Supplementary Figure S1: TIPF reporter validation in the wing disc.

Size: px
Start display at page:

Download "Supplementary Figure S1: TIPF reporter validation in the wing disc."

Transcription

1 Supplementary Figure S1: TIPF reporter validation in the wing disc. a,b, Test of put RNAi. a, In wildtype discs the Dpp target gene Sal (red) is expressed in a broad stripe in the centre of the ventral and dorsal compartments (arrowheads) of the wing pouch b, Transgene mediated knockdown of the type II BMP receptor Punt (put) using ap::gal4 tub::gal80 ts at 25 C reduces Dpp signalling especially in the dorsal compartment. The Sal signal is reduced (arrow) and the dorsal compartment becomes smaller. Wing pouches outlined by dashed lines, dorsoventral compartment boundaries by dotted lines, cell boundaries marked with FasIII (blue) and nuclei with DAPI (light blue). c, TIPF fluorescence depends on the type II receptor Punt. In wing discs of ap::gal4 tub::gal80 ts ; UAS::hp-Put L3 larvae raised at 25 C TIPF fluorescence is reduced in the dorsal compartment (arrow) where ap::gal4 is active. d, ubi::tipf is ubiquitously expressed in the wing disc. anti-gfp immunostaining (green) reveals even TIPF expression throughout the disc. Specifically, there is no evidence of the downregulation along the compartment boundary as seen for endogenous Tkv. Cells outlined with FasIII (red). Scale bars 50 µm except c, 25 µm. -1-

2 Supplementary Figure S2: Image planes and junction arrangements in testis. Schematic representation of a single hub cell (green) and GSC (blue) pair, outlining the orientation of the image planes used in all testis images. In apical transverse sections (left), the observer looks down (red arrow) through the GSC onto the interface with the hub cell. While the junctions connecting the hub cells apically with the GSC and their neighbours are in focus, most of the GSC cytoplasm and more basal parts of the hub cells are not imaged. In central sections (right), the interior of hub cells and GSCs is visualized, but most of the junctions and associated structures lie above or below the image plane. -2-

3 Supplementary Figure S3: Germline TIPF expression under nos::gal4- VP16 control. a, Tkv overexpression is sufficient to cause germ cells tumours. In nos::gal4-vp16; UAS::tkv-Cherry testes Tkv-Cherry (red) is overexpressed in the entire germline marked with Vasa (green). DAPI staining (light blue) reveals the presence of excess early germline cells far away from BMP source in the hub (dashed outline), leading to bloating of the testis tip and a loss of differentiated sperm cells. b, Endogenous Tkv is expressed throughout the testis tip. Immunostaining against the type I BMP receptor Tkv (green) reveals expression in the hub (marked with FasIII, red), GSCs (approximately outlined by dashed line), and more distant cells within the testis. Image deconvolved max. intensity Z projection of multiphoton optical slices spanning 10µm. Scale bars a, 50 µm, b, 5 µm. -3-

4 Supplementary Figure S4: DE-Cadherin-tRFP localization and ubiquitin promotor specificity a, Ubiquitously expressed DE-Cadherin-tRFP labels adherens junctions. In central (top panels) or peripheral (bottom panels) sections through a stage 9 egg chamber of a ubi::de-cadherin-trfp transgenic female the apical (arrowheads) adherens junctions of the follicular epithelium are marked by red fluorescence. Insets magnified views of boxed areas. b, The ubiquitin promoter has low germline activity. In testes from ubi::gfp FRT40A flies, GFP fluorescene (green) is largely excluded from germline cells marked by Vasa (blue) but strongly active in the hub (marked by DE-Cadherin, red). Scale bars a, 25 µm, b, 10 µm. -4-

5 Supplementary Figure S5: Adherens junctions in the hub. a, Adherens junctions between neighbouring hub cells and towards GSC contain typical adhesion molecules. In transgenic flies expressing tagged DE-Cadherin in the hub (ubi::de-cadherin-trfp, red) both punctate junctions between hub and GSCs (arrowheads) and the apicolateral adhesion belt (arrows) recruit -Catenin (green) and armadillo (blue). b, Junctions between hub and GSCs (arrowsheads) are marked by both DE-Cadherin-GFP expressed in the germline under nos::gal4vp16 control and ubi::de-cadherin-trfp in the somatic cells of the gonad. Note the patchy expression of DE-Cadherin-GFP in only a subset of germline cells. c, Schematic representation of two hub cells and their associated GSCs. Adjacent hub cells are attached in standard epithelial fashion via an apical belt of adherens junctions. Additional junctions connect the hub cells to the overlying GSCs. While some of these junctions appear in optical sections to be connected to the apical belt (arrow), others appear to be independent (arrowheads). Whether this distinction is real or an optical artefact caused by the curved surface of the hub cannot be resolved with certainty by confocal microscopy due to its limited Z-resolution. Scale bars 10 µm. -5-

6 Supplementary Figure S6: Validation of the trfp-dpp construct. The trfp-dpp fusion protein retains signalling function. Wing discs from UAS::tRFP- Dpp; dpp::gal4 L3 larvae show the characteristic Dpp-dependent increase in width seen also following equivalent Dpp or GFP-Dpp overexpression in the endogenous domain. Cells outlined with FasIII (blue), trfp-dpp in red. Scale bar 50 µm. -6-

7 Supplementary Figure S7: Knockdown of exocyst components in the hub. a, Sec8 RNAi driven by upd::gal4, tub::gal80 ts (29 C for 7d) causes hub disintegration with intracellular FasIII accumulation (red, arrow). Some germline cells (arrowheads) lose GSC fate and transcribe Bam while contacting the hub (Bam::GFP in green, germline marked with Vasa, blue). b, Sec8 RNAi in the hub causes DE-Cadherin (red, arrowheads) mislocalization to enlarged REs marked by YFP-Rab11 (green). c, Exocyst RNAi in the hub does not increase apoptosis levels. Sec8 RNAi leads to DE-Cadherin mislocalization (blue) and disintegration of the hub (left panel, arrowheads). Hub cells were negative for the apotosis marker activated Caspase-3 (red). Occasionally, dying cells were observed outside the hub in both experimental and control testes (arrow, right panels), confirming that apoptotic cells would not have escaped detection if common in the disintegrating hubs. Scale bars 10 µm. -7-

