Biological basics in relation to molecular imaging.

Size: px
Start display at page:

Download "Biological basics in relation to molecular imaging."

Transcription

1 Master s Programme Biomedical Engineering Biological basics in relation to molecular imaging. Dr. Rory Koenen Institute for Molecular Cardiovascular Research (IMCAR) RWTH University Hospital Aachen, Germany Director: Prof. Christian Weber November 10, 2009 rkoenen@ukaachen.de amayer@ukaachen.de

2 Biological basics in relation to molecular imaging. A general cross section through basic (cell) biology with a special focus on human vascular (patho-) physiology

3 Biological basics in relation to molecular imaging. cell biology (introduction): differentiation/division apoptosis and necrosis tumor biology vascular biology: angiogenesis blood vessel architecture haemodynamics heart and circulation haematology (blood celltypes and coagulation) inflammation tumor biology (Dr. Lederle)

4 Basic Cell Biology Three types of cells: Germ cells: form gametes for reproduction (meiosis) Somatic cells: most cells of the body (gr. Soma) Stem cells: Embryonic stage: pluripotent stem cells in embryonic development Adult organism: multipotent stem cells for example Hematopoietic stem cells (bone marrow) -> red blood cells, white blood cells, platelets Mesenchymal stem cells (bone marrow) -> stromal cells, fat cells, bone cells unipotent (progenitor) cells for example skin cells endothelial progenitor cells (EPC) -> endothelial cell smooth muscle progenitor cells (SMC) -> smooth muscle cell

5 Basic Cell Biology

6 Basic Cell Biology The cell membrane and its asymmetry:

7 Basic Cell Biology The cell cycle: G0 (quiescent) (programmed) cell death Regulated by cyclins and cyclin-dependent kinases.

8 Basic Cell Biology Programmed cell death Autophagy self-eating of cells, leading to their death Apoptosis from Greek: dropping off of leaves an important regulated process clean involved in tissue homeostasis, immune tolerance involved in embryonic development: e.g. removal of interdigital tissue Ota, et al. Development 2007 Necrosis non-regulated cell death resulting from direct injury messy and results in inflammation and damage to tissue environment

9 Apoptosis Discovered during developmental studies Caenorhabditis elegans: a nematode worm Adult hermaphrodite has 959 cells if certain genes are deactivated the adult has 131 additional cells so some cells are eliminated during development by apoptosis C. elegans

10 Apoptosis Homology exists with human genes: Robertson et al., Cell Death Diff. 2002

11 Apoptosis Apoptosis proceeds through a tightly regulated cascade

12 Apoptosis Apoptosis is induced / mediated by: membrane receptors such as TNFR or Fas stress factors such as mitochondrial stress, oxidative stress, DNA damage, hypoxia, reactive nitrogen species executed by caspases (cysteine-aspartic acid proteases) in a coordinated fashion (cascade) mitochondria play an integral role e.g. release of cytochrome c Active process that does not take place at 4 C (unlike necrosis) Apoptosis is characterized by: shrinkage of the cell condensation of nuclear chromosomes and fragmentation of the nucleus (pyknosis and karyorrhexis, resp.) fragmentation of DNA into discrete fragments: ladder cell membrane forming blebs and loss of membrane asymmetry: phosphatidyl serine exposure formation of cell-derived apoptotic bodies

13 Apoptosis imaging Annexin A5: strong calcium-dependent binding to phosphatidyl serine forms so-called 2-dimensional crystals on phospholipid bilayers is used in biomedical research to stain apoptotic cells Ca 2+ Ca 2+ Ca 2+ van Genderen et al., BBA, 2008

14 Apoptosis imaging Annexin A5: is used in biomedical research to stain apoptotic cells labeled with 99 Tc it has been used to visualize ischemic heart injury in vivo

15 Apoptosis imaging Annexin A5: is used in biomedical research to stain apoptotic cells labeled with 99 Tc it has been used to visualize ischemic heart injury in vivo SPECT Annexin A5 Sestamibi reperfusion 22 hours after perfusion 6 weeks after Hofstra et al. Lancet 2000

16 Apoptosis Robertson et al., Cell Death Diff. 2002

17 Carcinogenesis NIH Multiple hits are needed to transform a cell mostly transformation starts with abnormal proliferation accompanied by extension of the division limit reduction of contact inhibition evasion from immune surveillance attraction of microvasculature expression of matrix-degrading enzymes (intravasation) ability to survive without cell anchorage and in blood circulation ability to extravasate, embed, and proliferate at distant sites Metastasis

18 Steeg, Nat Rev Cancer 2003 Tumor biology

19 Tumor imaging In vivo using a quenched near infrared fluorescent matrix metalloprotease probe: probe probe + inhibitor Bremer, Nat. Med. 2001

20 Tumor biology

21 Angiogenesis Angiogenesis: the formation of new blood vessels from existing vessels Vasculogenesis: de novo formation of blood vessels (development) Arteriogenesis: formation of arteries Lymphangiogenesis: formation of lymphatic vessels Degradation of basement membrane by enzymes Attraction of endothelial cells and/or (endothelial) progenitors Proliferation of endothelial and/or smooth muscle cells Involves growth factors such as VEGF, FGF and chemoattractants such as the chemokine CXCL12/SDF1α and adhesion molecules such as VE-Cadherin and integrins

