You Are What You Eat

Size: px
Start display at page:

Download "You Are What You Eat"

Transcription

1 An Investigation of Macromolecules Student Materials Introduction....2 Pre-Lab Questions.5 Lab Protocol..6 Post-Lab Questions and Analysis 9 Last updated: September 26 th,

2 Introduction When deciding what to eat for lunch, do you ever base your choices off of the amount of protein, carbohydrates, or fats (lipids) are in your foods? Or maybe you think back to the food pyramid: grains on the bottom, meat, dairy, fruits, and vegetables in between, with fats and sweets at the top? od-pyramid-1024x768.jpg?w=640 Now let s think about the food pyramid in terms of protein, carbohydrates, and lipids. You probably already know that grains like bread contain carbohydrates, but did you know that bread is also is a source of protein? Working up the pyramid, we all know that meat such as chicken or fish contain protein, but did you also know that they also contain fat? Even desserts such as chocolate aren t as simple as just containing fats, they are also made of carbohydrates and even proteins. On top of all of that, almost every time you re eating, you are eating DNA and RNA! You may not have realized it, but the protein, carbohydrates, and lipids foods contain comes down the food s biochemistry. Much of our food comes directly from plants and animals and we all know that plants and animals are composed of cells. All cells are composed of large, complex molecules called macromolecules; macromolecules are just big molecules composed of multiple subunits. The four main macromolecules are proteins, carbohydrates, lipids, and nucleic acids. Today s lab will be all about macromolecules and you already know so much about them! Now let s think 1000 times deeper into each of the four main macromolecules and their place in the foods we eat. Say you have a chicken breast and strawberries for lunch. Both foods cells are composed of the macromolecules that we have talked about: protein, carbohydrates, lipids, and nucleic acids. So why are they on different places of the pyramid? Let s think: Chicken breast and most meat is high in protein. The chicken breast is mostly muscle tissue. Muscle tissue is composed of muscle cells and is therefore packed with muscle proteins. Strawberries are not only sweet due to the sugars glucose and fructose, but are also a great source of fiber. The fiber in strawberries is primarily cellulose. What type of macromolecule is cellulose? 2

3 We know that macromolecules are made of atoms covalently bonded together. In biology, the most common atoms are carbon, hydrogen, nitrogen, oxygen, and phosphorus. Which of the macromolecules (protein, carbohydrate, lipid, and DNA) in your lunch: contain carbon? contain nitrogen? contain phosphorus? Most macromolecules are made of repeating subunits called monomers. Since macromolecules are made of several monomers they can be called polymers. When two monomers are joined together the chemical reaction is called dehydration synthesis. The reaction involves the removal of an OH from one monomer and an H + from another, which come together to make a water molecule. For every two monomers that are linked together, one water molecule is released. In addition to forming new polymers, cells also need to break down polymers; this reaction is called hydrolysis. Hydrolysis requires the addition of a water molecule and breaks the bond between the two monomers. Dairy products contain the carbohydrate lactose, which is made up of galactose and glucose (C 6H 12O 6). The overall formula for lactose is C 12H 22O 11. When lactose forms, a molecule of water (H 2O) is released. What is the chemical formula for galactose? Hint! Think of the overall reaction: glucose + galactose lactose + water. Fill in the formulas you know and balance the equation. What do you notice about the chemical formulas for glucose and galactose? Testing for macromolecules In this lab, you will use simple methods to test for the presence of proteins, carbohydrates, lipids, and nucleic acids. Proteins Proteins are used in cells in various ways; they are used as enzymes, as structural components, and for cell signaling. Some proteins are composed of a single long polymer of amino acids called a polypeptide. Other proteins are composed of two or more polypeptides. The amino acids in polypeptides are joined together in chains and these amino acid chains are extremely diverse because they are composed of any combination and number of the 20 different amino acids. The order of amino acids in a polypeptide dictates the structure and function of the protein. In this lab, you will use a chemical called Biuret to test foods for the presence of proteins. Biuret is a blue liquid that will turn purple when mixed with proteins. What do enzymes do? 3

