Supplementary Figures

Size: px
Start display at page:

Download "Supplementary Figures"

Transcription

1 Supplementary Figures Supplementary Figure 1. nrg1 bns101/bns101 embryos develop a functional heart and survive to adulthood (a-b) Cartoon of Talen-induced nrg1 mutation with a 14-base-pair deletion in exon 2 (a); this deletion causes a frame shift leading to a premature stop codon in exon 2 resulting in a 1

2 predicted truncated protein (b). Notably, the predicted truncated Nrg1 protein in nrg1 bns101/bns101 animals lacks the Ig-like, EGF-like and TM domains that have all been reported to be essential for mouse cardiac trabeculation 1, 2, 3. If the first ATG downstream of the 14 bp deletion is used to reinitiate translation, a protein consisting of part of the TM domain and the carboxy terminal domain will be made. However, the type IIIa Nrg1 isoform 4 is not predicted to be affected by the bns101 mutation. (c-d) nrg1 bns101/bns101 larvae do not exhibit any gross morphological defects as compared to wild-type; lateral views, anterior to the left; scale bars, 0.5 mm. (e-h) Trabeculation appears unaffected in nrg1 bns101 mutants. 120 hpf larvae from Tg(myl7:LIFEACT-GFP); nrg1 bns101/+ incrosses imaged by spinning disk confocal microscopy; 2D views (mid-sagittal sections) (e and f), and 3D maximum intensity z-projections (g and h); V: ventricle; arrows point to trabecular cardiomyocytes; scale bars, 50 µm. 2

3 Supplementary Figure 2. Cardiac Nrg2a-mRFP expression during embryonic and larval development (a-i) Mid-sagittal confocal images of Tg(kdrl:NLS-EGFP);nrg2a +/- hearts; heat map; low intensity (blue) to high intensity(red) at 52 (a-c), 78 (d-f) and 120 (g-i) hpf; arrows and arrowheads point to endocardial cells in ventricular outer curvature and superior AV valve leaflet, respectively. (j) Graph showing that on average there is a higher percentage of endocardial cells positive for Nrg2a-mRFP in the ventricle than in the atrium at 78 hpf; dots in this graph represent individual hearts; N=5 hearts; values represent means ± SEM; ** P 0.01 by Student s t-test. (k) In situ hybridization for nrg2a expression in 78 hpf heart. V: ventricle, AV: atrioventricular canal, At: atrium; scale bars, 50 µm. 3

4 Supplementary Figure 3. Spatiotemporal pattern of cardiac Nrg2a-mRFP expression during embryonic and larval development (a-i) 3D views (maximum intensity z-projections) of Tg(kdrl:NLS-EGFP);nrg2a +/- hearts at 52 (a-c), 78 (d-f) and 120 (g-i) hpf; Nrg2a-mRFP expression appears stronger in the ventricle than in the atrium or AV canal; V: ventricle, AV: atrioventricular canal, At: atrium; scale bars, 50 µm. 4

5 Supplementary Figure 4. nrg2a -/- hearts develop functional atrioventricular valves (a-c) Maximum intensity z-projections (25 z-stacks, sagittal sections) of 120 hpf Tg(kdrl:NLS- EGFP);nrg2a +/- AV canal showing that Nrg2a-mRFP is weakly expressed in the AV valve leaflets. (d-i) Mid-sagittal confocal images of hearts from Tg(kdrl:NLS-EGFP);nrg2a +/- incrosses at 80 (d-f) and 120 (g-i) hpf; arrows and arrowheads point to superior and inferior valve leaflets, respectively; V: ventricle, AV: atrioventricular canal, At: atrium; scale bars, 50 µm. 5

6 Supplementary Figure 5. Developmental analysis of cardiac jelly thickness in the presence or absence of Nrg/Erbb2 signaling (a-h) Mid-sagittal views of wild-type and nrg2a -/- hearts from Tg(kdrl:Hsa.HRASmCherry);Tg(myl7:LIFEACT-GFP);nrg2a +/- incrosses at 55 (a-b), 60 (c-d), 72 (e-f) and 80 (gh) hpf; the myocardium and endocardium are labeled in green and red, respectively; magnified images of dashed boxes are shown below each time point. The thickness of the cardiac jelly progressively diminishes in wild-type and nrg2a -/- hearts. (i-k) Confocal sagittal sections of 82 hpf Tg(kdrl:Hsa.HRAS-mCherry);Tg(myl7:EGFP-Hsa.HRAS) hearts from wildtype (i), nrg1 -/- mutant (j) or Erbb2 inhibitor (PD168363) treated animals showing that cardiac jelly reduction also appears to be an Nrg1/Erbb2 independent process; magnified views of dashed boxes in i-h are shown on the right; arrows and asterisks indicate the presence and absence of cardiac jelly, respectively; V: ventricle, AV: atrioventricular canal, At: atrium; scale bars, 50 µm. 6