22 Angiogenesis Malpighi, 1661 Hoyer, 1905 Carmeliet, Nature, 2005

23 Angiogenesis Angiogenesis in a Petri dish: Sprouting from aortic section: Endothelial tube formation on gel matrix: Kreisel, J. Immunol. Meth Alisina Sarabi, IMCAR

24 Angiogenesis When do we want angiogenesis? Embryonic development Menstrual cycle Neovascularization after ischemia When do we NOT want angiogenesis? cancer / neoplasia several diseases such as (wet) age related macular degeneration, endometriosis Angiogenesis inhibitors (mainly VEGF antagonists) are being tested as therapeutic against cancer and other syndromes that involve angiogenesis

25 Blood vessels Several types of blood vessels exist: Artery Arteriole Capillary (organs) Venule Vein thick multilayered vessels that provides oxygen-rich blood to organs (except pulmonary artery), away from heart thin (single endothelial layer) and permeable vessels, huge surface area multilayered vessels (valves!) that bring oxygen-poor blood back to the heart, toward the heart

26 Blood vessels Artery Tunica externa/adventitia (fibrous connective tissue) Tunica media (smooth muscle cells tonus) Tunica intima (endothelial lining) Vasa vasorum: blood vessels supplying blood to large blood vessels

27 Heart and blood circulation William Harvey ( ) Marcello Malpighi (1681)

28 Heart and blood circulation

29 Heart and blood circulation Superior vena cava from head, arms Pulmonary artery to lungs Pulmonary veins from lungs Aortic arch with branches to head and arms Pulmonary artery to lungs Pulmonary veins from lungs Inferior vena cava from organs, legs Aorta to organs, legs

30 Heart and blood circulation Right atrium Left atrium Right ventricle Left ventricle (thick wall) Note the heart valves Small circulation : right ventricle to lungs to left atrium oxygen loading Large circulation : left ventricle to organs to right atrium oxygen delivery

31 Haemodynamics Laminar blood flow through vessels Blood flow approximates Poiseuille s law of laminar flow of Newtonian fluids Shear rate: velocity gradient, rate at which shear is applied Shear stress: stress applied parallel to boundary (layers), depends on viscosity of fluid Rate = v/h = 8*v m / d (blood) d h Stress = rate x * η (viscosity) = (4*η)*q / π*r 3 (blood) Approximation: blood is a complex non-newtonian fluid and blood vessels are elastic (non-rigid), flow is pulsating (heartbeat)

32 Visualization of haemodynamics with ultrasound Velocity profile Shear stress Brachialis Carotis Reneman et al., J. Vasc. Res. 2006

33 Blood: Haematology Blood plasma: protein-rich liquid without cells, contains fibrinogen Blood serum: protein-rich liquid, after coagulation and removal of cells, does not contain fibrinogen and most native coagulation factors Blood cells: Erythrocytes: biconcave anucleate red cells for oxygen transport Thrombocytes: anucleate cell particles for primary haemostasis Leukocytes: white cells for host defense (Circulating progenitors)

34 Haematology Leukocytes: Polymorphonuclear cells: Neutrophilic granulocytes (50-70% of white blood cells) Eosinophilic granulocytes (<5%) Basophilic granulocytes (<1%) First line of cellular host defense e.g. against bacteria

35 Mononuclear cells: Haematology Monocyte (blood, 2-8%) / Macrophage (tissue) phagocytic function secretion of effectors cytokines / chemokines foam cells in atherosclerosis Dendritic cell / Langerhans cell (skin): different origins. antigen gathering and presentation activation and induction of (clonal) proliferation of T cells Lymphocyte (20-45%): B cell / plasmacell: immunoglobulin production T cell: T helper cells, memory T cells, cytotoxic T cells, effector T cells: general immune response Natural killer cells: cytotoxic cells that can eliminate infected or cancer cells monocyte macrophage dendritic cell T cell

36 Hematopoiesis: Haematology

37 Blood coagulation: Haematology Primary haemostasis: formation of a platelet plug on the injury Secondary haemostasis : activation of a cascade of coagulation that lead to the formation of a fibrin clot factors

38 Haematology Extrinsic pathway / initiation Intrinsic pathway / propagation

39 Haematology Venous thromboembolism (VTE): blood clot in veins (leg vein) danger of releasing clot fragments (embolization) emboli can end up in lungs and cause infarction pulmonary embolism Technegas perfusion scintigraphy Pulmonary embolism

40 Inflammation Inflammation: Classical symptoms of inflammation: Dolor = pain Calor = heat Rubor = redness Tumor = swelling Loss of function (Virchow) acute and chronic inflammation: acute inflammation is caused by pathogens or injury and involves neutrophilic granulocytes and monocytes chronic inflammation is caused by prolonged insults and is mediated by mononuclear cells (monocytes, lymphocytes) and inflammatory mediators such as cytokines, chemokines, reactive oxygen species

41 Inflammation Acute inflammation (wound):

42 Inflammation Chronic inflammation (atherosclerosis): Weber et al., Nat. Rev. Immunol. 2008

43 Inflammation Inflammatory cell infiltration to the site of injury/infection: the leukocyte adhesion cascade: Ley et al., Nat. Rev. Immunol. 2007

44 Inflammation Inflammatory cell infiltration to the site of injury/infection: Intravital microscopy To camera Vein Blood flow Dr. Oliver Söhnlein, Karolinska Institute, Stockholm / IMCAR, Aachen