8 Supplementary Figure S8: Exocyst and Dpp secretion in the hub. a, GFP-Dpp (green, arrowheads) colocalizes with Sec15-Cherry (red) in upd::gal4, tub::gal80 ts ;; UAS::Sec15-Cherry / UAS::GFP-Dpp hub cells (max. intensity Z projection of three adjacent 1 µm optical slices). b, GFP-Dpp (green, arrowheads) is found adjacent to but does only rarely (14.6±10.5%, n=89) overlap with Sec5 vesicles (red, arrows) near the apicolateral adherens junctions (DE-Cadherin, blue). c, In upd::gal4, tub:: Gal80 ts ;; UAS::Sec15-Cherry testes only roughly one quarter of Sec15- Cherry (red) vesicles colocalize with Sec5 (green, arrow), while the remainder (arrowheads) localize to adjacent areas with low Sec5 levels (24.1±4.2% of Sec15- Cherry punctae, n=54). Hub cells labeled with FasIII (blue). Hubs marked by dashed white outlines, GFP-Dpp induction 3 days at 30 C, all scale bars 5 µm. -8-

9 Supplementary Figure S9: Exocyst and Gef26 participate in Dpp secretion from the hub. Colocalization of trfp-dpp expressed in the hub by upd::gal4, tub::gal80 ts with YFP- Rab11. a, Following Sec8 RNAi, the recycling endosome becomes expanded and trfp- Dpp (red) punctae show increased colocalization (arrows) with Rab11 endosomes (green). b, In Gef26 dizzy1 / Gef26 6 mutant testes, colocalization of trfp-dpp and YFP- Rab11 marked endosomes becomes more common. c,d, Pixelwise quantification of Dpp / Rab11 colocalization. Intensity in the green (YFP-Rab11) channel is plotted against trfp-dpp fluorescence, heat map indicates pixel density. In Sec8 RNAi testes (c) 65% and in Gef26 dizzy1 / Gef26 6 mutant testes (d) 58% of trfp-dpp positive pixels are also above background for YFP-Rab11 (upper right quadrant). Scale bars 5 µm. -9-

10 Supplementary Figure S10: Segmentation based colocalization analysis. To control for false positive colocalization scores due to diffuse mislocalization of YFP- Rab11 we determined colocalization of local intensity maxima. a-d, Confocal images of control (a), upd::gal4 Sec6 RNAi (b), upd::gal4 Sec8 RNAi (c), and Gef26 3 / Gef26 6 mutant (d) testes before (top panel) and after (bottom panel) segmentation of channels into binary bitmaps. Colocalization fractions are calculated from the segmented images by automated counting areas and their overlap. e, Quantification of trfp-dpp / YFP- Rab11 colocalization: Sec6 RNAi 79.1±9.9%, n=6 testes; Sec8 RNAi 61.1±7.4%; n=6; Gef26 3 /Gef ±6.3%; n=6; controls 18.6±3.3%; n=6. Differences significant, p<0.0001, one way ANOVA with Tukey s HSD. Error bars indicate SD. -10-

11 Supplementary Figure S11: Exocyst components in the wing disc. a, Sec5 and GFP-Dpp do not colocalize. In XZ optical sections through Dpp::Gal4 UAS::GFP-Dpp wing discs GFP-Dpp (green, arrows) is mostly found just below the apical region of high Sec5 staining (red, arrowheads) that coincides with the adherens junctions marked by DE-Cadherin (blue). Consequently, colocalization is low (4.3±1.3%, n=576). b, Sec5 immunostaining (green) and Sec15-Cherry (red) expressed using hh::gal4 label distinct vesicle pools that are often found adjacent to each other (examples marked by arrows) but rarely overlap (colocalization 2.9±0.3%, n=224). These steady stade colocalization values differ from those observed in the hub, indicating underlying differences in intracellular trafficking rates between these tissues. Scale bars 5 µm. -11-

12 Supplementary Figure S12: Colocalization of Rab11 and GFP-Dpp in Sec5 clones in the wing disc. Colocalization at local maxima of GFP-Dpp and Rab11 immunoflorescence following image segmentation. a, control tissue outside clone. b, homozygous Sec5 mutant cells within clone. Channels were thresholded independently, position of Sec5 clone outlined by dashed line. Output of particle tracking after segmentation shown in lower panels. Scale bars 5 µm. -12-

13 Supplementary Figure S13: Colocalization of Rab11 and DE-Cadherin in Sec5 clones in the wing disc. Colocalization at local maxima of DE-Cadherin and Rab11 immunoflorescence following image segmentation. a, control tissue outside clone. b, homozygous Sec5 mutant cells within clone. Channels were thresholded independently, output of particle tracking after segmentation shown in lower panels. Scale bars 5 µm. -13-