7 Supplementary Figure 6. Myocardial nrg2a overexpression causes cardiomegaly in wild-type fish (a-d) A number of injected F0 wild-type fish (6 out of 31) exhibited pericardial edema at juvenile and adult stages as compared to non-injected ones; lateral views of non-injected (a) and injected (c) zebrafish imaged by brightfield microscopy at 75 dpf; red arrowhead in c points to pericardial edema; scale bars, 1mm. 75 dpf extracted hearts from non-injected (b) and injected (d) fish; scale bars, 200 µm. 7

8 Supplementary Figure 7. Overexpression of nrg2a under control of a myocardial specific promoter induces cardiomyocyte bilayering in the ventricle by 46 hpf (a-b) 2D ventral views (mid-sagittal sections) of 46 hpf Tg(myl7:EGFP-Hsa.HRAS) (a) or Tg(myl7:EGFP-Hsa.HRAS);Tg(myl7:nrg2a-p2a-tdTomato) (b) hearts; Magnified images of dashed boxes are shown below a and b; arrows point to bilayered wall; V: ventricle, At: atrium; scale bars, 50 µm. 8

9 Supplementary Figure 8. Ectopic nrg2a overexpression in cardiomyocytes requires Erbb2 function (a-d) Confocal sagittal sections of Tg(myl7:EGFP-Hsa.HRAS) (a-b) or Tg(myl7:EGFP- Hsa.HRAS);Tg(myl7:nrg2a-p2a-tdTomato) (c-d) hearts, treated with DMSO (a and c) or the Erbb2 inhibitor PD (b and d) showing that nrg2a overexpression-induced cardiomyocyte multilayering requires Erbb2 function; asterisks and arrows indicate singlelayered and multilayered ventricular walls, respectively; V: ventricle, At: atrium; scale bars, 50 µm. 9

10 Supplementary Figure 9. Myocardial specific nrg2a overexpression leads to an increase in cardiomyocyte proliferation (a-d) 3D views (maximum intensity z-projections) of Tg(myl7:mVenus-gmnn) (a and c) or Tg(myl7:mVenus-gmnn);Tg(myl7:nrg2a-p2a-tdTomato) (b and d) hearts at 78 (a-b) and 96 (c-d) hpf. Proliferating cardiomyocytes are labeled in green; white and yellow dashed boxes outline the ventricular and atrial chambers, respectively; V: ventricle, At: atrium; scale bars, 50 µm. (e-f) Graphs showing the average number of proliferating cardiomyocytes per heart (e) and per ventricular or atrial (f) chamber at 78 and 96 hpf; N=9 hearts; values represent means ± SEM; * P 0.05,** P 0.01 by Student s t-test. 10

11 Supplementary Figure 10. Endocardial specific overexpression of nrg2a does not induce cardiomyocyte multilayering in tnnt2a morphants (a-b) 2D ventral views (mid-sagittal sections) of 96 hpf Tg(myl7:EGFP-Hsa.HRAS) (a) or Tg(fli1a:nrg2a-p2a-tdTomato);Tg(myl7:EGFP-Hsa.HRAS) (b) hearts from tnnt2a MO (0.5 ng) injected animals; magnified images of dashed boxes are shown below a and b; myocardium and endocardium are labeled in green and red, respectively; V: ventricle, At: atrium; scale bars, 50 µm. 11

12 Supplementary Figure 11. Nrg2a can affect cardiomyocyte behavior via both autocrine and paracrine signals (a-b) 2D ventral views (mid-sagittal sections) of 78 hpf Tg(myl7:EGFP-Hsa.HRAS) hearts from animals injected with tnnt2a MO (0.5 ng) and myl7:nrg2a-p2a-tdtomato DNA (5-10 pg). This low amount of DNA allows one to get single cardiomyocytes to overexpress the nrg2a transgene; arrows and arrowhead point to nrg2a-p2a-tdtomato expressing and nonexpressing cardiomyocytes, respectively; higher magnification of dashed box in a is shown in b; V: ventricle, At: atrium; scale bar, 50 µm. 12

13 Supplementary References 1. Erickson SL, et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124, (1997). 2. Kramer R, Bucay N, Kane DJ, Martin LE, Tarpley JE, Theill LE. Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proceedings of the National Academy of Sciences 93, (1996). 3. Lai D, et al. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circulation research 107, (2010). 4. Honjo Y, Kniss J, Eisen JS. Neuregulin-mediated ErbB3 signaling is required for formation of zebrafish dorsal root ganglion neurons. Development 135, (2008). 13

Supplementary Figure 1. Baf60c and baf180 are induced during cardiac regeneration in zebrafish. RNA in situ hybridization was performed on paraffin

Supplementary Figure 1. Baf60c and baf180 are induced during cardiac regeneration in zebrafish. RNA in situ hybridization was performed on paraffin Supplementary Figure 1. Baf60c and baf180 are induced during cardiac regeneration in zebrafish. RNA in situ hybridization was performed on paraffin sections from sham-operated adult hearts (a and i) and

More information

Supplemental Information. Myocardial Polyploidization Creates a Barrier. to Heart Regeneration in Zebrafish

Supplemental Information. Myocardial Polyploidization Creates a Barrier. to Heart Regeneration in Zebrafish Developmental Cell, Volume 44 Supplemental Information Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish Juan Manuel González-Rosa, Michka Sharpe, Dorothy Field, Mark H.