45 Inflammation Inflammatory cell infiltration to the site of injury/infection: the leukocyte adhesion cascade: Intravital microscopy To camera Fluorescence Vein Blood flow Dr. Oliver Söhnlein, Karolinska Institute, Stockholm / IMCAR, Aachen

46 intact WBC PMN depletion Dr. Oliver Söhnlein, Karolinska Institute, Stockholm / IMCAR, Aachen June, 7th,

2.01 Remember the structures of the circulatory system

2.01 Remember the structures of the circulatory system 2.01 Remember the structures of the circulatory system Essential questions What are the structures of blood? What are the structures of the circulatory system? circulatory system 2 Structures of the circulatory

More information

Hematopoiesis. Hematopoiesis. Hematopoiesis

Hematopoiesis. Hematopoiesis. Hematopoiesis Chapter. Cells and Organs of the Immune System Hematopoiesis Hematopoiesis- formation and development of WBC and RBC bone marrow. Hematopoietic stem cell- give rise to any blood cells (constant number,

More information

Chapter 12 Cardiovascular System

Chapter 12 Cardiovascular System Chapter 12 Cardiovascular System Cardiovascular System Includes Heart and Blood Vessels Transports, nutrients and wastes to and from the tissues 1 The Blood Vessels Three Types of Blood Vessels Arteries:

More information

Scrub In: Red blood cells are called: Which component of blood is necessary for the initiation of the blood clotting process:

Scrub In: Red blood cells are called: Which component of blood is necessary for the initiation of the blood clotting process: Scrub In: Red blood cells are called: a. erythrocytes b. leukocytes c. melanocytes d. thrombocytes Which component of blood is necessary for the initiation of the blood clotting process: a. erythrocytes

More information

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs Cytokines, adhesion molecules and apoptosis markers A comprehensive product line for human and veterinary ELISAs IBL International s cytokine product line... is extremely comprehensive. The assays are

More information

BLOOD RUNS THROUGH YOUR BODY

BLOOD RUNS THROUGH YOUR BODY BLOOD RUNS THROUGH YOUR BODY WORKSHEET A Your heart and blood vessels make up your blood system. At the centre of your blood system is your heart. Its job is to pump the blood around your body. The rest

More information

Chapter 16: Circulation

Chapter 16: Circulation Chapter 16: Circulation Section 1: The Body s Transport System Beating Heart Cardiac muscle is Striated and branched Under involuntary control by the brain stem Functions of the Cardiovascular System 1.

More information

What is the composition of blood, including blood cells? What organs and structures control the flow of blood throughout the body?

What is the composition of blood, including blood cells? What organs and structures control the flow of blood throughout the body? 3 Chapter 10: Circulatory System and Lymphatic System In this chapter, you will learn about the structure and function of the circulatory system and lymphatic system. What is the composition of blood,

More information

The Cardiovascular. Parts and Functions

The Cardiovascular. Parts and Functions The Cardiovascular Parts and Functions Parts The cardiovascular system consists of 3 major parts that work together. 1- Heart 2- Lungs 3- Blood Vessels Blood Vessels There are blood vessels that carry

More information

Unit 10 Cardiovascular System

Unit 10 Cardiovascular System Unit 10 Cardiovascular System I. Functions Deliver nutrients to cells > O 2, sugars, amino acids, lipids, ions, H 2 O... Remove waste from cells > CO 2, pathogens, toxins, lactic acid... Fight off infection

More information

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues Chapter 12 Circulation The circulatory system connects with all body s In many animals, microscopic blood vessels called capillaries Form an intricate network among the Red blood cell song Figure 23.1A

More information

Bellwork Define: hemostasis anticoagulation hemophilia (Then write the underline portion of the two state standards in your notes).

Bellwork Define: hemostasis anticoagulation hemophilia (Then write the underline portion of the two state standards in your notes). Bellwork Define: hemostasis anticoagulation hemophilia (Then write the underline portion of the two state standards in your notes). A&P Standards 31) Identify the liquid and cellular components of blood

More information

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues Levels of Organization Chapter 19 Homeostasis & Organization of the animal body Chemical Cellular Tissue Organs System Level Organismic 1-2 4 Primary Tissues 1. Epithelial Tissue: covers surfaces lines

More information

Circulatory System: Introduction. Dr. Carmen E. Rexach Anatomy 35 Mt. San Antonio College

Circulatory System: Introduction. Dr. Carmen E. Rexach Anatomy 35 Mt. San Antonio College Circulatory System: Introduction Dr. Carmen E. Rexach Anatomy 35 Mt. San Antonio College Components Cardiovascular system Lymphatic system Cardiovascular system Heart, blood vessels, blood Functions: transport

More information

The Circulatory System. The Heart, Blood Vessels, Blood Types

The Circulatory System. The Heart, Blood Vessels, Blood Types The Circulatory System The Heart, Blood Vessels, Blood Types The Closed Circulatory System Humans have a closed circulatory system, typical of all vertebrates, in which blood is confined to vessels and

More information

The Cardiovascular System home study course

The Cardiovascular System home study course The Cardiovascular System home study course harmony house holistic therapy treatment centre and training academy www.harmony-house.org 1 Copyright 2010 by Mark and Katy Rogers All rights reserved. No part

More information

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System The Immune System! Functions of the Immune System! Types of Immune Responses! Organization of the Immune System! Innate Defense Mechanisms! Acquired Defense Mechanisms! Applied Immunology A macrophage

More information

Blood and Heart. Student Learning Objectives:

Blood and Heart. Student Learning Objectives: Blood and Heart Student Learning Objectives: Identify the major components of the blood. Identify the primary structures associated with the heart Follow the blood through the path of the circulation.

