cells (Part 2) (D) Astrocytes in tissue culture, labeled (red) with an antibody against an astrocyte-specific protein. (E) Oligodendroglial cells (green) in tissue culture labeled with an antibody against an oligodendroglial-specific protein. (F) Peripheral axons are ensheathed by myelin (labeled red) except at nodes of Ranvier (see Figure 1.3G). The green label indicates ion channels concentrated in the node; the blue label indicates a molecularly distinct region called the paranode. (G) Microglial cells from the spinal cord, labeled with a cell type-specific antibody. Inset: Higher-magnification image of a single microglial cell labeled with a macrophage-selective marker. (D, E courtesy of A.-S. LaMantia; F courtesy of M. Bhat; G courtesy of A. Light; inset courtesy of G. Matsushima.) 16

17 Figure 1.6 Visualizing nerve cells and their connections Figure 1.6 Visualizing nerve cells and their connections. (A) Cortical neurons stained using the Golgi method (impregnation with silver salts). (B) Golgi-stained Purkinje cells in the cerebellum. Purkinje cells have a single, highly branched apical dendrite. (C) Intracellular injection of fluorescent dye labels two retinal neurons that vary dramatically in the size and extent of their dendritic arborizations. (D) Intracellular injection of an enzyme labels a neuron in a ganglion of the autonomic (involuntary) nervous system. (E) The dye cresyl violet stains RNA in all cells in a tissue, labeling the nucleolus (but not the nucleus) as well as the ribosome-rich endoplasmic reticulum. Dendrites and axons are not labeled, explaining the "blank" spaces between neurons. (F) Nissl-stained section of the cerebral cortex, showing cell bodies arranged into layers of differing cell densities. (G) Higher magnification of one area of cerebral cortex shows that differences in cell density define boundaries between layers of this visual cortex. (H) Nissl stain of the olfactory bulbs reveals a distinctive distribution of cell bodies, particularly those cells arranged in rings on the outer surface of the bulb. These structures, including the cell-sparse tissue contained within each ring, are called glomeruli. (C courtesy of C. J. Shatz; all others courtesy of A.-S. LaMantia and D. Purves.) 17

18 Figure 1.6 Visualizing nerve cells and their connections (Part 1) Figure 1.6 Visualizing nerve cells and their connections. (A) Cortical neurons stained using the Golgi method (impregnation with silver salts). (B) Golgi-stained Purkinje cells in the cerebellum. Purkinje cells have a single, highly branched apical dendrite. (C) Intracellular injection of fluorescent dye labels two retinal neurons that vary dramatically in the size and extent of their dendritic arborizations. (D) Intracellular injection of an enzyme labels a neuron in a ganglion of the autonomic (involuntary) nervous system. (C courtesy of C. J. Shatz; all others courtesy of A.-S. LaMantia and D. Purves.) 18

19 Figure 1.6 Visualizing nerve cells and their connections (Part 2) (E) The dye cresyl violet stains RNA in all cells in a tissue, labeling the nucleolus (but not the nucleus) as well as the ribosome-rich endoplasmic reticulum. Dendrites and axons are not labeled, explaining the "blank" spaces between neurons. (F) Nissl-stained section of the cerebral cortex, showing cell bodies arranged into layers of differing cell densities. (G) Higher magnification of one area of cerebral cortex shows that differences in cell density define boundaries between layers of this visual cortex. (H) Nissl stain of the olfactory bulbs reveals a distinctive distribution of cell bodies, particularly those cells arranged in rings on the outer surface of the bulb. These structures, including the cell-sparse tissue contained within each ring, are called glomeruli. (All E-H courtesy of A.-S. LaMantia and D. Purves.) 19

20 Figure 1.7 A simple reflex circuit, the knee-jerk response Figure 1.7 A simple reflex circuit, the knee-jerk response (more formally, the myotatic reflex), illustrates several points about the functional organization of neural circuits. Stimulation of peripheral sensors (a muscle stretch receptor in this case) initiates receptor potentials that trigger action potentials that travel centrally along the afferent axons of the sensory neurons. This information stimulates spinal motor neurons by means of synaptic contacts. The action potentials triggered by the synaptic potential in motor neurons travel peripherally in efferent axons, giving rise to muscle contraction and a behavioral response. One of the purposes of this particular reflex is to help maintain an upright posture in the face of unexpected changes. Adapted from: 20

21 Figure 1.8 Relative frequency of action potentials in different components of the myotatic reflex Figure 1.8 Relative frequency of action potentials, also called firing spikes, (indicated by individual vertical lines) in different components of the myotatic reflex as the reflex pathway is activated. Notice the modulatory effect of the inhibitory interneuron, shown in purple. The circuit keeps the opposing forces of the extensor and flexor muscles balanced. See figure 1.9 for more details on action potentials. 21