More information

ErbB4 migrazione I parte. 3- ErbB4- NRG1

ErbB4 migrazione I parte. 3- ErbB4- NRG1 ErbB4 migrazione I parte 3- ErbB4- NRG1 1 In rodent brains postnatal neuronal migration is evident in three main areas: the cerebellum (CB), the hippocampus (Hipp) and the rostral migratory stream (RMS).

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Global TeNT expression effectively impairs synaptic transmission. Injection of 100 pg tent mrna leads to a reduction of vesicle mediated synaptic transmission in the spinal cord

More information

Nature Genetics: doi: /ng Supplementary Figure 1. Parameters and consequences of mononuclear cardiomyocyte frequency.

Nature Genetics: doi: /ng Supplementary Figure 1. Parameters and consequences of mononuclear cardiomyocyte frequency. Supplementary Figure 1 Parameters and consequences of mononuclear cardiomyocyte frequency. (a) Correlation of the frequency of mononuclear cardiomyocytes to the frequency of cardiomyocytes with three or

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Formation of the AA5x. a, Camera lucida drawing of embryo at 48 hours post fertilization (hpf, modified from Kimmel et al. Dev Dyn. 1995 203:253-310). b, Confocal microangiogram

More information

Inhibition of Cdk5 Promotes β-cell Differentiation from Ductal Progenitors

Inhibition of Cdk5 Promotes β-cell Differentiation from Ductal Progenitors Inhibition of Cdk5 Promotes β-cell Differentiation from Ductal Progenitors Ka-Cheuk Liu, Gunter Leuckx, Daisuke Sakano, Philip A. Seymour, Charlotte L. Mattsson, Linn Rautio, Willem Staels, Yannick Verdonck,

More information

Supplemental Information. Ciliary Beating Compartmentalizes. Cerebrospinal Fluid Flow in the Brain. and Regulates Ventricular Development

Supplemental Information. Ciliary Beating Compartmentalizes. Cerebrospinal Fluid Flow in the Brain. and Regulates Ventricular Development Current Biology, Volume Supplemental Information Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development Emilie W. Olstad, Christa Ringers, Jan N.

More information

Supplementary Fig. 1. The Brown Norway rat has higher coronary flow compared to other rat strains. Publically available data for coronary flow

Supplementary Fig. 1. The Brown Norway rat has higher coronary flow compared to other rat strains. Publically available data for coronary flow Supplementary Fig. 1. The Brown Norway rat has higher coronary flow compared to other rat strains. Publically available data for coronary flow measured ex vivo on Langendorff apparatus under intrinsic

More information

Supplementary Information

Supplementary Information Supplementary Information Title Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis Authors Shin H. Kang, Ying Li, Masahiro Fukaya, Ileana Lorenzini,

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. MADM labeling of thalamic clones.

Nature Neuroscience: doi: /nn Supplementary Figure 1. MADM labeling of thalamic clones. Supplementary Figure 1 MADM labeling of thalamic clones. (a) Confocal images of an E12 Nestin-CreERT2;Ai9-tdTomato brain treated with TM at E10 and stained for BLBP (green), a radial glial progenitor-specific

More information

Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment

Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment Supplementary Information Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment Robin A. Kimmel, Stefan Dobler, Nicole Schmitner, Tanja Walsen, Julia

More information

Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus

Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus a: Expression of Vimentin, GFAP, Sox2 and Nestin in anterior, central and posterior hypothalamus. In the anterior

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1 SUPPLEMENTARY INFORMATION Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy Guillermo Luxán, Jesús C. Casanova, Beatriz Martínez-Poveda, Belén Prados,

More information

BIOL2005 WORKSHEET 2008

BIOL2005 WORKSHEET 2008 BIOL2005 WORKSHEET 2008 Answer all 6 questions in the space provided using additional sheets where necessary. Hand your completed answers in to the Biology office by 3 p.m. Friday 8th February. 1. Your

More information

When you see this diagram, remember that you are looking at the embryo from above, through the amniotic cavity, where the epiblast appears as an oval

When you see this diagram, remember that you are looking at the embryo from above, through the amniotic cavity, where the epiblast appears as an oval When you see this diagram, remember that you are looking at the embryo from above, through the amniotic cavity, where the epiblast appears as an oval disc 2 Why the embryo needs the vascular system? When

More information

Morphogenesis of the right ventricle requires myocardial expression of Gata4

Morphogenesis of the right ventricle requires myocardial expression of Gata4 Research article Morphogenesis of the right ventricle requires myocardial expression of Gata4 Elisabeth M. Zeisberg, 1,2 Qing Ma, 3 Amy L. Juraszek, 3,4 Kelvin Moses, 5 Robert J. Schwartz, 5 Seigo Izumo,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1171320/dc1 Supporting Online Material for A Frazzled/DCC-Dependent Transcriptional Switch Regulates Midline Axon Guidance Long Yang, David S. Garbe, Greg J. Bashaw*

More information

(a-r) Whole mount X-gal staining on a developmental time-course of hearts from

(a-r) Whole mount X-gal staining on a developmental time-course of hearts from 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Supplementary Figure 1 (a-r) Whole mount X-gal staining on a developmental time-course of hearts from Sema3d +/- ;Ephb4 LacZ/+ and Sema3d -/- ;Ephb4 LacZ/+ embryos.