14 Supplementary Table S1: Rescue of tkv mutants by ubiquitous TIPF A) ubi::tipf transgene on the 2nd chromosome, two copies Prediction Prediction w / Y; p{w+; ubi::tipf 4-1}, tkv 8 / CyO for no for full x rescue rescue w / w; p{w+; ubi::tipf 4-1}, tkv A12 / CyO Class Phenotype expected expected observed observed frequency Rescued tkv mutants heterozygous progeny Cy + w + 0 % 33.3 % % Cy - w % 66.7 % % B) ubi::tipf transgene on the 2nd chromosome, one copy Rescued tkv mutants heterozygous progeny Phenotype Prediction for no rescue expected frequency Prediction for full rescue expected frequency w / Y; p{w+; ubi::tipf} 4-1, tkv 8 / CyO x w / w;, tkv A12 / CyO observed observed frequency incidence Cy + w + 0 % 33.3 % % Cy % 66.7 % % C) ubi::tipf transgene on X chromosome Prediction for no rescue Class Phenotype expected frequency Rescued tkv mutants (females) Non-rescued tkv mutants (males) tkv 8 heterozygous siblings tkv A12 heterozygous siblings (excluded) Prediction for full rescue expected frequency w, p{w+; ubi::tipf} 2 / Y; tkv A12 / Kr If x w/w; tkv 8 / CyO observed observed frequency incidence Cy + Kr If + 0 % 33 % % Cy + Kr If + 0 % 0 % 0 0 % Cy + Kr If % 67 % % Cy - n.d. n.d. n.d. n.d. -14-

15 Supplementary Table S2: TIPF reporter activity in zebrafish embryos Injection of TIPF mrna, 50 pg / embryo TIPF fluorescence at shield ventral only ventral side, laterally TIPF fluorescence stage expanded on dorsal side Incidence frequency 65.2% 26.1% 8.7% -15-

16 Supplementary Table S3: Rescue of Sec15 mutants by ubiquitous expression of Sec15-Cherry shows that Sec15-Cherry is functional Prediction for no rescue Prediction for full rescue w; p{w+; Ubi::Sec15-Cherry} / +; Sec15 1 / TM3, Sb x w / w ;; Sec15 2 / TM3, Sb Class genotype expected frequency expected frequency observed incidence observed frequency heterozygous progeny, Sb - w; p{w+; Ubi::Sec15-Cherry} / + ; Sec15 1/2 / TM3, Sb or w; + / + ; Sec15 1/2 / TM3, Sb 100% 80 % % rescued homozyg. mutant progeny (w + Sb + ) homozyg. mutant progeny (w - Sb + ) w; p{w+; Ubi::Sec15-Cherry} 0% 20 % % / + ; Sec15 1 / Sec15 2 w; + / + ; Sec15 1 / Sec % 0 % 0 0% -16-

17 Supplementary Table S4: Rescue of GFP-Dpp overexpression pupal lethality by reducing Sec15 gene dosage A) Lethality of GFP-Dpp overexpression in the endogenous domain w, tub::gal80 / Y ;; dpp::gal4, UAS::GFP-Dpp / TM6B, Tb x w / w Class genotype 40 larvae sorted for Tb + phenotype females w, tub::gal80 / w ;; dpp::gal4, UAS::GFP-Dpp / + males w / Y ;; dpp::gal4, UAS::GFP-Dpp / + 19 hatching 0 hatching B) Suppression by Sec15 1 w, tub::gal80 / Y ;; dpp::gal4, UAS::GFP-Dpp / TM6B, Tb x w / w ;; Sec15 1 / TM6B, Tb Class genotype 40 larvae sorted for Tb + phenotype females w, tub::gal80 / w ;; dpp::gal4, UAS::GFP-Dpp / Sec15 1 males w / Y ;; dpp::gal4, UAS::GFP-Dpp / Sec hatching 0 hatching, 3 pharate adult males dissected from pupal case C) Suppression by Sec15 2 w, tub::gal80 / Y ;; dpp::gal4, UAS::GFP-Dpp / TM6B, Tb x w / w ;; Sec15 2 / TM3, Sb Class genotype 50 larvae sorted for Tb + phenotype females w, tub::gal80 / w ;; dpp::gal4, UAS::GFP-Dpp / TM3, Sb males w / Y ;; dpp::gal4, UAS::GFP-Dpp / TM3, Sb females w, tub::gal80 / w ;; dpp::gal4, UAS::GFP-Dpp / Sec15 2 males w / Y ;; dpp::gal4, UAS::GFP-Dpp / Sec15 2 excluded from analysis 0 hatching, 0 found among pharate adults 25 hatching 2 hatching, 3 Sb + pharate adult males dissected from pupal case -17-

18 -18- Michel_2011

Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed

Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed in the testes. The testes were immunostained with GFP

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature07173 SUPPLEMENTARY INFORMATION Supplementary Figure Legends: Supplementary Figure 1: Model of SSC and CPC divisions a, Somatic stem cells (SSC) reside adjacent to the hub (red), self-renew

More information

effects on organ development. a-f, Eye and wing discs with clones of ε j2b10 show no

effects on organ development. a-f, Eye and wing discs with clones of ε j2b10 show no Supplementary Figure 1. Loss of function clones of 14-3-3 or 14-3-3 show no significant effects on organ development. a-f, Eye and wing discs with clones of 14-3-3ε j2b10 show no obvious defects in Elav

More information

Supplementary Fig. 1 V-ATPase depletion induces unique and robust phenotype in Drosophila fat body cells.

Supplementary Fig. 1 V-ATPase depletion induces unique and robust phenotype in Drosophila fat body cells. Supplementary Fig. 1 V-ATPase depletion induces unique and robust phenotype in Drosophila fat body cells. a. Schematic of the V-ATPase proton pump macro-complex structure. The V1 complex is composed of

More information

Supporting Information

Supporting Information Supporting Information Fig. S1. Overexpression of Rpr causes progenitor cell death. (A) TUNEL assay of control intestines. No progenitor cell death could be observed, except that some ECs are undergoing

More information

Supplementary Figures

Supplementary Figures J. Cell Sci. 128: doi:10.1242/jcs.173807: Supplementary Material Supplementary Figures Fig. S1 Fig. S1. Description and/or validation of reagents used. All panels show Drosophila tissues oriented with

More information

Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment

Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment Supplementary Information Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment Robin A. Kimmel, Stefan Dobler, Nicole Schmitner, Tanja Walsen, Julia