22 Figure 1.9 Intracellularly recorded responses underlying the myotatic reflex Figure 1.9 Intracellularly recorded responses underlying the myotatic reflex. (A) Action potential measured in a sensory neuron. (B) Postsynaptic triggering potential recorded in an extensor motor neuron. (C) Postsynaptic triggering potential in an inhibitory interneuron. (D) Postsynaptic inhibitory potential in a flexor motor neuron. Intracellular recordings like these are the basis for understanding the cellular mechanisms of action potential generation, and the sensory receptor and synaptic potentials that trigger these conducted signals. 22

23 Figure 1.10 The major components of the nervous system and their functional relationships Figure 1.10 The major components of the nervous system and their functional relationships. (A) The CNS (brain and spinal cord) and PNS (spinal and cranial nerves). (B) Diagram of the major components of the central and peripheral nervous systems and their functional relationships. Stimuli from the environment convey information to processing circuits within the brain and spinal cord, which in turn interpret their significance and send signals to peripheral effectors that move the body and adjust the workings of its internal organs. 23

24 Figure 1.11 Cellular and molecular approaches for studying connectivity and molecular identity of nerve cells (Part 1 tracing connections) Figure 1.11a Tracing connections and pathways in the brain. (A) Radioactive amino acids can be taken up by one population of nerve cells (in this case, injection of a radioactively labeled amino acid into one eye) and be transported to the axon terminals of those cells in the target region in the brain. (B) Fluorescent molecules injected into nerve tissue are taken up by the axon terminals at the site of the injection. The molecules are then transported, labeling the cell bodies and dendrites of the nerve cells that project to the injection site. (C) Tracers that label axons can reveal complex pathways in the nervous system. In this case, a dorsal root ganglion has been injected, showing the variety of axon pathways from the ganglion into the spinal cord. (A courtesy of P. Rakic; B courtesy of B. Schofield; C courtesy of W. D. Snider and J. Lichtman.) 24

25 Figure 1.11 Cellular and molecular approaches for studying connectivity and molecular identity of nerve cells (Part 2 molecular differences) Figure 1.11b Molecular differences among nerve cells. (D) A single glomerulus in the olfactory bulb (see Figure 1.6H) has been labeled with an antibody against the inhibitory neurotransmitter GABA. The label shows up as a red stain, revealing GABA to be localized in subsets of neurons around the glomerulus as well as at synaptic endings in the neuropil of the glomerulus. (E) The cerebellum has been labeled with an antibody that recognizes subsets of dendrites (green). (F) Here the cerebellum has been labeled with a probe (blue) for a specific gene that is expressed only by Purkinje cells. (D-F courtesy of A.-S. LaMantia, D. Meechan and T. Maynard.) 25

26 Figure 1.12 Use of genetic engineering to show pathways within the nervous system Figure 1.12 Genetic engineering is used to show pathways within the nervous system. A "reporter gene" that codes for some visualizable substance (e.g., green fluorescent protein, GFP) is inserted into the genome under the control of a cell type-specific promoter (a DNA sequence that turns the gene "on" in specific tissue and cell types). The reporter is expressed only in those cell types, revealing the cell bodies, axons, and dendrites of all cells in the nervous system that express the gene. Here the reporter is under the control of a promoter DNA sequence that is activated only in a subset of dorsal root ganglion neurons. Photographs show that the reporter labels neuronal cell bodies; the axons that project to the skin as free nerve endings; and the axon that projects to the dorsal root of the spinal cord to relay this sensory information from the skin to the brain. (Photographs from Zylka et ai., 2005.) 26

27 Figure 1.13 Single-unit electrophysiological recording from cortical pyramidal neuron Figure 1.13 Single-unit electrophysiological recording from a cortical pyramidal neuron, showing the firing pattern in response to a specific peripheral stimulus. (A) Typical experiment set-up, in which a recording electrode is inserted into the somatic sensory neocortex region of the brain. (B) Defining neuronal receptive fields by brushing many locations on the skin of a monkey s arm. 27

28 Box 1A(1) Brain Imaging Techniques Box 1A(1) In computerized tomography (CT), the X-ray source and detectors are moved around the patient's head. The inset shows a horizontal CT section of a normal adult brain. 28

29 Box 1A(2) Brain Imaging Techniques Box 1A(2) In MRI (magnetic resonance imaging) scanning, the head is placed in the center of a powerful magnet. A radio-frequency antenna coil is placed around the head for exciting and recording the magnetic resonance signal. For fmri (functional MRI), stimuli can be presented using virtual reality video goggles and stereo headphones while inside the scanner. 29