4 Carbohydrates Carbohydrates are primarily used as a source of energy for the cell but can also be used as structural components to give the cell shape. Carbohydrates, often called sugars, are macromolecules that come in different forms and sizes but all have the same ratio of carbon to hydrogen to oxygen; 1 carbon to 2 hydrogens to 1 oxygen, or CH 2O. Therefore, a sugar with 5 carbons would have the formula C 5H 10O 5. Monosaccharides are known as simple sugars, they only contain only 3-7 carbons. Disaccharides are molecules composed of two sugars linked together. Polysaccharides, known as complex sugars, are made up of long chains of monosaccharides. The varying number of sugars in different carbohydrates makes it possible to test foods for different carbohydrates. In this lab, you will use Benedict s and iodine to test foods for simple and complex sugars. Benedict s will change from blue to a red or rusty orange when monosaccharides are present. Lugol s s (iodine) will change from dark red to blue-black when it is mixed with the polysaccharide starch. Lipids Lipids are used for energy storage and as important components of membranes. Lipids are a large and diverse group of molecules that are primarily composed of long chains of hydrogen and carbon. They are nonpolar (hydrophobic) molecules, so they do not mix with water. Lipids are not composed of repeating subunits, so they are not actually polymers. Modified lipids called phospholipids are the major component of the plasma membrane and are critical to cells. In this lab, you will use Sudan IV to test for the presence of lipids. Like lipids, Sudan IV is hydrophobic, so if lipids are present, they will absorb the Sudan IV and form a noticeable bright-red layer. Given what you know about lipids, explain why some types of salad dressings separate. Nucleic acids Nucleic acids are primarily used for information storage and transmission; their information is needed for cells to make proteins. The nucleic acid you re most familiar with is DNA. In most eukaryotic cells, DNA is found as a long double-stranded molecule called a chromosome. Any region of a chromosome that is used to form a protein is called a gene. Nucleic acids are polymers of nucleotides. Each nucleotide is made up of sugar, a phosphate group, and a base. The sugar found in DNA nucleotides is deoxyribose, while the sugar in RNA nucleotides is ribose. The bases adenine, cytosine, guanine, and thymine (A, C, G, T) are found in DNA, while RNA contains adenine, cytosine, guanine, and uracil (A, C, G, U). Together, DNA and RNA contain the blueprints and instructions for all of life s processes. In this lab, you will use a DNA stain such as SYBR Safe or Gel Green to test for the presence of nucleic acids (or DNA). DNA stains contain a molecule that binds to DNA and causes it to glow green when viewed under blue light or UV light. 4

5 Pre-Lab Questions Directions: After reading through the introduction and protocol for the You Are What You Eat lab, answer the questions below. 1. What are the four primary types of macromolecules? 2. You read somewhere that having a protein-rich breakfast can help combat fatigue and improve test performance. Which of the following would provide a protein-rich breakfast on the morning of a big exam: an apple and toast OR a ham omelet? Explain why your choice has more protein. 3. Look at the diagram below. Count the number of carbons, hydrogens, and oxygens in the circled monomer. What type of molecule is this monomer? What type of macromolecule is formed by linking many of these monomers? Is the reaction below a dehydration reaction or a hydrolysis reaction? Adapted from 5. Match the following indicators with the type of macromolecule they will be used to test: 1. Benedict s a. Carbohydrates monosaccharides 2. Biuret b. Carbohydrate polysaccharides 3. Lugol s c. Lipids 4. Sudan IV d. Nucleic acids 5. SYBR Safe e. Proteins 5

6 Lab Protocol For each type of macromolecule, you will test a known sample as a standard. For example, you will test glucose, a monosaccharide, with Benedict s to see what a positive reaction looks like. Materials: Check your workstations to make sure all supplies are present before beginning the lab. Student Workstation: 1 p200 micropipette and pipette tips 2 microcentrifuge tubes microcentrifuge tube rack 8 test tubes test tube rack test tube holder 250 ml beaker 10 graduated transfer pipettes permanent marker 2 ml Biuret 3 ml Benedict s 2 ml Lugol s 60 μl of SYBR Safe 2 ml of Sudan IV 25 μl of Lambda DNA 2 ml of vegetable oil 2 ml of BSA 3 ml of glucose 3 ml of starch dh 20 Common Workstation: microwave or hot plate UV or blue light 600 ml beaker Procedure: In this procedure, you will set up a test sample and control sample for one macromolecule at a time. Then you will set up the samples for the next macromolecule. Table 1 provides an overview of the testing samples. Reminder: Safety goggles should be worn throughout this lab. Protein 1. Use a permanent marker to label two test tubes: P+ and P-. 6