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2988 Supplementary Figure 1 Kif7 L130P encodes a stable protein that does not localize to cilia tips. (a) Immunoblot with KIF7 antibody in cell lysates of wild-type, Kif7 L130P and Kif7

More information

Santulli G. et al. A microrna-based strategy to suppress restenosis while preserving endothelial function

Santulli G. et al. A microrna-based strategy to suppress restenosis while preserving endothelial function ONLINE DATA SUPPLEMENTS Santulli G. et al. A microrna-based strategy to suppress restenosis while preserving endothelial function Supplementary Figures Figure S1 Effect of Ad-p27-126TS on the expression

More information

Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and

Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and exclude YAP from the nucleus. (a) Schematic diagram of an E10.5 mouse embryo. (b,c) Sections at B and C in (a)

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Brooks and Wallingford, http://www.jcb.org/cgi/content/full/jcb.201204072/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. Quantification of ciliary compartments in control

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Ras V12 expression in the entire eye-antennal disc does not cause invasive tumours. a, Eye-antennal discs expressing Ras V12 in all cells (marked with GFP, green) overgrow moderately

More information

Supplemental Information. Ciliary Beating Compartmentalizes. Cerebrospinal Fluid Flow in the Brain. and Regulates Ventricular Development

Supplemental Information. Ciliary Beating Compartmentalizes. Cerebrospinal Fluid Flow in the Brain. and Regulates Ventricular Development Current Biology, Volume Supplemental Information Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development Emilie W. Olstad, Christa Ringers, Jan N.

More information

SUPPLEMENTARY FIGURE LEGENDS

SUPPLEMENTARY FIGURE LEGENDS SUPPLEMENTARY FIGURE LEGENDS Supplemental FIG. 1. Localization of myosin Vb in cultured neurons varies with maturation stage. A and B, localization of myosin Vb in cultured hippocampal neurons. A, in DIV

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2419 Figure S1 NiGFP localization in Dl mutant dividing SOPs. a-c) time-lapse analysis of NiGFP (green) in Dl mutant SOPs (H2B-RFP, red; clones were identified by the loss of nlsgfp) showing

More information

Ahtiainen et al., http :// /cgi /content /full /jcb /DC1

Ahtiainen et al., http ://  /cgi /content /full /jcb /DC1 Supplemental material JCB Ahtiainen et al., http ://www.jcb.org /cgi /content /full /jcb.201512074 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. Distinct distribution of different cell cycle phases in the

More information

marker. DAPI labels nuclei. Flies were 20 days old. Scale bar is 5 µm. Ctrl is

marker. DAPI labels nuclei. Flies were 20 days old. Scale bar is 5 µm. Ctrl is Supplementary Figure 1. (a) Nos is detected in glial cells in both control and GFAP R79H transgenic flies (arrows), but not in deletion mutant Nos Δ15 animals. Repo is a glial cell marker. DAPI labels

More information

Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were

Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were electroporated with β- Catenin S33Y in PiggyBac expression

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Global TeNT expression effectively impairs synaptic transmission. Injection of 100 pg tent mrna leads to a reduction of vesicle mediated synaptic transmission in the spinal cord

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Luminal localization of CCM-3. (a) The CCM-3::GFP fusion protein localizes along the apical (luminal) surface of the pharynx (b) as well as the lumen of

More information

Supplementary Materials for

Supplementary Materials for www.sciencetranslationalmedicine.org/cgi/content/full/4/117/117ra8/dc1 Supplementary Materials for Notch4 Normalization Reduces Blood Vessel Size in Arteriovenous Malformations Patrick A. Murphy, Tyson

More information

McWilliams et al., http :// /cgi /content /full /jcb /DC1

McWilliams et al., http ://  /cgi /content /full /jcb /DC1 Supplemental material JCB McWilliams et al., http ://www.jcb.org /cgi /content /full /jcb.201603039 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. In vitro characterization of mito-qc. (A and B) Analysis

More information

Supplementary information

Supplementary information Supplementary information 1 Supplementary Figure 1. CALM regulates autophagy. (a). Quantification of LC3 levels in the experiment described in Figure 1A. Data are mean +/- SD (n > 3 experiments for each

More information

Supplemental Figure 1. Quantification of proliferation in thyroid of WT, Ctns -/- and grafted

Supplemental Figure 1. Quantification of proliferation in thyroid of WT, Ctns -/- and grafted Supplemental Figure 1. Quantification of proliferation in thyroid of WT, Ctns -/- and grafted Ctns -/- mice. Cells immunolabeled for the proliferation marker (Ki-67) were counted in sections (n=3 WT, n=4

More information

Karen L.P. McNally, Amy S. Fabritius, Marina L. Ellefson, Jonathan R. Flynn, Jennifer A. Milan, and Francis J. McNally

Karen L.P. McNally, Amy S. Fabritius, Marina L. Ellefson, Jonathan R. Flynn, Jennifer A. Milan, and Francis J. McNally Developmental Cell, Volume 22 Supplemental Information Kinesin-1 Prevents Capture of the Oocyte Meiotic Spindle by the Sperm Aster Karen L.P. McNally, Amy S. Fabritius, Marina L. Ellefson, Jonathan R.