30 Box 1A(3) Brain Imaging Techniques Box 1A(3) MRI images of an adult patient with a brain tumor, with fmri activity during a hand motion task superimposed (left hand activity is shown in yellow, right hand activity in green). At right is a three-dimensional surface reconstructed view of the same data. Note that left hand movement is controlled by the right cerebral hemisphere. The resolutions of fmri are much too poor to image single neurons mm spatially (roughly 0.2 to 6 million neurons) and 3-5 seconds temporally. 30

The 7 th lecture. Anatomy and Physiology For the. 1 st Class. By Dr. Ala a Hassan Mirza

The 7 th lecture. Anatomy and Physiology For the. 1 st Class. By Dr. Ala a Hassan Mirza The 7 th lecture In Anatomy and Physiology For the 1 st Class By Dr. Ala a Hassan Mirza Nervous System (part I) The Nerve Tissue and the Nervous System The Tissues of the Body There are 4 types of tissues

More information

Neurobiology. Cells of the nervous system

Neurobiology. Cells of the nervous system Neurobiology Cells of the nervous system Anthony Heape 2010 1 The nervous system Central nervous system (CNS) Peripheral nervous system (PNS) 2 Enteric nervous system (digestive tract, gall bladder and

More information

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi The Nervous System & Nervous tissue Dr. Ali Ebneshahidi Functions of the Nervous System 1. Nervous system and endocrine system are the chief control centers in maintaining body homeostasis. 2. Nervous

More information

Major Structures of the Nervous System. Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors

Major Structures of the Nervous System. Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors Major Structures of the Nervous System Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors Nervous System Divisions Central Nervous System (CNS) consists

More information

The Nervous System 7PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

The Nervous System 7PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Nervous System 7PART A Functions of the Nervous System Sensory input gathering information To monitor

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 TEXTBOOK AND REQUIRED/RECOMMENDED

More information

What Cell Make Up the Brain and Spinal Cord

What Cell Make Up the Brain and Spinal Cord What Cell Make Up the Brain and Spinal Cord Jennifer LaVail, Ph.D. (http://anatomy.ucsf.edu/pages/lavaillab/index.html) What kinds of cells are these?" Neuron?" Epithelial cell?" Glial cell?" What makes

More information

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites. 10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial

More information

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. !

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. ! Chapter 17 Sensory receptor Sensory input Integration Nervous System Motor output Brain and spinal cord Effector cells Peripheral nervous system (PNS) Central nervous system (CNS) 28.1 Nervous systems

More information

BIOL241 - Lecture 12a

BIOL241 - Lecture 12a Cranial Nerves, source: training.seer.cancer.gov Nervous System Overview BIOL241 - Lecture 12a 1 Topics Divisions of the NS: CNS and PNS Structure and types of neurons Synapses Structure and function of

More information

The Nervous System: Neural Tissue Pearson Education, Inc.

The Nervous System: Neural Tissue Pearson Education, Inc. 13 The Nervous System: Neural Tissue Introduction Nervous System Characteristics Controls and adjust the activity of the body Provides swift but brief responses The nervous system includes: Central Nervous

More information

NERVOUS TISSUE. 1. Functional units of the nervous system; receive, process, store and transmit information to other neurons, muscle cells or glands.

NERVOUS TISSUE. 1. Functional units of the nervous system; receive, process, store and transmit information to other neurons, muscle cells or glands. NERVOUS TISSUE LEARNING OBJECTIVES 1. Characterize and contrast the structure of neuronal cell bodies, dendrites and axons 2. List the classification of synapses and identify the basic structures of a

More information

Biology 218 Human Anatomy

Biology 218 Human Anatomy Chapter 17 Adapted form Tortora 10 th ed. LECTURE OUTLINE A. Overview of the Nervous System (p. 537) 1. The nervous system and the endocrine system are the body s major control and integrating centers.