7 2. Using the water pipette put approximately 2 ml of distilled water into the tube labeled P-. 3. Using a clean transfer pipette, put approximately 2 ml of BSA into the P+ test tube. 4. Add 5 drops of Biuret reagent to the P+ and P- tubes. Hold the tubes over white paper and examine. Record the color in Table 1. Carbohydrates: glucose and starch 5. Use a permanent marker to label two test tubes: G+ and G-. 6. Use the permanent marker to label a transfer pipette water. You will use this pipette several times. 7. Using the water pipette, put approximately 2 ml of distilled water into the tube labeled G-. 8. Using a clean transfer pipette, put approximately 2 ml of glucose in the tube labeled G+. 9. Add 1 ml of Benedict s to the G+ and G- tubes. 10. Carefully place the test tubes in a hot water bath (at least 90 C). Wait 3-4 minutes. Using tongs or a test tube holder to protect your hand, remove the test tubes from the water bath and place them in a test tube rack. Record the color in Table 1. Caution! Be very careful when handling the test tubes, they will be hot. 11. Use a permanent marker to label two test tubes: S+ and S Using the water pipette put approximately 2 ml of distilled water into the tube labeled S Using a clean transfer pipette, put approximately 2 ml of starch into the S+ test tube. 14. Add 3 drops of Lugol s to the S+ and S- tubes. Record the color in Table 1. Lipids 15. Use a permanent marker to label two test tubes L+ and L Using the water transfer pipette, put approximately 2 ml of water into the L- test tube. 17. Using the water transfer pipette, put approximately 1 ml of water into the L+ test tube. 18. Using a clean transfer pipette, put approximately 1 ml of vegetable oil into the L+ test tube. 19. Add 3 drops of Sudan IV to both test tubes. Wait 8-10 minutes. Record the color in Table 1. Nucleic acids 20. Label two microcentrifuge tubes NA+ and NA Using a 200 μl micropipette, put approximately 25 μl of distilled water into the microcentrifuge tube NA Using a p200 micropipette and clean pipette tip, add 25 μl of Lambda DNA to the NA+ tube. 23. Using a clean pipette tip, add 25 μl of SYBR Safe to NA+ and NA- tubes. Important: Be sure to use a new tip for each test. 24. Gently mix the s and observe them under a UV light or blue LED light. Record the color in Table 1. Caution: Use the appropriate protective gear when using a UV light. 7

8 Nucleic acids Lipids Carbohydrates Protein Ps Table 1: Macromolecule Tests Tube Type Macromolecule Label Description Contents Test Reagent Color Change Observed P+ Protein BSA (protein) Biuret P- protein Biuret G+ Glucose Glucose Benedict s S- glucose and other monosaccharides Benedict s S+ Starch and other polysaccharides Starch Lugol s S- starch and other polysaccharides Lugol s L+ Lipids and vegetable oil Sudan IV L- lipids Sudan IV NA+ Nucleic acids (microcentrifuge tube) Lambda DNA SYBR Safe NA- nucleic acids (microcentrifuge tube) SYBR Safe Images: 8

9 Post-Lab Questions and Analysis Directions: After completing the You Are What You Eat lab, answer the questions below. 1. How did your predictions match up against your results? Did you get any unexpected results? 2. A food sample is tested for all four macromolecules with the following results: Benedict s no color change Iodine orange to black BSA blue to purple SYBR Safe no color change What macromolecules do these results suggest are in your food sample? Which macromolecules are likely not present? Explain your reasoning. 3. The nutritional information for fresh strawberries is below. Notice that there is no fat (Total Fat = 0g) in a serving of 8 medium berries. Your friend concludes that strawberries are fat free. Explain why that isn t true. 9

You Are What You Eat

You Are What You Eat You Are What You Eat An Investigation of Macromolecules Student Materials Introduction....2 Pre-Lab Questions.6 Lab Protocol..7 Post-Lab Questions and Analysis 11 Last updated: 10/15/18 1 You Are What

More information

Biomolecule: Carbohydrate

Biomolecule: Carbohydrate Biomolecule: Carbohydrate This biomolecule is composed of three basic elements (carbon, hydrogen, and oxygen) in a 1:2:1 ratio. The most basic carbohydrates are simple sugars, or monosaccharides. Simple

More information

Organic Chemistry Worksheet

Organic Chemistry Worksheet Organic Chemistry Worksheet Name Section A: Intro to Organic Compounds 1. Organic molecules exist in all living cells. In terms of biochemistry, what does the term organic mean? 2. Identify the monomer

More information

Testing for the Presence of Macromolecules

Testing for the Presence of Macromolecules 5 McMush Lab Testing for the Presence of Macromolecules Carbohydrates, lipids, proteins, and nucleic acids are organic molecules found in every living organism. These macromolecules are large carbon-based

More information

McMush Lab Testing for the Presence of Macromolecules

McMush Lab Testing for the Presence of Macromolecules 5 Testing for the Presence of Macromolecules Carbohydrates, lipids, proteins, and nucleic acids are organic molecules found in every living organism. These macromolecules are large carbon based structures.