More information

Development Supplementary information

Development Supplementary information Supplemental Materials and Methods Mosaic clonal analysis GSC and SP clones were induced with the FLP/FRT-mediated mitotic recombination technique (Xu and Rubin, 1993) in files with following genotypes:

More information

F-actin VWF Vinculin. F-actin. Vinculin VWF

F-actin VWF Vinculin. F-actin. Vinculin VWF a F-actin VWF Vinculin b F-actin VWF Vinculin Supplementary Fig. 1. WPBs in HUVECs are located along stress fibers and at focal adhesions. (a) Immunofluorescence images of f-actin (cyan), VWF (yellow),

More information

Dynamic Partitioning of a GPI-Anchored Protein in Glycosphingolipid-Rich Microdomains Imaged by Single-Quantum Dot Tracking

Dynamic Partitioning of a GPI-Anchored Protein in Glycosphingolipid-Rich Microdomains Imaged by Single-Quantum Dot Tracking Additional data for Dynamic Partitioning of a GPI-Anchored Protein in Glycosphingolipid-Rich Microdomains Imaged by Single-Quantum Dot Tracking Fabien Pinaud 1,3, Xavier Michalet 1,3, Gopal Iyer 1, Emmanuel

More information

Fig. S1. Subcellular localization of overexpressed LPP3wt-GFP in COS-7 and HeLa cells. Cos7 (top) and HeLa (bottom) cells expressing for 24 h human

Fig. S1. Subcellular localization of overexpressed LPP3wt-GFP in COS-7 and HeLa cells. Cos7 (top) and HeLa (bottom) cells expressing for 24 h human Fig. S1. Subcellular localization of overexpressed LPP3wt-GFP in COS-7 and HeLa cells. Cos7 (top) and HeLa (bottom) cells expressing for 24 h human LPP3wt-GFP, fixed and stained for GM130 (A) or Golgi97

More information

Supplementary Figure 1. Properties of various IZUMO1 monoclonal antibodies and behavior of SPACA6. (a) (b) (c) (d) (e) (f) (g) .

Supplementary Figure 1. Properties of various IZUMO1 monoclonal antibodies and behavior of SPACA6. (a) (b) (c) (d) (e) (f) (g) . Supplementary Figure 1. Properties of various IZUMO1 monoclonal antibodies and behavior of SPACA6. (a) The inhibitory effects of new antibodies (Mab17 and Mab18). They were investigated in in vitro fertilization

More information

a 0,8 Figure S1 8 h 12 h y = 0,036x + 0,2115 y = 0,0366x + 0,206 Labeling index Labeling index ctrl shrna Time (h) Time (h) ctrl shrna S G2 M G1

a 0,8 Figure S1 8 h 12 h y = 0,036x + 0,2115 y = 0,0366x + 0,206 Labeling index Labeling index ctrl shrna Time (h) Time (h) ctrl shrna S G2 M G1 (GFP+ BrdU+)/GFP+ Labeling index Labeling index Figure S a, b, y =,x +, y =,x +,,,,,,,, Time (h) - - Time (h) c d S G M G h M G S G M G S G h Time of BrdU injection after electroporation (h) M G S G M

More information

Supplementary Figure 1 Expression of Crb3 in mouse sciatic nerve: biochemical analysis (a) Schematic of Crb3 isoforms, ERLI and CLPI, indicating the

Supplementary Figure 1 Expression of Crb3 in mouse sciatic nerve: biochemical analysis (a) Schematic of Crb3 isoforms, ERLI and CLPI, indicating the Supplementary Figure 1 Expression of Crb3 in mouse sciatic nerve: biochemical analysis (a) Schematic of Crb3 isoforms, ERLI and CLPI, indicating the location of the transmembrane (TM), FRM binding (FB)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb3443 In the format provided by the authors and unedited. Supplementary Figure 1 TC and SC behaviour during ISV sprouting. (a) Predicted outcome of TC division and competitive Dll4-Notch-mediated

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION b 350 300 250 200 150 100 50 0 E0 E10 E50 E0 E10 E50 E0 E10 E50 E0 E10 E50 Number of organoids per well 350 300 250 200 150 100 50 0 R0 R50 R100 R500 1st 2nd 3rd Noggin 100 ng/ml Noggin 10 ng/ml Noggin

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1171320/dc1 Supporting Online Material for A Frazzled/DCC-Dependent Transcriptional Switch Regulates Midline Axon Guidance Long Yang, David S. Garbe, Greg J. Bashaw*

More information

Supplementary Information

Supplementary Information Nature Immunology doi:1.138/ni.2477 Supplementary Information Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and instruct them with pattern recognition and motility

More information

CD3 coated cover slips indicating stimulatory contact site, F-actin polymerization and

CD3 coated cover slips indicating stimulatory contact site, F-actin polymerization and SUPPLEMENTAL FIGURES FIGURE S1. Detection of MCs. A, Schematic representation of T cells stimulated on anti- CD3 coated cover slips indicating stimulatory contact site, F-actin polymerization and microclusters.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION sirna pool: Control Tetherin -HA-GFP HA-Tetherin -Tubulin Supplementary Figure S1. Knockdown of HA-tagged tetherin expression by tetherin specific sirnas. HeLa cells were cotransfected with plasmids expressing

More information

The Nuclear Lamina Regulates Germline Stem Cell Niche Organization via Modulation of EGFR Signaling

The Nuclear Lamina Regulates Germline Stem Cell Niche Organization via Modulation of EGFR Signaling Article The Nuclear Lamina Regulates Germline Stem Cell Niche Organization via Modulation of EGFR Signaling Haiyang Chen, 1 Xin Chen, 2 and Yixian Zheng 1,2, * 1 Department of Embryology, Carnegie Institution

More information

SUPPLEMENTARY LEGENDS...

SUPPLEMENTARY LEGENDS... TABLE OF CONTENTS SUPPLEMENTARY LEGENDS... 2 11 MOVIE S1... 2 FIGURE S1 LEGEND... 3 FIGURE S2 LEGEND... 4 FIGURE S3 LEGEND... 5 FIGURE S4 LEGEND... 6 FIGURE S5 LEGEND... 7 FIGURE S6 LEGEND... 8 FIGURE

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2566 Figure S1 CDKL5 protein expression pattern and localization in mouse brain. (a) Multiple-tissue western blot from a postnatal day (P) 21 mouse probed with an antibody against CDKL5.