More information

Nervous system part 1. Danil Hammoudi.MD

Nervous system part 1. Danil Hammoudi.MD Nervous system part 1 Danil Hammoudi.MD The central nervous system (CNS) is formed by : the brain spinal cord. These elements are enclosed within the skull and spinal vertebral canal. They are covered

More information

The Nervous System PART A

The Nervous System PART A 7 The Nervous System PART A PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Structural Classification

More information

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans The Brain & Homeostasis Today, scientists have a lot of information about what happens in the different parts of the brain; however they are still trying to understand how the brain functions. We know

More information

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40 biological psychology, p. 40 The specialized branch of psychology that studies the relationship between behavior and bodily processes and system; also called biopsychology or psychobiology. neuroscience,

More information

Nervous System. Electrical Signals.III Signal Transmission at Synapses Neurotransmitters.V Neural Circuits.VI

Nervous System. Electrical Signals.III Signal Transmission at Synapses Neurotransmitters.V Neural Circuits.VI Nervous System Overview.I Histology.II Electrical Signals.III Signal Transmission at Synapses Neurotransmitters.V Neural Circuits.VI Repairs.VII Pathology.VIII.IV 1 Controls and integrates all body activities

More information

Chapter 6 Section 1. The Nervous System: The Basic Structure

Chapter 6 Section 1. The Nervous System: The Basic Structure Chapter 6 Section 1 The Nervous System: The Basic Structure Essential Question: How does studying the biology of the brain give us an understanding of our behavior? Draw or type 2 things you already know

More information

Fundamentals of the Nervous System and Nervous Tissue. Nervous System. Basic Divisions of the Nervous System C H A P T E R 12.

Fundamentals of the Nervous System and Nervous Tissue. Nervous System. Basic Divisions of the Nervous System C H A P T E R 12. C H A P T E R 12 Fundamentals of the Nervous System and Nervous Tissue Nervous System Sensory input Integration Motor output Figure 12.1 Basic Divisions of the Nervous System Brain CNS Spinal cord Nerves

More information

Nerve tissue & the Nervous System

Nerve tissue & the Nervous System Nerve tissue & the Nervous System The human nervous system, by far the most complex system in the body, is formed by a network of many billion nerve cells (neurons), all assisted by many more supporting

More information

Collin County Community College BIOL Week 5. Nervous System. Nervous System

Collin County Community College BIOL Week 5. Nervous System. Nervous System Collin County Community College BIOL 2401 Week 5 Nervous System 1 Nervous System The process of homeostasis makes sure that the activities that occur in the body are maintained within normal physiological

More information

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3)

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3) UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM State the 3 functions of the nervous system. Briefly describe the general function(s) of each of the following neuron types: a) SENSORY NEURONS: b) INTERNEURONS: c)

More information

Chapter 17 Nervous System

Chapter 17 Nervous System Chapter 17 Nervous System 1 The Nervous System Two Anatomical Divisions Central Nervous System (CNS) Brain and Spinal Cord Peripheral Nervous System (PNS) Two Types of Cells Neurons Transmit nerve impulses

More information

Introduction to Nervous Tissue

Introduction to Nervous Tissue Introduction to Nervous Tissue Nervous Tissue Controls and integrates all body activities within limits that maintain life Three basic functions 1. sensing changes with sensory receptors 2. interpreting

More information

The nervous system regulates most body systems using direct connections called nerves. It enables you to sense and respond to stimuli

The nervous system regulates most body systems using direct connections called nerves. It enables you to sense and respond to stimuli The nervous system regulates most body systems using direct connections called nerves. It enables you to sense and respond to stimuli The basic function of nervous system are: Receive sensory input internal

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue I. Functions of the Nervous System A. List and describe the five major nervous system functions: 1. 2. 3. 4. 5. II. Divisions of the Nervous System

More information

Warm-Up. Label the parts of the neuron below.

Warm-Up. Label the parts of the neuron below. Warm-Up Label the parts of the neuron below. A B C D E F G Warm-Up 1. One neuron transmits a nerve impulse at 40 m/s. Another conducts at the rate of 1 m/s. Which neuron has a myelinated axon? 2. List

More information

Chapter 7 Nerve tissue 1 Liu Jiamei

Chapter 7 Nerve tissue 1 Liu Jiamei Chapter 7 Nerve tissue 1 Liu Jiamei General description: nerve tissue nerve cells (neurons): show numerous long processes receive the stimulation make contact with each other, conduct the nerve impulse

More information

Bio11: The Nervous System. Body control systems. The human brain. The human brain. The Cerebrum. What parts of your brain are you using right now?