More information

McMush Lab Testing for the Presence of Biomolecules

McMush Lab Testing for the Presence of Biomolecules Biology McMush Lab Testing for the Presence of Biomolecules Carbohydrates, lipids, proteins, and nucleic acids are organic molecules found in every living organism. These biomolecules are large carbon-based

More information

Biology 20 Laboratory Life s Macromolecules OBJECTIVE INTRODUCTION

Biology 20 Laboratory Life s Macromolecules OBJECTIVE INTRODUCTION Biology 20 Laboratory Life s Macromolecules OBJECTIVE To observe and record reactions between three classes of macromolecules in the presence of simple chemical indictors. To be able to distinguish positive

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Introduction to Macromolecules. If you were to look at the nutrition label of whole milk, what main items stick out?

Introduction to Macromolecules. If you were to look at the nutrition label of whole milk, what main items stick out? Introduction to Macromolecules Macromolecules are a set of molecules that are found in living organisms. Macromolecules essentially mean big molecules as the word macro means large. The functions of these

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water. Biology 4A Laboratory Biologically Important Molecules Objectives Perform tests to detect the presence of carbohydrates, lipids, proteins, and nucleic acids Recognize the importance of a control in a biochemical

More information

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis I. Polymers & Macromolecules Figure 1: Polymers Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis 1 Dehydration Synthesis: Figure 3: Depolymerization via Hydrolysis Hydrolysis:

More information

Carbohydrates, Lipids, Proteins, and Nucleic Acids

Carbohydrates, Lipids, Proteins, and Nucleic Acids Carbohydrates, Lipids, Proteins, and Nucleic Acids Is it made of carbohydrates? Organic compounds composed of carbon, hydrogen, and oxygen in a 1:2:1 ratio. A carbohydrate with 6 carbon atoms would have

More information

What is an atom? An atom is the smallest component of all living and nonliving materials.

What is an atom? An atom is the smallest component of all living and nonliving materials. What is an atom? An atom is the smallest component of all living and nonliving materials. It is composed of protons (+), neutrons (0), and electrons (-). The Periodic Table Elements are composed of all

More information

What is an atom? An atom is the smallest component of all living and nonliving materials.

What is an atom? An atom is the smallest component of all living and nonliving materials. What is an atom? An atom is the smallest component of all living and nonliving materials. It is composed of protons (+), neutrons (0), and electrons (-). The Periodic Table Elements are composed of all

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Name: Period: Date: Testing for Biological Macromolecules Lab

Name: Period: Date: Testing for Biological Macromolecules Lab Testing for Biological Macromolecules Lab Introduction: All living organisms are composed of various types of organic molecules, such as carbohydrates, starches, proteins, lipids and nucleic acids. These

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Biochemistry II Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Metabolism the sum of all biochemical processes 2 Metabolic Processes Anabolism-

More information

Lab 2. The Chemistry of Life

Lab 2. The Chemistry of Life Lab 2 Learning Objectives Compare and contrast organic and inorganic molecules Relate hydrogen bonding to macromolecules found in living things Compare and contrast the four major organic macromolecules:

More information

Chemical Tests For Biologically Important Molecules Do not write on this document

Chemical Tests For Biologically Important Molecules Do not write on this document Chemical Tests For Biologically Important Molecules Do not write on this document Introduction The most common and important organic molecules found in living things fall into four classes: carbohydrates,

More information

Identification of Organic Compounds Lab

Identification of Organic Compounds Lab Identification of Organic Compounds Lab Introduction All organic compounds contain the element carbon (C). Organic compounds usually also contain oxygen (O) or hydrogen (H) or both. They may also contain

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

2-3 Carbon Compounds 10/22/2013. The Chemistry of Carbon. More Carbon. Chemistry (cont) More Macromolecules. Macromolecules

2-3 Carbon Compounds 10/22/2013. The Chemistry of Carbon. More Carbon. Chemistry (cont) More Macromolecules. Macromolecules The Chemistry of Carbon 2-3 Carbon Compounds Because of carbons 4 valence electrons it can form covalent bonds with many other elements (octet rule) 2 Chemistry (cont) Plus, it can bond with itself More