More information

2.02 Understand the functions and disorders of the circulatory system

2.02 Understand the functions and disorders of the circulatory system 2.02 Understand the functions and disorders of the circulatory system 2.02 Understand the functions and disorders of the circulatory system Essential questions: What are the functions of blood? What are

More information

Chapter 23. Circulation

Chapter 23. Circulation Chapter 23 Circulation Standards CORE: I can describe the components and function of blood. I can describe structure and function of blood vessels. I can compare and contrast systemic and pulmonary systems.

More information

2. What makes up the most of your blood? least of your blood? 1. Look like red discs, have a pale center, no nucleus, similar in size

2. What makes up the most of your blood? least of your blood? 1. Look like red discs, have a pale center, no nucleus, similar in size .I Can Statements I can identify the major components of blood and where they are formed. Identify the four components of blood in the diagram below. 1. Label each section of the pie chart with the correct

More information

Copyright 2010 Pearson Education, Inc. Blood Vessel Structure

Copyright 2010 Pearson Education, Inc. Blood Vessel Structure Blood Vessel Structure Structure of Blood Vessel Walls Arteries and veins Tunica intima, tunica media, and tunica externa Lumen Central blood-containing space Capillaries Endothelium with sparse basal

More information

Lymphoid System: cells of the immune system. Answer Sheet

Lymphoid System: cells of the immune system. Answer Sheet Lymphoid System: cells of the immune system Answer Sheet Q1 Which areas of the lymph node have most CD3 staining? A1 Most CD3 staining is present in the paracortex (T cell areas). This is towards the outside

More information

The blood returns from the body and enters right atrium using the vena cava. It passes through the tricuspid valve to the right ventricle.

The blood returns from the body and enters right atrium using the vena cava. It passes through the tricuspid valve to the right ventricle. The blood returns from the body and enters right atrium using the vena cava. It passes through the tricuspid valve to the right ventricle. From this camber, it passes through the pulmonary semilunar valve

More information

Name: Date: Class: Unit 5 Outline: Blood and the Cardiovascular System

Name: Date: Class: Unit 5 Outline: Blood and the Cardiovascular System Name: Date: Class: Unit 5 Outline: Blood and the Cardiovascular System Blood and RBCs Blood The only Classified as a Non-living matrix = Blood Composition tissue in the human body tissue cells = formed

More information

CIE Biology GCSE. 9: Transport in animals. Notes.

CIE Biology GCSE. 9: Transport in animals. Notes. CIE Biology GCSE 9: Transport in animals Notes The circulatory system acts as the main transport system in animals. It is made up of blood vessels such as arteries, veins and capillaries, in which blood

More information

Summary table: artery capillary vein Blood pressure Hi Low lowest Valves present or Absent Absent Present

Summary table: artery capillary vein Blood pressure Hi Low lowest Valves present or Absent Absent Present Bi 067: Review of sectn 7-9 - cardiovascular and lymphatic Heart and Blood vessels: 3 Types of blood vessels: 1. Arteries, arterioles -away from heart, O2 rich 2. Capillaries gas and nutrient/waste exchange

More information

Biology 1442 Supplemental Instruction Worksheet Cardiovascular System Jacaruso - 1 -

Biology 1442 Supplemental Instruction Worksheet Cardiovascular System Jacaruso - 1 - Biology 1442 Supplemental Instruction Worksheet Cardiovascular System Jacaruso - 1-2. Organs of a closed circulatory system: A. Have valves a. Arteriole B. Regulate blood flow b. Artery C. Lead to heart

More information

Tissue repair. (3&4 of 4)

Tissue repair. (3&4 of 4) Tissue repair (3&4 of 4) What will we discuss today: Regeneration in tissue repair Scar formation Cutaneous wound healing Pathologic aspects of repair Regeneration in tissue repair Labile tissues rapid

More information

10. Which of the following immune cell is unable to phagocytose (a) neutrophils (b) eosinophils (c) macrophages (d) T-cells (e) monocytes

10. Which of the following immune cell is unable to phagocytose (a) neutrophils (b) eosinophils (c) macrophages (d) T-cells (e) monocytes Chapter 2. Acute and chronic inflammation(6): 1. In acute inflammation, which events occur in the correct chronological order? (Remembered from 2000, 2004 exam.) p50 (a) transient vasoconstriction, stasis

More information

Transport in Animals. Gastrovascular cavities. Nutrients and gases can move by processes such as diffusion and active transport.