Bio11: The Nervous System. Body control systems. The human brain. The human brain. The Cerebrum. What parts of your brain are you using right now? Bio11: The Nervous System Body control systems Nervous system Quick Sends message directly to target organ Endocrine system Sends a hormone as a messenger to the target organ Can target several organs

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 5 2401 : Anatomy/Physiology Introduction Neural Tissue TextBook Readings Pages 388 through 397. Make use of the figures in your textbook ; a picture is worth a thousand words! Work

More information

Chapter 9. Nervous System

Chapter 9. Nervous System Chapter 9 Nervous System Central Nervous System (CNS) vs. Peripheral Nervous System(PNS) CNS Brain Spinal cord PNS Peripheral nerves connecting CNS to the body Cranial nerves Spinal nerves Neurons transmit

More information

Nervous System. Lesson 11

Nervous System. Lesson 11 Nervous System Lesson 11 Reflex Arcs 1. Patellar reflex Causes leg to kick up 2. Achilles reflex Causes foot to jerk forward 3. Triceps reflex Causes arm to straighten 4. Babinski reflex 4. Pupil Dilation

More information

Organization of the nervous system. [See Fig. 48.1]

Organization of the nervous system. [See Fig. 48.1] Nervous System [Note: This is the text version of this lecture file. To make the lecture notes downloadable over a slow connection (e.g. modem) the figures have been replaced with figure numbers as found

More information

FLASH CARDS. Kalat s Book Chapter 2 Alphabetical

FLASH CARDS.   Kalat s Book Chapter 2 Alphabetical FLASH CARDS www.biologicalpsych.com Kalat s Book Chapter 2 Alphabetical absolute refractory period absolute refractory period Time when neuron will not re-fire no matter how much stimulus it gets. action

More information

NERVOUS SYSTEM C H A P T E R 2 8

NERVOUS SYSTEM C H A P T E R 2 8 NERVOUS SYSTEM C H A P T E R 2 8 CAN AN INJURED SPINAL CORD BE FIXED? Injuries to the spinal cord disrupt communication between the central nervous system (brain and spinal cord) and the rest of the body

More information

8.2. Types of Neurons

8.2. Types of Neurons Chapter 8 Nervous Tissue The neuron is the functional and the structural unit of the nervous system. It displays two highly developed physiological traits: 1. Irritability - the capacity to generate a

More information

Chapter 11: Nervous System and Nervous Tissue

Chapter 11: Nervous System and Nervous Tissue Chapter 11: Nervous System and Nervous Tissue I. Functions and divisions of the nervous system A. Sensory input: monitor changes in internal and external environment B. Integrations: make decisions about

More information

April 29, Neurophysiology. Chul-Kyu Park, Ph.D. Assistant Professor Department of Physiology, Graduate School of Medicine, Gachon University,

April 29, Neurophysiology. Chul-Kyu Park, Ph.D. Assistant Professor Department of Physiology, Graduate School of Medicine, Gachon University, April 29, 2016 Neurophysiology Chul-Kyu Park, Ph.D. Assistant Professor Department of Physiology, Graduate School of Medicine, Gachon University, Cells in the brain Neurons glia 1. Astrocytes 2. Microglia

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Body control systems. Nervous system. Organization of Nervous Systems. The Nervous System. Two types of cells. Organization of Nervous System

Body control systems. Nervous system. Organization of Nervous Systems. The Nervous System. Two types of cells. Organization of Nervous System Body control systems Nervous system Nervous system Quick Sends message directly to target organ Endocrine system Sends a hormone as a messenger to the target organ Slower acting Longer lasting response

More information

The Nervous System SBI4U

The Nervous System SBI4U SBI4U The Nervous System Central Nervous System (CNS): consists of the brain and spinal cord Acts as the coordinating centre for incoming and outgoing information Peripheral Nervous System (PNS): consists

More information

Cells of the Nervous System

Cells of the Nervous System Cells of the Nervous System Layout of the Nervous System Central Nervous System (CNS) Brain (in the skull) Spinal Cord (in the spine) Interprets sensory input, initiates movement, and mediates complex

More information

The Nervous System. B. The Components: 1) Nerve Cells Neurons are the cells of the body and are specialized to carry messages through an process.

The Nervous System. B. The Components: 1) Nerve Cells Neurons are the cells of the body and are specialized to carry messages through an process. The Nervous System A. The Divisions: 1) The Central Nervous System includes the and. The brain contains billions of nerve cells called, and trillions of support cells called. 2) The Peripheral Nervous

More information

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. The Nervous System: Structure and Control of Movement Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon

Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon Page 22 of 237 Conduct impulses away from cell body Impulses arise from

More information

Chapter 7. Objectives

Chapter 7. Objectives Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

ANSWERS TO PRE- LAB ASSIGNMENTS

ANSWERS TO PRE- LAB ASSIGNMENTS Lab 14 Introduction to Nervous System Hamilton ANSWERS TO PRE- LAB ASSIGNMENTS Pre-Lab Activity 1: 1. a. orbicularis oculi b. sternocleidomastoid c. deltoid d. pectoralis major e. biceps brachii f. rectus

More information

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters Nervous System Master controlling and communicating system of the body Interacts with the endocrine system to control and coordinate the body s responses to changes in its environment, as well as growth,