More information

Macromolecules. copyright cmassengale

Macromolecules. copyright cmassengale Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

LAB 4 Macromolecules

LAB 4 Macromolecules LAB 4 Macromolecules Overview In addition to water and minerals, living things contain a variety of organic molecules. Most of the organic molecules in living organisms are of 4 basic types: carbohydrate,

More information

Lab: Organic Compounds

Lab: Organic Compounds Lab: Organic Compounds Name(s) Date Period Benchmark: SC.912.L.18.1: Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules. Background:

More information

2 3 Carbon Compounds Slide 1 of 37

2 3 Carbon Compounds Slide 1 of 37 1 of 37 The Chemistry of Carbon The Chemistry of Carbon Organic chemistry is the study of all compounds that contain bonds between carbon atoms. Carbon atoms have four valence electrons that can join with

More information

2 3 Carbon Compounds. Proteins. Proteins

2 3 Carbon Compounds. Proteins. Proteins 2 3 Carbon Compounds Proteins Proteins Proteins are macromolecules that contain nitrogen, carbon, hydrogen, and oxygen. Proteins are polymers of molecules called amino acids. There are 20 amino acids,

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS

BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS 1. 2. 3. 4. CARBOHYDRATES LIPIDS (fats) PROTEINS NUCLEIC ACIDS We call these four main types of carbon- based molecules

More information

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes)

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes) Macromolecules The Atoms of Life The most frequently found atoms in the body are Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes) What are other elements would you expect to be on this list?

More information

The Building blocks of life. Macromolecules

The Building blocks of life. Macromolecules The Building blocks of life Macromolecules 1 copyright cmassengale 2 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 3 LIFE ON EARTH IS CARBON-BASED

More information

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids 9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids o o o Food is a good source of one or more of the following: protein,

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

Chapter 2. Chemical Composition of the Body

Chapter 2. Chemical Composition of the Body Chapter 2 Chemical Composition of the Body Carbohydrates Organic molecules that contain carbon, hydrogen and oxygen General formula C n H 2n O n -ose denotes a sugar molecule Supply energy Glucose Complex

More information

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry 1 2 3 4 Bio 1101 Lecture 3 Chapter 3: Molecules of Life Organic Molecules Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called

More information

Macromolecules. Honors Biology

Macromolecules. Honors Biology Macromolecules onors Biology 1 The building materials of the body are known as macromolecules because they can be very large There are four types of macromolecules: 1. Proteins 2. Nucleic acids 3. arbohydrates

More information

Review for Test #1: Biochemistry

Review for Test #1: Biochemistry Review for Test #1: Biochemistry 1. Know and understand the definitions and meanings of the following terms. Be able to write complete definitions for the terms in BOLD: Biology triglyceride metabolism

More information

Large Biological Molecules Multiple Choice Review

Large Biological Molecules Multiple Choice Review New Jersey enter for Teaching and Learning Slide 1 / 43 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Chapter 3 The Molecules of Life

Chapter 3 The Molecules of Life Chapter 3 The Molecules of Life State Standards Standard 1.h. Standard 5.a. Standard 4.e. Organic Molecules A cell is mostly water. The rest of the cell consists mostly of carbon based molecules organic

More information

The. Crash Course. Basically, almost all living things are made up of these 4 Elements: - Carbon (C) - Nitrogen (N) - Hydrogen (H) - Oxygen (O)

The. Crash Course. Basically, almost all living things are made up of these 4 Elements: - Carbon (C) - Nitrogen (N) - Hydrogen (H) - Oxygen (O) The Biochemistry Crash Course Basically, almost all living things are made up of these 4 Elements: - Carbon (C) - Nitrogen (N) - Hydrogen (H) - Oxygen (O) This exercise is designed to familiarize you with

More information

The Amazing Molecule: Water

The Amazing Molecule: Water The Amazing Molecule: Water All living things are made of chemicals. Understanding life requires an understanding of chemistry. Biochemistry- the chemistry of life helps us understand todays biological

More information

Chapter 3- Organic Molecules

Chapter 3- Organic Molecules Chapter 3- Organic Molecules CHNOPS Six of the most abundant elements of life (make up 95% of the weight of all living things)! What are they used for? Structures, enzymes, energy, hormones, DNA How do

More information

The Carbon Atom (cont.)