Transport in Animals. Gastrovascular cavities. Nutrients and gases can move by processes such as diffusion and active transport. Transport in Animals Gastrovascular cavities flatworms and cnidarians Nutrients and gases can move by processes such as diffusion and active transport. Figure 42.1 Internal transport in the cnidarian

More information

Ch 9 Transport of substances in humans

Ch 9 Transport of substances in humans Ch 9 Transport of substances in humans Think about (Ch 9, p.2) 1. Blood transports various substances and distributes heat around the body. It also plays a role in body defence. 2. Blood is a liquid tissue

More information

Introduction to pathology lecture 5/ Cell injury apoptosis. Dr H Awad 2017/18

Introduction to pathology lecture 5/ Cell injury apoptosis. Dr H Awad 2017/18 Introduction to pathology lecture 5/ Cell injury apoptosis Dr H Awad 2017/18 Apoptosis = programmed cell death = cell suicide= individual cell death Apoptosis cell death induced by a tightly regulated

More information

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION 10 Blood PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Blood The only fluid tissue in the human

More information

HEART HEALTH WEEK 2 SUPPLEMENT. A Beginner s Guide to Cardiovascular Disease ATHEROSCLEROSIS. Fatty deposits can narrow and harden the artery

HEART HEALTH WEEK 2 SUPPLEMENT. A Beginner s Guide to Cardiovascular Disease ATHEROSCLEROSIS. Fatty deposits can narrow and harden the artery WEEK 2 SUPPLEMENT HEART HEALTH A Beginner s Guide to Cardiovascular Disease ATHEROSCLEROSIS FIGURE 1 Atherosclerosis is an inflammatory process where cholesterol is deposited in the wall of arteries and

More information

12.1 The Function of Circulation

12.1 The Function of Circulation 12.1 The Function of Circulation The Circulatory System Magnetic Resonance Angiography (MRA) Heart pump beats 100 000 times a day Deliver oxygen and nutrients Function of Circulation Multicellular organisms

More information

7.L.1.4 Circulatory System Guided Study Notes. Circulation

7.L.1.4 Circulatory System Guided Study Notes. Circulation 1 7.L.1.4 Circulatory System Guided Study Notes Circulation Sect. 1: The Body s Transport System Sect. 2: A Closer Look at Blood Vessels Sect. 3: Blood and Lymph Sect. 4: Cardiovascular Health Sect. 1:

More information

Blood. The only fluid tissue in the human body Classified as a connective tissue. Living cells = formed elements Non-living matrix = plasma

Blood. The only fluid tissue in the human body Classified as a connective tissue. Living cells = formed elements Non-living matrix = plasma Blood Blood The only fluid tissue in the human body Classified as a connective tissue Living cells = formed elements Non-living matrix = plasma Blood Physical Characteristics of Blood Color range Oxygen-rich

More information

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION 10 Blood PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Blood The only fluid tissue in the human

More information

AP2 Lab 1 - Blood & Heart

AP2 Lab 1 - Blood & Heart AP2 Lab 1 - Blood & Heart Project 1 - Formed Elements Identification & Recognition See fig. 17.10 and Table 17.2. Instructor may also provide other images. Note: See Fig. 17.11 All formed elements are

More information

Chapter 19: The Cardiovascular System: The Blood. Copyright 2009, John Wiley & Sons, Inc.

Chapter 19: The Cardiovascular System: The Blood. Copyright 2009, John Wiley & Sons, Inc. Chapter 19: The Cardiovascular System: The Blood Blood Liquid connective tissue 3 general functions 1. Transportation Gases, nutrients, hormones, waste products 2. Regulation ph, body temperature, osmotic

More information

Lecture 8. Heart and Circulatory System. Lecture 8

Lecture 8. Heart and Circulatory System. Lecture 8 Lecture 8 Heart and Circulatory System Lecture 8 1. Introduction 2. Blood 3. Blood Vessels & Blood Pressure 4. The Heart 5. Cardiovascular (Circulatory) System 2 1 Circulatory System Function 1. Transport

More information

Chapter 19 Cardiovascular System Blood: Functions. Plasma

Chapter 19 Cardiovascular System Blood: Functions. Plasma Chapter 19 Cardiovascular System Blood: Functions 19-1 Plasma Liquid part of blood. Colloid: liquid containing suspended substances that don t settle out of solution 91% water. Remainder proteins, ions,

More information

Lab 1 Blood Composition and formed elements

Lab 1 Blood Composition and formed elements Lab 1 Blood Composition and formed elements Plasma 55% of whole blood 90% water 8% proteins from liver 2% misc. Nutrients: AA, glucose, lipids vitamins, minerals Wastes: urea, uric acid, creatine, ammonium

More information

2. What makes up the most of your blood? least of your blood? 1. Look like red discs, have a pale center, no nucleus, similar in size

2. What makes up the most of your blood? least of your blood? 1. Look like red discs, have a pale center, no nucleus, similar in size I Can Statements I can identify the major components of blood and where they are formed. Identify the four components of blood in the diagram below. 1. Label each section of the pie chart with the correct

More information

Immune System AP SBI4UP

Immune System AP SBI4UP Immune System AP SBI4UP TYPES OF IMMUNITY INNATE IMMUNITY ACQUIRED IMMUNITY EXTERNAL DEFENCES INTERNAL DEFENCES HUMORAL RESPONSE Skin Phagocytic Cells CELL- MEDIATED RESPONSE Mucus layer Antimicrobial

More information

Lower Secondary Science Blood Circulatory System Notes / Advanced Notes

Lower Secondary Science Blood Circulatory System Notes / Advanced Notes Lower Secondary Science Blood Circulatory System Notes / Advanced Notes Double Circulation in Mammals In mammals, there is a double circulation (i.e. blood passes through the heart twice in one complete