More information

Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells

Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells (b). TRIM33 was immunoprecipitated, and the amount of

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. nrg1 bns101/bns101 embryos develop a functional heart and survive to adulthood (a-b) Cartoon of Talen-induced nrg1 mutation with a 14-base-pair deletion in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12652 Supplementary Figure 1. PRDM16 interacts with endogenous EHMT1 in brown adipocytes. Immunoprecipitation of PRDM16 complex by flag antibody (M2) followed by Western blot analysis

More information

IP: anti-gfp VPS29-GFP. IP: anti-vps26. IP: anti-gfp - + +

IP: anti-gfp VPS29-GFP. IP: anti-vps26. IP: anti-gfp - + + FAM21 Strump. WASH1 IP: anti- 1 2 3 4 5 6 FAM21 Strump. FKBP IP: anti-gfp VPS29- GFP GFP-FAM21 tail H H/P P H H/P P c FAM21 FKBP Strump. VPS29-GFP IP: anti-gfp 1 2 3 FKBP VPS VPS VPS VPS29 1 = VPS29-GFP

More information

Supplementary Figure S1

Supplementary Figure S1 Supplementary Figure S1 Supplementary Figure S1. PARP localization patterns using GFP-PARP and PARP-specific antibody libraries GFP-PARP localization in non-fixed (A) and formaldehyde fixed (B) GFP-PARPx

More information

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547 Supplementary Figure 1 Characterization of the Microfetti mouse model. (a) Gating strategy for 8-color flow analysis of peripheral Ly-6C + monocytes from Microfetti mice 5-7 days after TAM treatment. Living

More information

supplementary information

supplementary information DOI: 10.1038/ncb2133 Figure S1 Actomyosin organisation in human squamous cell carcinoma. (a) Three examples of actomyosin organisation around the edges of squamous cell carcinoma biopsies are shown. Myosin

More information

Supplemental information contains 7 movies and 4 supplemental Figures

Supplemental information contains 7 movies and 4 supplemental Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Supplemental information contains 7 movies and 4 supplemental Figures Movies: Movie 1. Single virus tracking of A4-mCherry-WR MV

More information

Supplementary Figure 1. Baf60c and baf180 are induced during cardiac regeneration in zebrafish. RNA in situ hybridization was performed on paraffin

Supplementary Figure 1. Baf60c and baf180 are induced during cardiac regeneration in zebrafish. RNA in situ hybridization was performed on paraffin Supplementary Figure 1. Baf60c and baf180 are induced during cardiac regeneration in zebrafish. RNA in situ hybridization was performed on paraffin sections from sham-operated adult hearts (a and i) and

More information

04_polarity. The formation of synaptic vesicles

04_polarity. The formation of synaptic vesicles Brefeldin prevents assembly of the coats required for budding Nocodazole disrupts microtubules Constitutive: coatomer-coated Selected: clathrin-coated The formation of synaptic vesicles Nerve cells (and

More information

Supplementary Figure 1. PD-L1 is glycosylated in cancer cells. (a) Western blot analysis of PD-L1 in breast cancer cells. (b) Western blot analysis

Supplementary Figure 1. PD-L1 is glycosylated in cancer cells. (a) Western blot analysis of PD-L1 in breast cancer cells. (b) Western blot analysis Supplementary Figure 1. PD-L1 is glycosylated in cancer cells. (a) Western blot analysis of PD-L1 in breast cancer cells. (b) Western blot analysis of PD-L1 in ovarian cancer cells. (c) Western blot analysis

More information

Tanimoto et al., http ://www.jcb.org /cgi /content /full /jcb /DC1

Tanimoto et al., http ://www.jcb.org /cgi /content /full /jcb /DC1 Supplemental material JCB Tanimoto et al., http ://www.jcb.org /cgi /content /full /jcb.201510064 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. Method for aster 3D tracking, extended characterization of

More information

Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A.

Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A. Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A. Upper part, three-primer PCR strategy at the Mcm3 locus yielding

More information

(a) Significant biological processes (upper panel) and disease biomarkers (lower panel)

(a) Significant biological processes (upper panel) and disease biomarkers (lower panel) Supplementary Figure 1. Functional enrichment analyses of secretomic proteins. (a) Significant biological processes (upper panel) and disease biomarkers (lower panel) 2 involved by hrab37-mediated secretory

More information

Fig. S1. Upregulation of K18 and K14 mrna levels during ectoderm specification of hescs. Quantitative real-time PCR analysis of mrna levels of OCT4

Fig. S1. Upregulation of K18 and K14 mrna levels during ectoderm specification of hescs. Quantitative real-time PCR analysis of mrna levels of OCT4 Fig. S1. Upregulation of K18 and K14 mrna levels during ectoderm specification of hescs. Quantitative real-time PCR analysis of mrna levels of OCT4 (n=3 independent differentiation experiments for each

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Expression of escargot (esg) and genetic approach for achieving IPC-specific knockdown. (a) esg MH766 -Gal4 UAS-cd8GFP (green) and esg-lacz B7-2-22 (red) show similar expression

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2638 Figure S1 Morphological characteristics of fetal testes and ovaries from 6.5-20 developmental weeks. Representative images of Hematoxylin and Eosin staining of testes and ovaries over

More information

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections.

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections. Supplementary Figure 1 Characterization of viral injections. (a) Dorsal view of a mouse brain (dashed white outline) after receiving a large, unilateral thalamic injection (~100 nl); demonstrating that

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2294 Figure S1 Localization and function of cell wall polysaccharides in root hair cells. (a) Spinning-disk confocal sections of seven day-old A. thaliana seedlings stained with 0.1% S4B

More information

Endogenous TNFα orchestrates the trafficking of neutrophils into and within lymphatic vessels during acute inflammation

Endogenous TNFα orchestrates the trafficking of neutrophils into and within lymphatic vessels during acute inflammation SUPPLEMENTARY INFORMATION Endogenous TNFα orchestrates the trafficking of neutrophils into and within lymphatic vessels during acute inflammation Samantha Arokiasamy 1,2, Christian Zakian 1, Jessica Dilliway

More information

Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis

Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis Research article 1365 Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis Eihachiro Kawase 1, Marco D. Wong 1, Bee C. Ding 1

More information

Supplemental Information. Memory-Relevant Mushroom Body. Output Synapses Are Cholinergic

Supplemental Information. Memory-Relevant Mushroom Body. Output Synapses Are Cholinergic Neuron, Volume 89 Supplemental Information Memory-Relevant Mushroom Body Output Synapses Are Cholinergic Oliver Barnstedt, David Owald, Johannes Felsenberg, Ruth Brain, John-Paul Moszynski, Clifford B.