The Carbon Atom (cont.) Organic Molecules Organic Chemistry The chemistry of the living world. Organic Molecule a molecule containing carbon and hydrogen Carbon has 4 electrons in its outer shell and can share electrons with

More information

Macromolecule stations. 6 stations

Macromolecule stations. 6 stations Macromolecule stations 6 stations 1. Sugar and protein paper pieces to build (with waters) 2. Fatty acid and nucleic acid paper pieces to build with (and water) 3. DNA model with several pieces removed

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Macromolecules. Macromolecules. What are the macromolecules? Organic molecules. The human body uses complex organic molecules known as macromolecules.

Macromolecules. Macromolecules. What are the macromolecules? Organic molecules. The human body uses complex organic molecules known as macromolecules. Macromolecules Macromolecules Biochemistry The human body uses complex organic molecules known as macromolecules. Macro - long or large It is a large molecule that is made up of smaller units joined together.

More information

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction Most biological molecules fall into one of four varieties: proteins, carbohydrates, lipids and nucleic acids. These are sometimes

More information

Organic Molecules. 8/27/2004 Mr. Davenport 1

Organic Molecules. 8/27/2004 Mr. Davenport 1 Organic Molecules 8/27/2004 Mr. Davenport 1 Carbohydrates Commonly called sugars and starches Consist of C, H, O with H:O ration 2:1 Usually classified as to sugar units Monosaccharide are single sugar

More information

Chemical Composition of the Cell. B. Balen

Chemical Composition of the Cell. B. Balen Chemical Composition of the Cell B. Balen Table 2-2 Molecular Biology of the Cell ( Garland Science 2008) 1. Water the most abundant substance in the cell! Where did it come from? several hypothesis: -

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Macromolecules are large molecules. Macromolecules are large structures made of many smaller structures linked together.

Macromolecules are large molecules. Macromolecules are large structures made of many smaller structures linked together. Biomolecules Macromolecules are large molecules. Macromolecules are large structures made of many smaller structures linked together. The small single structure is a monomer (mono=one). The larger structure

More information

B. Element - each different kind of atom is a different element 1. Examples: C = carbon H = hydrogen

B. Element - each different kind of atom is a different element 1. Examples: C = carbon H = hydrogen I. Chemistry study of what substances are made of and how they change and combine Structural Formula A. Atom fundamental unit of matter 1. Subatomic particles: n o = neutron p + = proton e - = electron

More information

Essential Components of Food

Essential Components of Food Essential Components of Food The elements of life living things are mostly (98%) made of 6 elements: C carbon H hydrogen O oxygen P phosphorus N nitrogen S sulphur -each element makes a specific number

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules I. Polymers What is a polymer? Poly = many; mer = part. A polymer is a large molecule consisting of many smaller sub-units bonded together. What is a monomer?

More information

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio. CARBOHYDRATES Produce energy for living things Atoms? Carbon, hydrogen, and oxygen in 1:2:1 ratio Monomer Examples? Sugars, starches MONOSACCHARIDES--- main source of energy for cells Glucose Know formula?

More information

Organic Molecules Worksheet: Read through each section and answer the following questions.

Organic Molecules Worksheet: Read through each section and answer the following questions. Name: Date: Period: Organic Molecules Worksheet: Read through each section and answer the following questions. Organic molecules are the molecules that exist in all living things. They are life s building

More information

Do Now: Sort the following into the order of life from smallest to largest:

Do Now: Sort the following into the order of life from smallest to largest: Do Now: Sort the following into the order of life from smallest to largest: organ, molecule, atom, organelle, cell, organ system, tissue, organism Correct Order: atom, molecule, organelle, cell, tissue,

More information

Biomolecules. The chemistry of life

Biomolecules. The chemistry of life Biomolecules The chemistry of life Knowing Word Parts can help you remember big words in Biochem Mono one, single Di two, double Poly many, much Hydro water (think: hydrate) Bio related to life (think:

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

Bio 12 Important Organic Compounds: Biological Molecules NOTES Name:

Bio 12 Important Organic Compounds: Biological Molecules NOTES Name: Bio 12 Important Organic Compounds: Biological Molecules NOTES Name: Many molecules of life are.(means many molecules joined together) Monomers: that exist individually Polymers: Large organic molecules

More information

What is a Biomolecule?