More information

Circulatory System Objective sheet 3

Circulatory System Objective sheet 3 Circulatory System Objective sheet 3 10. Functions of blood 1) Transport oxygen and nutrients 2) Transport of carbon dioxide and waste 3) Protection against disease causing micro-organisms 4) Clotting

More information

Blood and Defense. Chapter 11

Blood and Defense. Chapter 11 Blood and Defense Chapter 11 Functions of Blood 1. Carry nutrients from the small intestine and oxygen from the lung to tissues in the body 2. Transport wastes from tissues to the kidneys and carbon dioxide

More information

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION 10 Blood PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Blood The only fluid tissue in the human

More information

Main Menu. Circulatory System. click here. The Power is in Your Hands

Main Menu. Circulatory System. click here. The Power is in Your Hands Circulatory System click here Main Menu http://www.handsonlineeducation.com/classes/ap6/ap6entry.htm[3/20/18, 12:56:19 PM] Circulatory System The vascular or circulatory system controls the circulation

More information

The cardiovascular system

The cardiovascular system The cardiovascular system Components of the Cardiovascular system Heart Vessels: Arteries Capillaries Veins Functions of CVS: Transportation system where blood is the transporting vehicle Carries oxygen,

More information

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS Choompone Sakonwasun, MD (Hons), FRCPT Types of Adaptive Immunity Types of T Cell-mediated Immune Reactions CTLs = cytotoxic T lymphocytes

More information

Nonspecific External Barriers skin, mucous membranes

Nonspecific External Barriers skin, mucous membranes Immune system Chapter 36 BI 103 Plant-Animal A&P Levels of Defense Against Disease Nonspecific External Barriers skin, mucous membranes Physical barriers? Brainstorm with a partner If these barriers are

More information

The circulatory system

The circulatory system The circulatory system Key words Vessels heart blood plasma platelets haemoglobin To engulf arteries capillaries veins venules lymphocytes Atrium / - a ventricle tricuspid bicuspid cardiac coronary Humans

More information

Composition of Blood

Composition of Blood Blood is a connective tissue, specialized to transport the respiratory gasses as well as hormones, nutrients, and wastes, and the distribution of heat. The various cells of the blood perform specific functions.

More information

Circulation and Gas Exchange

Circulation and Gas Exchange Circulation and Gas Exchange Sponges (porifera) Flat worms (platyhelminthes) Round worms (nematoda) Segmented worms (annelida) Stinging celled (cnidaria) Squishy (mollusca) Hard shelled (arthropods) Spiny

More information

Lecture name: blood 2 & The Circulatory System Edited by: Buthainah Al masaeed & Yousef Qandeel

Lecture name: blood 2 & The Circulatory System Edited by: Buthainah Al masaeed & Yousef Qandeel Lecture name: blood 2 & The Circulatory System Edited by: Buthainah Al masaeed & Yousef Qandeel Now we will take about A granulocytes : Lymphocyte Monocytes 1- Lymphocyte - The second major type of presence

More information

The Function. To carry nutrients and oxygen to and remove waste from the cells of the body.

The Function. To carry nutrients and oxygen to and remove waste from the cells of the body. The Function To carry nutrients and oxygen to and remove waste from the cells of the body. What makes up the circulatory system? 1. Heart 2. Blood 3. Blood vessels Blood travels from the heart to the body

More information

Blood Lecture Outline : Fluid Connective Tissue Part I of the Cardiovascular Unit

Blood Lecture Outline : Fluid Connective Tissue Part I of the Cardiovascular Unit Blood Lecture Outline : Fluid Connective Tissue Part I of the Cardiovascular Unit General Characteristics: Extracellular matrix ph Volume Functions of the blood: 1. Transport 2. Regulation 3. Protection

More information

The Circulatory System. Blood and Blood Pressure

The Circulatory System. Blood and Blood Pressure The Circulatory System Blood and Blood Pressure Blood Total volume = 8-9% of body mass Average person = 5 L of blood DYK? Blood is actually a tissue! Plasma: - water, proteins, salts, gases, nutrients,

More information

As a courtesy to your fellow classmates please refrain from talking, beating, or snoring. And Now Our Feature Presentation.

As a courtesy to your fellow classmates please refrain from talking, beating, or snoring. And Now Our Feature Presentation. As a courtesy to your fellow classmates please refrain from talking, beating, or snoring. And Now Our Feature Presentation. Circulation Sect. 1: The Body s Transport System Sect. 2: A Closer Look at Blood

More information

Unit 8: Blood / Lymph / Cardiovascular System

Unit 8: Blood / Lymph / Cardiovascular System Name: Period: Unit 8: Blood / Lymph / Cardiovascular System Test Review 1. Identify the general formed elements of the blood and their general functions. a. Erythrocytes: b. Leukocytes: c. Thrombocytes:

More information

INNATE IMMUNITY Non-Specific Immune Response. Physiology Unit 3

INNATE IMMUNITY Non-Specific Immune Response. Physiology Unit 3 INNATE IMMUNITY Non-Specific Immune Response Physiology Unit 3 Protection Against Infection The body has several defenses to protect itself from getting an infection Skin Mucus membranes Serous membranes