More information

McWilliams et al., http :// /cgi /content /full /jcb /DC1

McWilliams et al., http ://  /cgi /content /full /jcb /DC1 Supplemental material JCB McWilliams et al., http ://www.jcb.org /cgi /content /full /jcb.201603039 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. In vitro characterization of mito-qc. (A and B) Analysis

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information included with Nature MS 2008-02-01484B by Colantonio et al., entitled The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. This

More information

Supplementary information

Supplementary information Supplementary information 1 Supplementary Figure 1. CALM regulates autophagy. (a). Quantification of LC3 levels in the experiment described in Figure 1A. Data are mean +/- SD (n > 3 experiments for each

More information

Ahtiainen et al., http :// /cgi /content /full /jcb /DC1

Ahtiainen et al., http ://  /cgi /content /full /jcb /DC1 Supplemental material JCB Ahtiainen et al., http ://www.jcb.org /cgi /content /full /jcb.201512074 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. Distinct distribution of different cell cycle phases in the

More information

Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart

Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart Julien Vermot 1, Arian S. Forouhar 1,2, Michael Liebling 1,3, David Wu 1,2, Diane Plummer 1, Morteza Gharib

More information

Supplementary Table 1. List of primers used in this study

Supplementary Table 1. List of primers used in this study Supplementary Table 1. List of primers used in this study Gene Forward primer Reverse primer Rat Met 5 -aggtcgcttcatgcaggt-3 5 -tccggagacacaggatgg-3 Rat Runx1 5 -cctccttgaaccactccact-3 5 -ctggatctgcctggcatc-3

More information

Supplementary Figure S1 Enlarged coronary artery branches in Edn1-knockout mice. a-d, Coronary angiography by ink injection in wild-type (a, b) and

Supplementary Figure S1 Enlarged coronary artery branches in Edn1-knockout mice. a-d, Coronary angiography by ink injection in wild-type (a, b) and Supplementary Figure S1 Enlarged coronary artery branches in Edn1-knockout mice. a-d, Coronary angiography by ink injection in wild-type (a, b) and Edn1-knockout (Edn1-KO) (c, d) hearts. The boxed areas

More information

Supplementary Figure 1. EC-specific Deletion of Snail1 Does Not Affect EC Apoptosis. (a,b) Cryo-sections of WT (a) and Snail1 LOF (b) embryos at

Supplementary Figure 1. EC-specific Deletion of Snail1 Does Not Affect EC Apoptosis. (a,b) Cryo-sections of WT (a) and Snail1 LOF (b) embryos at Supplementary Figure 1. EC-specific Deletion of Snail1 Does Not Affect EC Apoptosis. (a,b) Cryo-sections of WT (a) and Snail1 LOF (b) embryos at E10.5 were double-stained for TUNEL (red) and PECAM-1 (green).

More information

Title: Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease

Title: Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease 1 Supplemental Materials 2 3 Title: Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease 4 5 6 Authors: Madhumita Basu, 1 Jun-Yi Zhu, 2 Stephanie LaHaye 1,3, Uddalak

More information

"Lecture Index. 1) Heart Progenitors. 2) Cardiac Tube Formation. 3) Valvulogenesis and Chamber Formation. 4) Epicardium Development.

Lecture Index. 1) Heart Progenitors. 2) Cardiac Tube Formation. 3) Valvulogenesis and Chamber Formation. 4) Epicardium Development. "Lecture Index 1) Heart Progenitors. 2) Cardiac Tube Formation. 3) Valvulogenesis and Chamber Formation. 4) Epicardium Development. 5) Septation and Maturation. 6) Changes in Blood Flow during Development.

More information

Fig. S1. RT-PCR analyses of the expression and distribution of Xdscr6 transcripts during early development.

Fig. S1. RT-PCR analyses of the expression and distribution of Xdscr6 transcripts during early development. Fig. S1. RT-PCR analyses of the expression and distribution of Xdscr6 transcripts during early development. (A) Temporal expression of Xdscr6 at various stages (numbers on the top) and its distribution

More information

DEVELOPMENT OF THE CIRCULATORY SYSTEM L E C T U R E 5

DEVELOPMENT OF THE CIRCULATORY SYSTEM L E C T U R E 5 DEVELOPMENT OF THE CIRCULATORY SYSTEM L E C T U R E 5 REVIEW OF CARDIAC ANATOMY Heart 4 chambers Base and apex Valves Pericardial sac 3 layers: epi, myo, endo cardium Major blood vessels Aorta and its