What is a Biomolecule? Biology Unit 03 What is a Biomolecule? Organic molecule made by living organisms Consists mostly of carbon (C), hydrogen (H), and oxygen (O) But wait What is an Organic Molecule? Organic Molecules: Contain

More information

Carbon s Bonding Pattern

Carbon s Bonding Pattern Organic Compounds It used to be thought that only living things could synthesize the complicated carbon compounds found in cells German chemists in the 1800 s learned how to do this in the lab, showing

More information

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms Organic Compounds Carbon p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms n Gives carbon the ability to form chains that are almost unlimited in length. p Organic

More information

Name a property of. water why is it necessary for life?

Name a property of. water why is it necessary for life? 02.09.18 Name a property of + water why is it necessary for life? n Cohesion n Adhesion n Transparency n Density n Solvent n Heat capacity + Macromolecules (2.3 & some of 2.4) + Organic Molecules All molecules

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic compounds

More information

Macromolecules Carbohydrates A COMPLEX COLORING EXPERIENCE

Macromolecules Carbohydrates A COMPLEX COLORING EXPERIENCE Macromolecules Carbohydrates A COMPLEX COLORING EXPERIENCE Name: Per: Date: All plants, animals and microorganisms use carbohydrates as sources of energy. Carbohydrates are also used as structural building

More information

You Are What You Eat: An Investigation of Macromolecules

You Are What You Eat: An Investigation of Macromolecules You Are What You Eat: An Investigation of Macromolecules Teacher Materials Students will use standard indicators to test carbohydrates, lipids, proteins, and nucleic acids. Learning Goals, Objectives,

More information

B i o c h e m i s t r y N o t e s

B i o c h e m i s t r y N o t e s 14 P a g e Carbon Hydrogen Nitrogen Oxygen Phosphorus Sulfur ~Major ~Found in all ~Found in most ~Found in all component of all organic organic molecules. molecules. ~Major structural atom in all organic

More information

2.3: Carbon- Based Molecules

2.3: Carbon- Based Molecules 2.3: Carbon- Based Molecules Carbon-based molecules are the foundation of life. Bonding Properties of Carbon Carbon forms covalent bonds with up to four other atoms, including other carbon atoms. 1 3,

More information

Name Date Period. Go to:

Name Date Period. Go to: Name Date Period In this online investigation, you will examine foods to determine what type of predominant organic compounds can be found in each. Make sure to read the whole paper and answer all questions.

More information

Unit #2: Biochemistry

Unit #2: Biochemistry Unit #2: Biochemistry STRUCTURE & FUNCTION OF FOUR MACROMOLECULES What are the four main biomolecules? How is each biomolecule structured? What are their roles in life? Where do we find them in our body?

More information

EXERCISE 3 Carbon Compounds

EXERCISE 3 Carbon Compounds LEARNING OBJECTIVES EXERCISE 3 Carbon Compounds Perform diagnostic tests to detect the presence of reducing sugars (Benedict s), starch (Lugol s), protein (Biuret), lipid (SudanIV) and sodium chloride

More information

Ch 2 Molecules of life

Ch 2 Molecules of life Ch 2 Molecules of life Think about (Ch 2, p.2) 1. Water is essential to life. If there is water on a planet, it is possible that life may exist on the planet. 2. Water makes up the largest percentage by

More information

Introduction: Lab Safety: Student Name: Spring 2012 SC135. Laboratory Exercise #4: Biologically Important Molecules

Introduction: Lab Safety: Student Name: Spring 2012 SC135. Laboratory Exercise #4: Biologically Important Molecules FMCC Student Name: Spring 2012 SC135 Introduction: Laboratory Exercise #4: Biologically Important Molecules The major groups of biologically important molecules are: Carbohydrates, Lipids, Proteins and

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

Biochemistry. Chapter 6

Biochemistry. Chapter 6 Biochemistry Chapter 6 Game Plan for Today. - Collect your papers - Hand back quests - Go over Amoeba Sister Chart - Biochem Notes - Video Carbohydrate Lab Food Label Lab! Testing For Carbohydrates Benedict's

More information

Macromolecules_p1.notebook. September 13, Functional Groups. Monomers and polymers. Monosaccharides. Starch. Starch and glycogen

Macromolecules_p1.notebook. September 13, Functional Groups. Monomers and polymers. Monosaccharides. Starch. Starch and glycogen Macromolecules_p.notebook Macromolecules are huge molecules made of thousands of smaller molecules. (polymer) (monomer) (Aldehyde) Monomers (Ketone) (alcohol) Polymer (carboxylic acid) large molecules

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

Biomolecules. Organic compounds of life

Biomolecules. Organic compounds of life Biomolecules Organic compounds of life TEKS 9A: Students will Compare the structure and function of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids 9D: Students