More information

CIRCULATORY SYSTEM: BLOOD + BLOOD VESSELS. October 21, 2016

CIRCULATORY SYSTEM: BLOOD + BLOOD VESSELS. October 21, 2016 CIRCULATORY SYSTEM: BLOOD + BLOOD VESSELS October 21, 2016 Review AGENDA Questions Activity Notes HEART HEART = A BIG, WET, MUSCLY PUMP Body temperature ph levels Volume of body fluid REGULATES HEART TRANSPORTS

More information

MESA DAY CONTEST RULES

MESA DAY CONTEST RULES FOR CENTER DIRECTOR S USE ONLY ANSWERS MODEL SCIENCE THE HEART High School All Grades Students MUST be prepared to answer each question with a complete sentence or sentences. 1. What is the size of the

More information

Any of these questions could be asked as open question or lab question, thus study them well

Any of these questions could be asked as open question or lab question, thus study them well Any of these questions could be asked as open question or lab question, thus study them well describe the factors which regulate cardiac output describe the sympathetic and parasympathetic control of heart

More information

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart Cardiovascular System I. Structures of the heart A. : Pericardium sack that surrounds the heart 1. : Pericardial Cavity serous fluid filled space between the heart and the pericardium B. Heart Wall 1.

More information

G. Types of White Blood Cells

G. Types of White Blood Cells 1. White blood cells are also called leukocytes. G. Types of White Blood Cells 2. White blood cells function to protect against diseases. 3. Two hormones that stimulate white blood cell production are

More information

Immunity. ES/RP 531 Fundamentals of Environmental Toxicology. Lecture 14 Immunotoxicity. Instructor: Allan Felsot

Immunity. ES/RP 531 Fundamentals of Environmental Toxicology. Lecture 14 Immunotoxicity. Instructor: Allan Felsot Instructor: Allan Felsot afelsot@tricity.wsu.edu Fall 2005 ES/RP 531 Fundamentals of Environmental Toxicology Lecture 14 Immunotoxicity in Humans Hematopoiesis (generation of blood cells) Differentiation

More information

Circulatory System Review

Circulatory System Review Circulatory System Review 1. Know the diagrams of the heart, internal and external. a) What is the pericardium? What is myocardium? What is the septum? b) Explain the 4 valves of the heart. What is their

More information

Chapter 23 Circulation

Chapter 23 Circulation Chapter 23 Circulation PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction: How Does Gravity Affect

More information

Immunology. Prof. Nagwa Mohamed Aref (Molecular Virologist & Immunology)

Immunology. Prof. Nagwa Mohamed Aref (Molecular Virologist & Immunology) Host Defenses Overview and Nonspecific Defenses I Immunology Prof. Nagwa Mohamed Aref (Molecular Virologist & Immunology) The Nature of Host Defenses 2 3 4 1st line of defense - intact skin mucous membranes

More information

Blood Lecture Test Questions Set 2 Summer 2012

Blood Lecture Test Questions Set 2 Summer 2012 Blood Lecture Test Questions Set 2 Summer 2012 1. Leukocytes are attracted to a site of injury or disease by: a. diapedesis b. chemotaxis c. leukocytosis d. heparin e. leukomotosis 2. Leukocytes leave

More information

Chapter 19(1) An Introduction to the Circulatory System and Blood

Chapter 19(1) An Introduction to the Circulatory System and Blood Chapter 19(1) An Introduction to the Circulatory System and Blood Circulatory System VS Cardiovascular System circulatory system = heart, blood vessels and blood cardiovascular system = heart and blood

More information

1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary.

1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary. CIRCULATORY SYSTEM 1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary. 2. Capillary beds are equipped with

More information

Chapter 14. Blood. Blood Volume. Blood Composition. Blood

Chapter 14. Blood. Blood Volume. Blood Composition. Blood Blood connective tissue transports vital substances maintains stability of interstitial fluid distributes heat Chapter 14 Blood Blood Cells form mostly in red bone marrow red blood cells white blood cells

More information

All implants interact to some extent with the tissue environment in which they are placed.

All implants interact to some extent with the tissue environment in which they are placed. Host reactions to biomaterials All implants interact to some extent with the tissue environment in which they are placed. 1 Host reactions to biomaterials Complications are largely based on biomaterial-tissue

More information

aliasyraf.wordpress.com

aliasyraf.wordpress.com aliasyraf.wordpress.com 1.1 Understanding the importance of having a transport system in some multicellular organisms 1.1 Understanding the importance of having a transport system in some multicellular

More information

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION 10 Blood PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Blood The only fluid tissue in the human

More information

PLASMA, ERYTHROCYTES, LEUKOCYTES AND PLATELETS COMPOSITION AND FUNCTION OF BLOOD

PLASMA, ERYTHROCYTES, LEUKOCYTES AND PLATELETS COMPOSITION AND FUNCTION OF BLOOD PLASMA, ERYTHROCYTES, LEUKOCYTES AND PLATELETS COMPOSITION AND FUNCTION OF BLOOD FUNCTION OF BLOOD... Oxygen is carried to tissues Carbon dioxide is carried fro m tissues to lungs Glucose is carried from

More information

TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY

TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY 6.2 Transport System/Circulatory Draw and label a diagram of the heart showing the four chambers, associated blood vessels, valves and the route of blood through the

More information

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3.