More information

Supplementary Figure 1. Spatial distribution of LRP5 and β-catenin in intact cardiomyocytes. (a) and (b) Immunofluorescence staining of endogenous

Supplementary Figure 1. Spatial distribution of LRP5 and β-catenin in intact cardiomyocytes. (a) and (b) Immunofluorescence staining of endogenous Supplementary Figure 1. Spatial distribution of LRP5 and β-catenin in intact cardiomyocytes. (a) and (b) Immunofluorescence staining of endogenous LRP5 in intact adult mouse ventricular myocytes (AMVMs)

More information

A Precise Bicoid Gradient is Nonessential During Cycles for Precise Patterning in the Drosophila Blastoderm

A Precise Bicoid Gradient is Nonessential During Cycles for Precise Patterning in the Drosophila Blastoderm Supporting Information for A Precise Bicoid Gradient is Nonessential During Cycles 11-13 for Precise Patterning in the Drosophila Blastoderm Elena M. Lucchetta, Meghan E. Vincent and Rustem F. Ismagilov*

More information

Supplementary Information

Supplementary Information Supplementary Information Title Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis Authors Shin H. Kang, Ying Li, Masahiro Fukaya, Ileana Lorenzini,

More information

Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse

Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse Supplemental figure legends Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse hippocampus targets GFAP-positive but not NeuN-positive cells. (A) Stereotaxic

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Kif1a RNAi effect on basal progenitor differentiation Related to Figure 2. Representative confocal images of the VZ and SVZ of rat cortices transfected at E16 with scrambled or Kif1a

More information

JCB. Supplemental material. Gu et al.,

JCB. Supplemental material. Gu et al., Supplemental material Gu et al., http://www.jcb.org/cgi/content/full/jcb.201010075/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. S1P directly induces actin assembly. Actin assembly at the

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1. (A) Left, western blot analysis of ISGylated proteins in Jurkat T cells treated with 1000U ml -1 IFN for 16h (IFN) or left untreated (CONT); right, western

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. MADM labeling of thalamic clones.

Nature Neuroscience: doi: /nn Supplementary Figure 1. MADM labeling of thalamic clones. Supplementary Figure 1 MADM labeling of thalamic clones. (a) Confocal images of an E12 Nestin-CreERT2;Ai9-tdTomato brain treated with TM at E10 and stained for BLBP (green), a radial glial progenitor-specific

More information

Project report October 2012 March 2013 CRF fellow: Principal Investigator: Project title:

Project report October 2012 March 2013 CRF fellow: Principal Investigator: Project title: Project report October 2012 March 2013 CRF fellow: Gennaro Napolitano Principal Investigator: Sergio Daniel Catz Project title: Small molecule regulators of vesicular trafficking to enhance lysosomal exocytosis

More information

Supplementary Figure 1. The CagA-dependent wound healing or transwell migration of gastric cancer cell. AGS cells transfected with vector control or

Supplementary Figure 1. The CagA-dependent wound healing or transwell migration of gastric cancer cell. AGS cells transfected with vector control or Supplementary Figure 1. The CagA-dependent wound healing or transwell migration of gastric cancer cell. AGS cells transfected with vector control or 3xflag-CagA expression vector were wounded using a pipette

More information

Nature Immunology: doi: /ni eee Supplementary Figure 1

Nature Immunology: doi: /ni eee Supplementary Figure 1 eee Supplementary Figure 1 Hyphae induce NET release, but yeast do not. (a) NET release by human peripheral neutrophils stimulated with a hgc1 yeast-locked C. albicans mutant (yeast) or pre-formed WT C.

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo. Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/ncb222 / b. WB anti- WB anti- ulin Mitotic index (%) 14 1 6 2 T (h) 32 48-1 1 2 3 4 6-1 4 16 22 28 3 33 e. 6 4 2 Time (min) 1-6- 11-1 > 1 % cells Figure S1 depletion leads to mitotic defects

More information

Supplemental Information. Myocardial Polyploidization Creates a Barrier. to Heart Regeneration in Zebrafish

Supplemental Information. Myocardial Polyploidization Creates a Barrier. to Heart Regeneration in Zebrafish Developmental Cell, Volume 44 Supplemental Information Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish Juan Manuel González-Rosa, Michka Sharpe, Dorothy Field, Mark H.

More information

Supplementary Figure 1: Validation of labeling specificity of immature OSNs and presynaptic terminals. (A) (B) (C) (D) (E)

Supplementary Figure 1: Validation of labeling specificity of immature OSNs and presynaptic terminals. (A) (B) (C) (D) (E) Supplementary Figure 1: Validation of labeling specificity of immature OSNs and presynaptic terminals. (A) Confocal images of septal olfactory epithelium of an adult Gγ8-sypGFP-tdTom mouse showing colocalization

More information

Supplemental Information. Otic Mesenchyme Cells Regulate. Spiral Ganglion Axon Fasciculation. through a Pou3f4/EphA4 Signaling Pathway

Supplemental Information. Otic Mesenchyme Cells Regulate. Spiral Ganglion Axon Fasciculation. through a Pou3f4/EphA4 Signaling Pathway Neuron, Volume 73 Supplemental Information Otic Mesenchyme Cells Regulate Spiral Ganglion Axon Fasciculation through a Pou3f4/EphA4 Signaling Pathway Thomas M. Coate, Steven Raft, Xiumei Zhao, Aimee K.