More information

THE HEART OBJECTIVES: LOCATION OF THE HEART IN THE THORACIC CAVITY CARDIOVASCULAR SYSTEM

THE HEART OBJECTIVES: LOCATION OF THE HEART IN THE THORACIC CAVITY CARDIOVASCULAR SYSTEM BIOLOGY II CARDIOVASCULAR SYSTEM ACTIVITY #3 NAME DATE HOUR THE HEART OBJECTIVES: Describe the anatomy of the heart and identify and give the functions of all parts. (pp. 356 363) Trace the flow of blood

More information

Maoqing Ye, Yan Yin, Kazumi Fukatsu, and Paul Grossfeld

Maoqing Ye, Yan Yin, Kazumi Fukatsu, and Paul Grossfeld Evidence That Deletion of ETS-1, a Gene in the Jacobsen Syndrome (11q-) Cardiac Critical Region, Causes Congenital Heart Defects through Impaired Cardiac Neural Crest Cell Function 52 Maoqing Ye, Yan Yin,

More information

Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis

Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis Article Graphical Abstract Endocardial cell (EC) WNT9B WNT9B Wildtype Endocardial Klf2 KO Mesenchymal cell

More information

Supplemental Information. Otic Mesenchyme Cells Regulate. Spiral Ganglion Axon Fasciculation. through a Pou3f4/EphA4 Signaling Pathway

Supplemental Information. Otic Mesenchyme Cells Regulate. Spiral Ganglion Axon Fasciculation. through a Pou3f4/EphA4 Signaling Pathway Neuron, Volume 73 Supplemental Information Otic Mesenchyme Cells Regulate Spiral Ganglion Axon Fasciculation through a Pou3f4/EphA4 Signaling Pathway Thomas M. Coate, Steven Raft, Xiumei Zhao, Aimee K.

More information

Studying The Role Of DNA Mismatch Repair In Brain Cancer Malignancy

Studying The Role Of DNA Mismatch Repair In Brain Cancer Malignancy Kavya Puchhalapalli CALS Honors Project Report Spring 2017 Studying The Role Of DNA Mismatch Repair In Brain Cancer Malignancy Abstract Malignant brain tumors including medulloblastomas and primitive neuroectodermal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2988 Supplementary Figure 1 Kif7 L130P encodes a stable protein that does not localize to cilia tips. (a) Immunoblot with KIF7 antibody in cell lysates of wild-type, Kif7 L130P and Kif7

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1 Treatment with both Sema6D and Plexin-A1 sirnas induces the phenotype essentially identical to that induced by treatment with Sema6D sirna alone or Plexin-A1 sirna alone. (a,b) The cardiac tube

More information

CARDIOVASCULAR SYSTEM

CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Overview Heart and Vessels 2 Major Divisions Pulmonary Circuit Systemic Circuit Closed and Continuous Loop Location Aorta Superior vena cava Right lung Pulmonary trunk Base of heart

More information

Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System

Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System PLoS BIOLOGY Neil C. Chi 1,2,3*, Robin M. Shaw 2,3,4,5, Benno Jungblut 1, Jan Huisken 1, Tania Ferrer 6,7, Rima Arnaout 1,8,

More information

Zhu et al, page 1. Supplementary Figures

Zhu et al, page 1. Supplementary Figures Zhu et al, page 1 Supplementary Figures Supplementary Figure 1: Visual behavior and avoidance behavioral response in EPM trials. (a) Measures of visual behavior that performed the light avoidance behavior

More information

Supplemental Figure 1. (A) The localization of Cre DNA recombinase in the testis of Cyp19a1-Cre mice was detected by immunohistchemical analyses

Supplemental Figure 1. (A) The localization of Cre DNA recombinase in the testis of Cyp19a1-Cre mice was detected by immunohistchemical analyses Supplemental Figure 1. (A) The localization of Cre DNA recombinase in the testis of Cyp19a1-Cre mice was detected by immunohistchemical analyses using an anti-cre antibody; testes at 1 week (left panel),

More information

ErbB4 migrazione II parte

ErbB4 migrazione II parte ErbB4 migrazione II parte Control SVZ cells prefer to migrate on the NRG1 type III substrate the substrate preference of the neuroblasts migrating out of the SVZ explant was evaluated SVZ cells had a strong

More information

Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed

Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed in the testes. The testes were immunostained with GFP

More information

tom tom 24hpf tom tom 48hpf tom 60hpf tom tom 72hpf tom

tom tom 24hpf tom tom 48hpf tom 60hpf tom tom 72hpf tom a 24hpf c 48hpf d e 60hpf f g 72hpf h i j k ISV ISV Figure 1. Vascular integrity defects and endothelial regression in mutant emryos. (a,c,e,g,i) Bright-field and (,d,f,h,j) corresponding fluorescent micrographs

More information

Defects in ErbB-Dependent Establishment of Adult Melanocyte Stem Cells Reveal Independent Origins for Embryonic and Regeneration Melanocytes