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3. A summary of innate and acquired immunity General iology INNATE IMMUNITY Rapid responses to a broad range of microbes Course No: NG00 Credits:.00 External defenses Invading microbes (pathogens). The Immune

More information

The Circulatory System

The Circulatory System The Circulatory System Science Matters Chapter 8 Introduction Living things need a transport system to carry things around the body. In humans its called The Circulatory system. The parts of the system

More information

Blood consists of red and white blood cells suspended in plasma Blood is about 55% plasma and 45% cellular elements Plasma 90% water 10% dissolved

Blood consists of red and white blood cells suspended in plasma Blood is about 55% plasma and 45% cellular elements Plasma 90% water 10% dissolved Bio 100 Guide 21 Blood consists of red and white blood cells suspended in plasma Blood is about 55% plasma and 45% cellular elements Plasma 90% water 10% dissolved inorganic ions, proteins, nutrients,

More information

INFLAMMATION. 5. Which are the main phases of inflammation in their "sequence": 1. Initiation, promotion, progression.

INFLAMMATION. 5. Which are the main phases of inflammation in their sequence: 1. Initiation, promotion, progression. INFLAMMATION 1. What is inflammation: 1. Selective anti-infective pathological reaction. 2. Pathological process, typical for vascularized tissues. 3. Self-sustained pathological condition. 4. Disease

More information

Cardiovascular System. Supplementary Information

Cardiovascular System. Supplementary Information Cardiovascular System Supplementary Information THE CARDIOVASCULAR SYSTEM - 1 - THE CARDIOVASCULAR SYSTEM FUNCTION Transport system carrying nutrient, gases, hormones and waste products to and from the

More information

Lecture 13: The Cardiovascular System ref: Cardiovascular Physiology, D. Mohrman and L. Heller, 4th ed. McGraw-Hill (1997)

Lecture 13: The Cardiovascular System ref: Cardiovascular Physiology, D. Mohrman and L. Heller, 4th ed. McGraw-Hill (1997) Lecture 13: The Cardiovascular System ref: Cardiovascular Physiology, D. Mohrman and L. Heller, 4th ed. McGraw-Hill (1997) Blood Heart Blood Vessels Arteries - capillaries - Veins Ventilation-Perfusion

More information

Blood Vessels. veins. valve. to the heart. capillaries from the heart. arteries. Visual 25-1

Blood Vessels. veins. valve. to the heart. capillaries from the heart. arteries. Visual 25-1 Blood Vessels veins valve to the heart capillaries from the heart arteries Visual 25-1 Human Heart pulmonary arteries superior vena cava aorta pulmonary veins semilunar valves right atrium pulmonary arteries

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 19 The Cardiovascular System: The Blood Functions and Properties of Blood Blood is a liquid connective tissue consisting of cells surrounded by

More information

07 Human transport Biology Notes IGCSE Cambridge #69 Transport in humans - the circulatory system

07 Human transport Biology Notes IGCSE Cambridge #69 Transport in humans - the circulatory system 07 Human transport Biology Notes IGCSE Cambridge 2014 #69 Transport in humans - the circulatory system The main transport system of human is the circulatory system, a system of tubes (blood vessels) with

More information

MACROPHAGE "MONOCYTES" SURFACE RECEPTORS

MACROPHAGE MONOCYTES SURFACE RECEPTORS LECTURE: 13 Title: MACROPHAGE "MONOCYTES" SURFACE RECEPTORS LEARNING OBJECTIVES: The student should be able to: Describe the blood monocytes (size, and shape of nucleus). Enumerate some of the monocytes

More information

Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, Name Student Number

Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, Name Student Number Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, 2015 Name Student Number For Questions 1 2 refer to the following table. 1 Ventricular pressure is greater than aortic 6 AV valve is open 2

More information

LIFE PROCESSES TRANSPORT OF MATERIALS IN ANIMALS AND PLANTS

LIFE PROCESSES TRANSPORT OF MATERIALS IN ANIMALS AND PLANTS 1 LIFE PROCESSES TRANSPORT OF MATERIALS IN ANIMALS AND PLANTS I. Multiple choice questions: Tick ( ) the correct choice. 1. Human heart has (a) one auricle and one ventricle (b) two auricles and one ventricle

More information

The Cardiovascular System: Blood

The Cardiovascular System: Blood C h a p t e r 11 The Cardiovascular System: Blood PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Introduction to the Cardiovascular System A circulating transport system

More information

Chapter 06 Lecture Outline. See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes.

Chapter 06 Lecture Outline. See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Chapter 06 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright 2016 McGraw-Hill Education. 2012 Pearson Permission Education,

More information

Blood & Blood Formation

Blood & Blood Formation Module IB Blood & Blood Formation Histology and Embryology Martin Špaček, MD (m.spacek@centrum.cz) http://www.lf3.cuni.cz/histologie Approximately 7% of a person's weight is blood (about 5 L) Blood consists

More information

ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 11 AND 12

ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 11 AND 12 ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 11 AND 12 Name Identify the following: 1) The Purkinje fibers are indicated by label. 2) The sinoatrial (SA) node is indicated by letter. 3) The specific chamber

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Lecture 1 objectives Explain the basic anatomy of the heart and its arrangement into 4 chambers. Appreciate that blood flows in series through the systemic and pulmonary circulations.

More information

Blood Vessels. Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels. Veins carry blood toward the heart

Blood Vessels. Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels. Veins carry blood toward the heart C H A P T E R Blood Vessels 20 Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels The site of exchange of molecules between blood and tissue fluid Veins

More information