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

! BIOL 2401! Week 5. Nervous System. Nervous System

! BIOL 2401! Week 5. Nervous System. Nervous System Collin County Community College! BIOL 2401! Week 5 Nervous System 1 Nervous System The process of homeostasis makes sure that the activities that occur in the body are maintained within normal physiological

More information

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses Outline Week 4 - The Nervous System: Neurons and Synapses Neurons Neuron structures Types of neurons Electrical activity of neurons Depolarization, repolarization, hyperpolarization Synapses Release of

More information

Biology Dr. Khalida Ibrahim Nervous system The nervous system is responsible for communication between different regions of the body, it is divided

Biology Dr. Khalida Ibrahim Nervous system The nervous system is responsible for communication between different regions of the body, it is divided Biology Dr. Khalida Ibrahim Nervous system The nervous system is responsible for communication between different regions of the body, it is divided into: CNS (central nervous system) = brain + spinal cord

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

MOLECULAR AND CELLULAR NEUROSCIENCE

MOLECULAR AND CELLULAR NEUROSCIENCE MOLECULAR AND CELLULAR NEUROSCIENCE BMP-218 November 4, 2014 DIVISIONS OF THE NERVOUS SYSTEM The nervous system is composed of two primary divisions: 1. CNS - Central Nervous System (Brain + Spinal Cord)

More information

Unit Three. I. General Functions of the Nervous System. I. General Functions of the Nervous System

Unit Three. I. General Functions of the Nervous System. I. General Functions of the Nervous System 10 Refer to the following URLs. It is a good idea to print them and bring them to class. Be sure to study these along with your book. http://www.sirinet.net/~jgjohnso/nervous.html http://faculty.washington.edu/chudler/ap.html

More information

DO NOW: ANSWER ON PG 73

DO NOW: ANSWER ON PG 73 DO NOW: ANSWER ON PG 73 1. Name 1 neurotransmitter that we have learned about. 2. Draw a basic graph of a neuron action potential. Label resting potential, threshold, depolarization, and repolarization

More information

Meyers' A&P February 15, Unit 7. The Nervous System. I. Functions of the Nervous System. Monitors body's internal and external enviornments

Meyers' A&P February 15, Unit 7. The Nervous System. I. Functions of the Nervous System. Monitors body's internal and external enviornments Unit 7 The Nervous System I. Functions of the Nervous System Monitors body's internal and external enviornments Integrates sensory information Coordinates voluntary & involuntary responses of many other

More information

Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System

Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Question No. 1 of 10 The human body contains different types of tissue. The tissue is formed into organs and organ systems.

More information

Nervous Tissue Nervous tissue is the term for groups of organized cells in the nervous system, which is the organ system that controls the body s

Nervous Tissue Nervous tissue is the term for groups of organized cells in the nervous system, which is the organ system that controls the body s Nervous Tissue Nervous tissue is the term for groups of organized cells in the nervous system, which is the organ system that controls the body s movements, sends and carries signals to and from the different

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

Chapter Six Review Sections 1 and 2

Chapter Six Review Sections 1 and 2 NAME PER DATE Chapter Six Review Sections 1 and 2 Matching: 1. afferent nerves 2. autonomic nervous system 3. cell body 4. central nervous system (CNS) 5. dendrites 6. efferent nerves 7. myelin sheath

More information

Nervous system Overview ( The master communication system)

Nervous system Overview ( The master communication system) Nervous system Overview ( The master communication system) Neuron process Cell body nucleus Neuroglia Nerve Tissue COMPOSITION OF NERVE TISSUE Two principal types of cells, neurons and supporting cells

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

Chapter 7. The Nervous System

Chapter 7. The Nervous System Chapter 7 The Nervous System General overview of the nervous system functions Sensory input (info travels in along afferent pathways) Integration (information is processed) Sensory neurons Spinal cord

More information

Nervous tissue, charachteristics, neurons, glial cells

Nervous tissue, charachteristics, neurons, glial cells Nervous tissue, charachteristics, neurons, glial cells Functional Organization of Nervous Tissue The Nervous System Components Brain, spinal cord, nerves, sensory receptors Responsible for Sensory perceptions,

More information

Functional Organization of Nervous Tissue. Nervous tissue, charachteristics, neurons, glial cells. The Nervous System. The Nervous System 21/12/2010

Functional Organization of Nervous Tissue. Nervous tissue, charachteristics, neurons, glial cells. The Nervous System. The Nervous System 21/12/2010 Nervous tissue, charachteristics, neurons, glial cells Functional Organization of Nervous Tissue The Nervous System Components Brain, spinal cord, nerves, sensory receptors Responsible for Sensory perceptions,