Defects in ErbB-Dependent Establishment of Adult Melanocyte Stem Cells Reveal Independent Origins for Embryonic and Regeneration Melanocytes Defects in ErbB-Dependent Establishment of Adult Melanocyte Stem Cells Reveal Independent Origins for Embryonic and Regeneration Melanocytes Keith A. Hultman 1, Erine H. Budi 2, Daniel C. Teasley 1, Andrew

More information

Development of the Heart

Development of the Heart Development of the Heart Thomas A. Marino, Ph.D. Temple University School of Medicine Stages of Development of the Heart 1. The horseshoe-shaped pericardial cavity. 2. The formation of the single heart

More information

the Cardiovascular System I

the Cardiovascular System I the Cardiovascular System I By: Dr. Nabil A Khouri MD, MsC, Ph.D MEDIASTINUM 1. Superior Mediastinum 2. inferior Mediastinum Anterior mediastinum. Middle mediastinum. Posterior mediastinum Anatomy of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Ras V12 expression in the entire eye-antennal disc does not cause invasive tumours. a, Eye-antennal discs expressing Ras V12 in all cells (marked with GFP, green) overgrow moderately

More information

Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1.

Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Youngsoo Lee, Sachin Katyal, Yang Li, Sherif F. El-Khamisy, Helen R. Russell, Keith W. Caldecott and Peter J. McKinnon.

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Brooks and Wallingford, http://www.jcb.org/cgi/content/full/jcb.201204072/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. Quantification of ciliary compartments in control

More information

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet The Heart Happy Friday! #takeoutyournotes #testnotgradedyet Introduction Cardiovascular system distributes blood Pump (heart) Distribution areas (capillaries) Heart has 4 compartments 2 receive blood (atria)

More information

Supplementary Information

Supplementary Information Supplementary Information CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium Ji Eun Lee, Jennifer L. Silhavy, Maha S. Zaki, Jana Schroth, Stephanie L. Bielas,

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM. Supplementary Figure 1 Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM. (a-c) Heterozygous c.216ga mice displayed normal hair bundle morphology at P18. (d-i) Disorganized hair bundles

More information

3-OST-7 Regulates BMP-Dependent Cardiac Contraction

3-OST-7 Regulates BMP-Dependent Cardiac Contraction 3-OST-7 Regulates BMP-Dependent Cardiac Contraction Shiela C. Samson 1, Tania Ferrer 2, Chuanchau J. Jou 2, Frank B. Sachse 2,3, Sunita S. Shankaran 2, Robin M. Shaw 4, Neil C. Chi 5, Martin Tristani-Firouzi

More information

Supplementary Figure 1. Gene schematics of hyls-1, gasr-8 and k10g6.4, and TEM analysis of TFs in WT and hyls-1 cilia. (a) Gene structure of hyls-1,

Supplementary Figure 1. Gene schematics of hyls-1, gasr-8 and k10g6.4, and TEM analysis of TFs in WT and hyls-1 cilia. (a) Gene structure of hyls-1, Supplementary Figure 1. Gene schematics of hyls-1, gasr-8 and k10g6.4, and TEM analysis of TFs in WT and hyls-1 cilia. (a) Gene structure of hyls-1, gasr-8 and k10g6.4 based on WormBase (http://wormbase.org),

More information

doi: /nature10632

doi: /nature10632 SUPPLEMENTARY INFORMATION doi:10.1038/nature10632 Supplementary Figure 1 Lyn mediates neutrophil wound responses as a redox sensor. a, A schematic model. Wounded epithelial cells release H 2 O 2 by an

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Subcellular segregation of VGluT2-IR and TH-IR within the same VGluT2-TH axon (wild type rats). (a-e) Serial sections of a dual VGluT2-TH labeled axon. This axon (blue outline) has

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Drd1a-Cre driven ChR2 expression in the SCN. (a) Low-magnification image of a representative Drd1a-ChR2 coronal brain section (n = 2) showing endogenous tdtomato fluorescence (magenta).

More information

BNP mrna expression in DR and DS rat left ventricles (n = 5). (C) Plasma norepinephrine

BNP mrna expression in DR and DS rat left ventricles (n = 5). (C) Plasma norepinephrine Kanazawa, et al. Supplementary figure legends Supplementary Figure 1 DS rats had congestive heart failure. (A) DR and DS rat hearts. (B) QRT-PCR analysis of BNP mrna expression in DR and DS rat left ventricles

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10188 Supplementary Figure 1. Embryonic epicardial genes are down-regulated from midgestation stages and barely detectable post-natally. Real time qrt-pcr revealed a significant down-regulation

More information

Supplemental Table 1. Echocardiography Control (n=4)

Supplemental Table 1. Echocardiography Control (n=4) Supplemental Table 1. Echocardiography (n=4) Mlc2v cre/+ ; DNMAML (n=4) LVIDd, mm 3.9±0.3 4.3±0.3 LVIDs, mm 2.6±0.4 2.9±0.2 d, mm 0.72±0.06 0.75±0.1 LVPWd, mm 0.72±0.06 0.77±0.11 FS, % 33±6 33±1 EF, %

More information

Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and

Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and exclude YAP from the nucleus. (a) Schematic diagram of an E10.5 mouse embryo. (b,c) Sections at B and C in (a)