More information

Head of College Scholars List Scheme. Summer Studentship Report Form

Head of College Scholars List Scheme. Summer Studentship Report Form Head of College Scholars List Scheme Summer Studentship 2019 Report Form This report should be completed by the student with his/her project supervisor. It should summarise the work undertaken during the

More information

Supplementary Information

Supplementary Information Supplementary Information Figure S1: Follicular melanocytes in the wound peripheral area migrate to the epidermis in response to wounding stimuli. Dorsal skin of Trp2-LacZ mice stained with X-gal and analyzed

More information

Nature Biotechnology: doi: /nbt.3828

Nature Biotechnology: doi: /nbt.3828 Supplementary Figure 1 Development of a FRET-based MCS. (a) Linker and MA2 modification are indicated by single letter amino acid code. indicates deletion of amino acids and N or C indicate the terminus

More information

glial cells missing and gcm2 Cell-autonomously Regulate Both Glial and Neuronal

glial cells missing and gcm2 Cell-autonomously Regulate Both Glial and Neuronal glial cells missing and gcm2 Cell-autonomously Regulate Both Glial and Neuronal Development in the Visual System of Drosophila Carole Chotard, Wendy Leung and Iris Salecker Supplemental Data Supplemental

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Drd1a-Cre driven ChR2 expression in the SCN. (a) Low-magnification image of a representative Drd1a-ChR2 coronal brain section (n = 2) showing endogenous tdtomato fluorescence (magenta).

More information

Figure S1. (A) Schematic diagram of dnrar transgene allele. (B) X-Gal staining of testis from

Figure S1. (A) Schematic diagram of dnrar transgene allele. (B) X-Gal staining of testis from Figure S1. (A) Schematic diagram of dnrar transgene allele. (B) X-Gal staining of testis from germ cell mutants (dnrar flox/flox, Stra8-Cre +, RARElacZ) (A ), controls (dnrar flox/flox, RARElacZ) (B ),

More information

Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane

Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane potential recorded from POMC neurons following treatment with

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06994 A phosphatase cascade by which rewarding stimuli control nucleosomal response A. Stipanovich*, E. Valjent*, M. Matamales*, A. Nishi, J.H. Ahn, M. Maroteaux, J. Bertran-Gonzalez,

More information

Capu and Spire Assemble a Cytoplasmic Actin Mesh

Capu and Spire Assemble a Cytoplasmic Actin Mesh Developmental Cell 13 Supplemental Data Capu and Spire Assemble a Cytoplasmic Actin Mesh that Maintains Microtubule Organization in the Drosophila Oocyte Katja Dahlgaard, Alexandre A.S.F. Raposo, Teresa

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Chen et al., http://www.jcb.org/cgi/content/full/jcb.201210119/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. Lack of fast reversibility of UVR8 dissociation. (A) HEK293T

More information

Supplementary Figure 1 hlrrk2 promotes CAP dependent protein translation.

Supplementary Figure 1 hlrrk2 promotes CAP dependent protein translation. ` Supplementary Figure 1 hlrrk2 promotes CAP dependent protein translation. (a) Overexpression of hlrrk2 in HeLa cells enhances total protein synthesis in [35S] methionine/cysteine incorporation assays.

More information

293T cells were transfected with indicated expression vectors and the whole-cell extracts were subjected

293T cells were transfected with indicated expression vectors and the whole-cell extracts were subjected SUPPLEMENTARY INFORMATION Supplementary Figure 1. Formation of a complex between Slo1 and CRL4A CRBN E3 ligase. (a) HEK 293T cells were transfected with indicated expression vectors and the whole-cell

More information

100 mm Sucrose. +Berberine +Quinine

100 mm Sucrose. +Berberine +Quinine 8 mm Sucrose Probability (%) 7 6 5 4 3 Wild-type Gr32a / 2 +Caffeine +Berberine +Quinine +Denatonium Supplementary Figure 1: Detection of sucrose and bitter compounds is not affected in Gr32a / flies.

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Lu et al., http://www.jcb.org/cgi/content/full/jcb.201012063/dc1 Figure S1. Kinetics of nuclear envelope assembly, recruitment of Nup133

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary s Supplementary 1 All three types of foods suppress subsequent feeding in both sexes when the same food is used in the pre-feeding test feeding. (a) Adjusted pre-feeding

More information

tom tom 24hpf tom tom 48hpf tom 60hpf tom tom 72hpf tom

tom tom 24hpf tom tom 48hpf tom 60hpf tom tom 72hpf tom a 24hpf c 48hpf d e 60hpf f g 72hpf h i j k ISV ISV Figure 1. Vascular integrity defects and endothelial regression in mutant emryos. (a,c,e,g,i) Bright-field and (,d,f,h,j) corresponding fluorescent micrographs

More information

Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a

Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a expression in GFP-expressing HEp3 cells. (b) Representative

More information

Nature Immunology: doi: /ni.3631

Nature Immunology: doi: /ni.3631 Supplementary Figure 1 SPT analyses of Zap70 at the T cell plasma membrane. (a) Total internal reflection fluorescent (TIRF) excitation at 64-68 degrees limits single molecule detection to 100-150 nm above

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/6/283/ra57/dc1 Supplementary Materials for JNK3 Couples the Neuronal Stress Response to Inhibition of Secretory Trafficking Guang Yang,* Xun Zhou, Jingyan Zhu,

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites. Supplementary Figure 1 Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites. Staining with fluorescence antibodies to detect GFP (Green), β-galactosidase (magenta/white). (a, b) Class

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2607 Figure S1 Elf5 loss promotes EMT in mammary epithelium while Elf5 overexpression inhibits TGFβ induced EMT. (a, c) Different confocal slices through the Z stack image. (b, d) 3D rendering

More information