More information

Page 1. Neurons Transmit Signal via Action Potentials: neuron At rest, neurons maintain an electrical difference across

Page 1. Neurons Transmit Signal via Action Potentials: neuron At rest, neurons maintain an electrical difference across Chapter 33: The Nervous System and the Senses Neurons: Specialized excitable cells that allow for communication throughout the body via electrical impulses Neuron Anatomy / Function: 1) Dendrites: Receive

More information

Functions of the Nervous System. Fundamentals of the Nervous System & Nervous Tissue

Functions of the Nervous System. Fundamentals of the Nervous System & Nervous Tissue Fundamentals of the Nervous System & Nervous Tissue Overview Structure cell types & structures Neurophysiology membrane potential Synapse, neurotransmitters & receptors Functions of the Nervous System

More information

25 Things To Know. Neurons

25 Things To Know. Neurons 25 Things To Know Neurons Neurons receive & transmit to other cells Neurons Many last your whole life Neurons Many last your whole life Other cells die and are replaced Most aren t replaced Neurons Hippocampus

More information

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5 P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

sensory input receptors integration Human Anatomy motor output Ch. 7 effectors Structural classification

sensory input receptors integration Human Anatomy motor output Ch. 7 effectors Structural classification Human Anatomy Ch. 7 I. The Nervous System A. General characteristics 1. body s control & communication center a. 3 overlapping functions 1) sensory input: receptors monitor stimuli 2) integration: processes,

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Name: Period: Chapter 2 Reading Guide The Biology of Mind

Name: Period: Chapter 2 Reading Guide The Biology of Mind Name: Period: Chapter 2 Reading Guide The Biology of Mind The Nervous System (pp. 55-58) 1. What are nerves? 2. Complete the diagram below with definitions of each part of the nervous system. Nervous System

More information

HISTOLOGY OF NERVOUS SYSTEM. DR. Nabil Khouri

HISTOLOGY OF NERVOUS SYSTEM. DR. Nabil Khouri HISTOLOGY OF NERVOUS SYSTEM DR. Nabil Khouri 2 NERVOUS SYSTEM 25/01/2017 The most complex system in the human body Formed by network more than 100 million neuron Each neuron has a thousand interconnection

More information

Acetylcholine (ACh) Action potential. Agonists. Drugs that enhance the actions of neurotransmitters.

Acetylcholine (ACh) Action potential. Agonists. Drugs that enhance the actions of neurotransmitters. Acetylcholine (ACh) The neurotransmitter responsible for motor control at the junction between nerves and muscles; also involved in mental processes such as learning, memory, sleeping, and dreaming. (See

More information

SOME BASIC TERMINOLOGY CNS: Central Nervous System: Brain + Spinal Cord

SOME BASIC TERMINOLOGY CNS: Central Nervous System: Brain + Spinal Cord SOME BASIC TERMINOLOGY CNS: Central Nervous System: Brain + Spinal Cord CEREBROSPINAL FLUID (CSF): The fluid filling the ventricles, cerebral aqueduct, central canal, and subarachnoid space. It is a filtrate

More information

Body control systems. Let s start at the top: the human brain. The Cerebrum. The human brain. What parts of your brain are you using right now?

Body control systems. Let s start at the top: the human brain. The Cerebrum. The human brain. What parts of your brain are you using right now? What parts of your brain are you using right now? Body control systems Quick Sends message directly to target organ Endocrine system Frontal lobe Parietal lobe Movement and conscious thought; Frontal speech

More information

Nervous system. 1. Neurons :

Nervous system. 1. Neurons : Nervous system nervous system is composed of billions of cells, the most essential being the nerve cells or neurons. There are estimated to be as many as 100 billion neurons in our nervous system. Two

More information

Anatomy of a Neuron. Copyright 2000 by BSCS and Videodiscovery, Inc. Permission granted for classroom use. Updated Master 2.

Anatomy of a Neuron. Copyright 2000 by BSCS and Videodiscovery, Inc. Permission granted for classroom use. Updated Master 2. Anatomy of a Neuron Master 2.1 Neurons Interact with Other Neurons through Synapses Master 2.2 Name Date Due Cells of the Nervous System Learning Target: Identify and state the function of the components

More information

ACTIVITY2.15 Text:Campbell,v.8,chapter48 DATE HOUR NERVOUS SYSTEMS NEURON

ACTIVITY2.15 Text:Campbell,v.8,chapter48 DATE HOUR NERVOUS SYSTEMS NEURON AP BIOLOGY ACTIVITY2.15 Text:Campbell,v.8,chapter48 NAME DATE HOUR NERVOUS SYSTEMS NEURON SIMPLE REFLEX RESTING POTENTIAL ACTION POTENTIAL ACTION POTENTIAL GRAPH TRANSMISSION ACROSS A SYNAPSE QUESTIONS:

More information

NERVOUS SYSTEM. Academic Resource Center. Forskellen mellem oscillator og krystal

NERVOUS SYSTEM. Academic Resource Center. Forskellen mellem oscillator og krystal NERVOUS SYSTEM Academic Resource Center Forskellen mellem oscillator og krystal Overview of the Nervous System Peripheral nervous system-pns cranial nerves spinal nerves ganglia peripheral nerves enteric

More information

Nervous Tissue and Histology of CNS

Nervous Tissue and Histology of CNS Nervous Tissue and Histology of CNS Functions of Nervous System Like the CPU of a computer, the nervous system is the master controlling system of the body. It is designed to constantly and rapidly adjust

More information

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48 ANATOMY AND PHYSIOLOGY OF NEURONS AP Biology Chapter 48 Objectives Describe the different types of neurons Describe the structure and function of dendrites, axons, a synapse, types of ion channels, and

More information

Neurophysiology scripts. Slide 2

Neurophysiology scripts. Slide 2 Neurophysiology scripts Slide 2 Nervous system and Endocrine system both maintain homeostasis in the body. Nervous system by nerve impulse and Endocrine system by hormones. Since the nerve impulse is an

More information

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System Learning Objectives Neurons Chapter 7 Identify and describe the functions of the two main divisions of the nervous system. Differentiate between a neuron and neuroglial cells in terms of structure and

More information

Chapter 34 The Nervous System:

Chapter 34 The Nervous System: Chapter 34 The Nervous System: 3.5 Learning Objectives 3.5.3 Responses in the human 1. The nervous system: two-part division into the CNS and the PNS. 2. Neurons, name 3 types, give structure and function

More information

Module H NERVOUS SYSTEM

Module H NERVOUS SYSTEM Module H NERVOUS SYSTEM Topic from General functions of the nervous system Organization of the nervous system from both anatomical & functional perspectives Gross & microscopic anatomy of nervous tissue

More information

The Nervous System II Neurons

The Nervous System II Neurons The Nervous System II Neurons Review Nervous System What is it? The system that receives, processes, stores and transmits information that comes from various parts of the body and the external world. Composed

More information

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 7 THE NERVOUS SYSTEM

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 7 THE NERVOUS SYSTEM ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 7 THE NERVOUS SYSTEM Introduction The nervous system is the major controlling, regulatory, and communicating system in the body. It is the center of all mental

More information

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16:

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16: Lesson 33 Lesson Outline: Nervous System Structure and Function Neuronal Tissue Supporting Cells Neurons Nerves Functional Classification of Neuronal Tissue Organization of the Nervous System Peripheral

More information

Nervous Tissue and Nervous System. Zhong Jinjie

Nervous Tissue and Nervous System. Zhong Jinjie Nervous Tissue and Nervous System Zhong Jinjie 0017152@zju.edu.cn Nervous System Central nervous system Brain Spinal cord Peripheral nervous system Ganglia Nerves Nerve endings In the histological slide

More information

Chapter 3. Biological Processes

Chapter 3. Biological Processes Biological Processes Psychology, Fifth Edition, James S. Nairne What s It For? Biological Solutions Communicating internally Initiating and coordinating behavior Regulating growth and other internal functions

More information

Nervous System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University

Nervous System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University Nervous System Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University Declaration The content and the figures of this seminar were directly adopted from the

More information

The Nervous System. Functions of the Nervous System input gathering To monitor occurring inside and outside the body Changes =

The Nervous System. Functions of the Nervous System input gathering To monitor occurring inside and outside the body Changes = The Nervous System Functions of the Nervous System input gathering To monitor occurring inside and outside the body Changes = To process and sensory input and decide if is needed output A response to integrated

More information

NEURONS ARE ORGANIZED INTO NERVOUS SYSTEMS 34.5

NEURONS ARE ORGANIZED INTO NERVOUS SYSTEMS 34.5 NEURONS ARE ORGANIZED INTO NERVOUS SYSTEMS 34.5 INTRODUCTION The cnidarians have nerve nets, the most simple type of nervous system. The sea anemone has a nerve net that serves simple behaviours such as

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Man and his environment

Man and his environment Man and his environment Dr. Elriah M. Makie 0122858517 Nervous Tissue BSc.M.Sc.MBBS Introduction The nervous system is divided into two main parts: The central nervous system (CNS) comprising the brain

More information