More information

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable Supplementary Figure 1. Frameshift (FS) mutation in UVRAG. (a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable A 10 DNA repeat, generating a premature stop codon

More information

The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation

The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation Anita Becker-Heck#, Irene Zohn#, Noriko Okabe#, Andrew Pollock#, Kari Baker Lenhart,

More information

Supplementary Materials for

Supplementary Materials for www.sciencetranslationalmedicine.org/cgi/content/full/4/117/117ra8/dc1 Supplementary Materials for Notch4 Normalization Reduces Blood Vessel Size in Arteriovenous Malformations Patrick A. Murphy, Tyson

More information

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547 Supplementary Figure 1 Characterization of the Microfetti mouse model. (a) Gating strategy for 8-color flow analysis of peripheral Ly-6C + monocytes from Microfetti mice 5-7 days after TAM treatment. Living

More information

Patterning the Embryo

Patterning the Embryo Patterning the Embryo Anteroposterior axis Regional Identity in the Vertebrate Neural Tube Fig. 2.2 1 Brain and Segmental Ganglia in Drosophila Fig. 2.1 Genes that create positional and segment identity

More information

Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were

Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were electroporated with β- Catenin S33Y in PiggyBac expression

More information

Primary Mouse Cerebral Cortex Neurons V: 80% TE: 70%

Primary Mouse Cerebral Cortex Neurons V: 80% TE: 70% Primary Mouse Cerebral Cortex Neurons V: 80% TE: 70% Pictures: 9 days after electroporation Red: MAP2 Blue: GFAP Green: GFP The cells were from Embryonic Day 14 Mouse Cerebral Cortex Primary Mouse Hippocampal

More information

Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A.

Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A. Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A. Upper part, three-primer PCR strategy at the Mcm3 locus yielding

More information

STRUCTURES OF THE CARDIOVASCULAR SYSTEM

STRUCTURES OF THE CARDIOVASCULAR SYSTEM STRUCTURES OF THE CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Also called the circulatory system Consists of the heart, arteries, veins, and capillaries Main function is to pump/circulate oxygenated blood

More information

LAB 12-1 HEART DISSECTION GROSS ANATOMY OF THE HEART

LAB 12-1 HEART DISSECTION GROSS ANATOMY OF THE HEART LAB 12-1 HEART DISSECTION GROSS ANATOMY OF THE HEART Because mammals are warm-blooded and generally very active animals, they require high metabolic rates. One major requirement of a high metabolism is

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/8/375/ra41/dc1 Supplementary Materials for Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons

Nature Neuroscience: doi: /nn Supplementary Figure 1. Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons Supplementary Figure 1 Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons a-c. Quantification of CEl c-fos expression in mice intraperitoneal injected with anorexigenic drugs (a),

More information

Neuregulin-1 promotes formation of the murine cardiac conduction system

Neuregulin-1 promotes formation of the murine cardiac conduction system Neuregulin-1 promotes formation of the murine cardiac conduction system Stacey Rentschler*, Jennifer Zander*, Kathleen Meyers*, David France*, Rebecca Levine*, George Porter, Scott A. Rivkees, Gregory

More information

2. right heart = pulmonary pump takes blood to lungs to pick up oxygen and get rid of carbon dioxide

2. right heart = pulmonary pump takes blood to lungs to pick up oxygen and get rid of carbon dioxide A. location in thorax, in inferior mediastinum posterior to sternum medial to lungs superior to diaphragm anterior to vertebrae orientation - oblique apex points down and to the left 2/3 of mass on left

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Luminal localization of CCM-3. (a) The CCM-3::GFP fusion protein localizes along the apical (luminal) surface of the pharynx (b) as well as the lumen of

More information

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

Supplemental Information. Fluorescence-based visualization of autophagic activity predicts mouse embryo

Supplemental Information. Fluorescence-based visualization of autophagic activity predicts mouse embryo Supplemental Information Fluorescence-based visualization of autophagic activity predicts mouse embryo viability Satoshi Tsukamoto*, Taichi Hara, Atsushi Yamamoto, Seiji Kito, Naojiro Minami, Toshiro Kubota,

More information

Cardiovascular System. Heart Anatomy

Cardiovascular System. Heart Anatomy Cardiovascular System Heart Anatomy 1 The Heart Location & general description: Atria vs. ventricles Pulmonary vs. systemic circulation Coverings Walls The heart is found in the mediastinum, the medial

More information

Diseases of the Conduction System

Diseases of the Conduction System 4 CHAPTER 4 Diseases of the Conduction System Diseases of the conduction system are numerous and varied. The authors have selected a few representative entities for this section: complete heart block as

More information

Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines

Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines Jessica Lauriol,, Kyu-Ho Lee, Maria I. Kontaridis J Clin Invest. 2016;126(8):2989-3005. https://doi.org/10.1172/jci80396.