More information

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds Lesson Overview 2.3 The Chemistry of Carbon What elements does carbon bond with to make up life s molecules? Carbon can bond with many elements, including Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen

More information

IB Biology BIOCHEMISTRY. Biological Macromolecules SBI3U7. Topic 3. Thursday, October 4, 2012

IB Biology BIOCHEMISTRY. Biological Macromolecules SBI3U7. Topic 3. Thursday, October 4, 2012 + IB Biology SBI3U7 BIOCHEMISTRY Topic 3 Biological Macromolecules Essential Questions: 1.What are the 4 main types of biological macromolecules and what is their function within cells? 2.How does the

More information

BIOMOLECULES. (AKA MACROMOLECULES) Name: Block:

BIOMOLECULES. (AKA MACROMOLECULES) Name: Block: BIOMOLECULES (AKA MACROMOLECULES) Name: Block: BIOMOLECULES POGIL All living things share the same chemical building blocks and depend on chemical processes for survival. Life without carbon (C) would

More information

2 3 Carbon Compounds (Macromolecules)

2 3 Carbon Compounds (Macromolecules) 2 3 Carbon Compounds (Macromolecules) Slide 1 of 37 Organic Chemistry Organic chemistry is the study of all compounds that contain bonds between carbon atoms. Slide 2 of 37 Carbon Living organisms are

More information

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title Condensation and Hydrolysis Condensation reactions are the chemical processes by which large organic compounds are synthesized from their monomeric units. Hydrolysis reactions are the reverse process.

More information

Carbon. Has four valence electrons Can bond with many elements. Can bond to other carbon atoms. Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen

Carbon. Has four valence electrons Can bond with many elements. Can bond to other carbon atoms. Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen Organic Compounds Carbon Has four valence electrons Can bond with many elements Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen Can bond to other carbon atoms Gives carbon the ability to form chains

More information

INORGANIC COMPOUNDS. Ex: Water. Compounds that may be essential to life, but are not necessarily found in living things.

INORGANIC COMPOUNDS. Ex: Water. Compounds that may be essential to life, but are not necessarily found in living things. INORGANIC COMPOUNDS Compounds that may be essential to life, but are not necessarily found in living things. Ex: Water Other example: CO2 - ¾ of earth - 90% of living tissue WATER Water is a POLAR compound.

More information

I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins

I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins Inorganic compounds = compounds that DO NOT contain carbon Ex: Vitamins, minerals,

More information

The Chemistry of Life

The Chemistry of Life The Chemistry of Life Biomolecules Warm-up List the percentages of each: Total Fats Saturated Fats 25% Carbohydrates 10% Protein 7% 20% What Biomolecule would cholesterol be classified as? Lipids (fats)

More information

Carbon Compounds (2.3) (Part 1 - Carbohydrates)

Carbon Compounds (2.3) (Part 1 - Carbohydrates) Carbon Compounds (2.3) (Part 1 - Carbohydrates) The Chemistry of Carbon (Organic Chemistry) Organic Chemistry: The study of compounds that contain bonds between carbon atoms. Carbon can bond with many

More information

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1.

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. Macromolecules The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. CARBOHYDRATES 1. LIPIDS 1. NUCLEIC ACIDS Carbon Compounds All compounds

More information

Chapter 1-2 Review Assignment

Chapter 1-2 Review Assignment Class: Date: Chapter 1-2 Review Assignment Multiple Choice dentify the choice that best completes the statement or answers the question. Corn seedlings A student wanted to design an investigation to see

More information

The Structure and Function of Biomolecules

The Structure and Function of Biomolecules The Structure and Function of Biomolecules The student is expected to: 9A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic

More information

HW #1 Molecules of Life Packet

HW #1 Molecules of Life Packet Name Hour Due: HW #1 Molecules of Life Packet Lab Molecule ID Chemistry Fats, carbs WS HW Page 1 Page 2 Your Points Total Points Possible 5 pts Macromolecules in Foods Lab Introduction: The food we eat

More information

ARE YOU WHAT YOU EAT? TEACHER HANDBOOK

ARE YOU WHAT YOU EAT? TEACHER HANDBOOK ARE YOU WHAT YOU EAT? TEACHER HANDBOOK Alabama Course of Study: Science Biology: 1. Select appropriate laboratory glassware, balances, time measuring equipment, and optical instruments to conduct an experiment.

More information

Elements & Macromolecules in Organisms

Elements & Macromolecules in Organisms Name: Period: Date: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.

More information