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

Segmental Analysis. Gautam K. Singh, M.D. Washington University School of Medicine St. Louis

Segmental Analysis. Gautam K. Singh, M.D. Washington University School of Medicine St. Louis Segmental Analysis Gautam K. Singh, M.D. Washington University School of Medicine St. Louis Segmental Analysis Segmental Analysis: From Veins to Ventricles Segmental Approach to Evaluation of Congenital

More information

Vikas Gupta, Matthew Gemberling, Ravi Karra, Gabriel E. Rosenfeld, Todd Evans, and Kenneth D. Poss

Vikas Gupta, Matthew Gemberling, Ravi Karra, Gabriel E. Rosenfeld, Todd Evans, and Kenneth D. Poss Current Biology, Volume 23 Supplemental Information An Injury-Responsive Gata4 Program Shapes the Zebrafish Cardiac Ventricle Vikas Gupta, Matthew Gemberling, Ravi Karra, Gabriel E. Rosenfeld, Todd Evans,

More information

F-actin VWF Vinculin. F-actin. Vinculin VWF

F-actin VWF Vinculin. F-actin. Vinculin VWF a F-actin VWF Vinculin b F-actin VWF Vinculin Supplementary Fig. 1. WPBs in HUVECs are located along stress fibers and at focal adhesions. (a) Immunofluorescence images of f-actin (cyan), VWF (yellow),

More information

Atrial Septal Defects

Atrial Septal Defects Supplementary ACHD Echo Acquisition Protocol for Atrial Septal Defects The following protocol for echo in adult patients with atrial septal defects (ASDs) is a guide for performing a comprehensive assessment

More information

Supplementary Figure 1. Spatial distribution of LRP5 and β-catenin in intact cardiomyocytes. (a) and (b) Immunofluorescence staining of endogenous

Supplementary Figure 1. Spatial distribution of LRP5 and β-catenin in intact cardiomyocytes. (a) and (b) Immunofluorescence staining of endogenous Supplementary Figure 1. Spatial distribution of LRP5 and β-catenin in intact cardiomyocytes. (a) and (b) Immunofluorescence staining of endogenous LRP5 in intact adult mouse ventricular myocytes (AMVMs)

More information

Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development

Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development Research article and disease 4193 Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development Dimitris Beis 1, *,, Thomas Bartman 1,, Suk-Won Jin 1, Ian C. Scott 1, Leonard

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2419 Figure S1 NiGFP localization in Dl mutant dividing SOPs. a-c) time-lapse analysis of NiGFP (green) in Dl mutant SOPs (H2B-RFP, red; clones were identified by the loss of nlsgfp) showing

More information

The subcortical maternal complex controls symmetric division of mouse zygotes by

The subcortical maternal complex controls symmetric division of mouse zygotes by The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics Xing-Jiang Yu 1,2, Zhaohong Yi 1, Zheng Gao 1,2, Dan-dan Qin 1,2, Yanhua Zhai 1, Xue Chen 1,

More information

Supplementary Figure S1: TIPF reporter validation in the wing disc.

Supplementary Figure S1: TIPF reporter validation in the wing disc. Supplementary Figure S1: TIPF reporter validation in the wing disc. a,b, Test of put RNAi. a, In wildtype discs the Dpp target gene Sal (red) is expressed in a broad stripe in the centre of the ventral

More information

Supplemental Information. Tissue Myeloid Progenitors Differentiate. into Pericytes through TGF-b Signaling. in Developing Skin Vasculature

Supplemental Information. Tissue Myeloid Progenitors Differentiate. into Pericytes through TGF-b Signaling. in Developing Skin Vasculature Cell Reports, Volume 18 Supplemental Information Tissue Myeloid Progenitors Differentiate into Pericytes through TGF-b Signaling in Developing Skin Vasculature Tomoko Yamazaki, Ani Nalbandian, Yutaka Uchida,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Suppl. Fig. 1 in vivo expression of ISL1 in the human fetal heart. a, Hematoxylin eosin staining showing structures of left atrium and left atrium appendage (*) of a human fetal heart at 11 weeks of gestation.

More information

Heart Development and Congenital Heart Disease

Heart Development and Congenital Heart Disease Heart Development and Congenital Heart Disease Sally Dunwoodie s.dunwoodie@victorchang.edu.au Developmental and Stem Cell Biology Division Victor Chang Cardiac Research Institute for the heart of Australia...

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Lu et al., http://www.jcb.org/cgi/content/full/jcb.201012063/dc1 Figure S1. Kinetics of nuclear envelope assembly, recruitment of Nup133

More information

Chapter 14. The Cardiovascular System

Chapter 14. The Cardiovascular System Chapter 14 The Cardiovascular System Introduction Cardiovascular system - heart, blood and blood vessels Cardiac muscle makes up bulk of heart provides force to pump blood Function - transports blood 2

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo. Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from

More information

Anatomy of Atrioventricular Septal Defect (AVSD)

Anatomy of Atrioventricular Septal Defect (AVSD) Surgical challenges in atrio-ventricular septal defect in grown-up congenital heart disease Anatomy of Atrioventricular Septal Defect (AVSD) S. Yen Ho Professor of Cardiac Morphology Royal Brompton and

More information