Supplementary Figure 1

Size: px
Start display at page:

Download "Supplementary Figure 1"

Transcription

1 Supplementary Figure 1 Asymmetrical function of 5p and 3p arms of mir-181 and mir-30 families and mir-142 and mir-154. (a) Control experiments using mirna sensor vector and empty pri-mirna overexpression vector in HEK

2 293T cells. (b) Luciferase reporter assays showing activities of 5p and 3p arms of mouse mir-181, -30 families and mir- 142, Samples are from HEK 293T cells transfected with mirna sensor vector and pri-mirna expression vector of indicated mirnas (48 hr after transfection). An inhibitory effect of each arm is summarized in Fig. 1b. (c) Luciferase reporter assays in HepG2 and HCT116 cells showing activities of 5p and 3p arms of mouse mir- 181, -30 families and mir-142, (d) Luciferase reporter assays in HEK 293T cells showing activities of 5p and 3p arms of human mir-30 family. (e) Effects of mutation in a catalytic residue of Ago2 on 5p/3p arm ratios. mirna reads of 5p and 3p arms in wild-type and Ago2 D597A mutant fetal livers (Cheloufi, S. et al., Nature. 465, 584-9, 2010) are plotted. This analysis suggests that 5p arm bias is not associated with the slicer activity of Ago2. (f) Luciferase reporter assays showing examples of 3p arm-dominant mirnas. Samples are from HEK 293T cells transfected with mirna sensor vector and pri-mirna expression vector of indicated mirnas (48 hr after transfection). Error bars, s.d. (n = 3 technical replicates).

3 Supplementary Figure 2 Validation of asymmetry codes by a lattice of pri-mirnas. (a) Control experiments using mirna sensor vector and empty pri-mirna overexpression vector in HEK 293T cells. (b) Luciferase reporter assays showing activities of 5p and 3p arms of a lattice of pri-mirnas. Samples are from HEK 293T cells transfected with mirna sensor vector and pri-mirna expression vector of indicated mirnas (48 hr after transfection). A relative inhibitory effect of each arm is summarized in Fig. 1f. Error bars, s.d. (n = 3 technical replicates).

4 Supplementary Figure 3 The PAZ domain is dispensable for asymmetric selection. (a) Overall structure of Ago2 with single mature mirna strand (4F3T) (Elkayam, E. et al., Cell. 150, , 2012). (b) A stochastic mode of initial recognition of RNA duplexes by either MID or PAZ domain.

5 (c) Sequences and thermodynamic stability profiles of symmetrical RNA duplexes used in Fig. 3 and Fig. 4. The terminal sequences of these duplexes were designed to show similar thermodynamic stability profiles. 5 -nt identity and thermodynamic stability profiles of these symmetrical 2nt overhang RNA duplexes covered four nucleotides and 0-2 nt mismatches (MM 0-2). Three end nucleotides and mutated nucleotides are highlighted in red and blue, respectively. (d) Preparation of GST-PAZ and GST-MID protein fragments. (e) Competitor experiments. Radiolabelled RNA duplexes, GST-PAZ and unlabeled competitors were incubated, UV photo-crosslinked and analyzed by PAGE and autoradiography. Quantification result is shown in the bottom. (f) Immunoblot analysis showing expression of Ago2 mutants (F294A, L339A, and R277A-R280A-K335A) in HEK 293T cells.

6 Supplementary Figure 4 Asymmetric selection is not affected by mutation in the RTTPQT motif. (a) Asymmetry sensing by MID domain. UV photo-crosslinking experiments showing binding properties of MID domain for symmetrical RNA duplexes. Radiolabelled RNA duplexes, GST-MID and unlabeled competitors were incubated, UV photo-crosslinked and analyzed by PAGE and autoradiography. Quantification

7 result is shown in right. (b) Prediction of RNA-binding motif in Ago2 MID domain by BindN program (Wang, L. et al., Nucleic Acids Res. 34, W243-8, 2006). The predicted RNA-binding residues are labeled with +. (c) Structural comparison of human Ago2 with mir-20a (4F3T) and T. thermophilus Ago with guide DNA and target RNA duplex (3F73) (Elkayam, E. et al., Cell. 150, , 2012; Wang, Y. et al., Nature. 456, 921-6, 2008). Nucleotide selection loop and 554-RTTPQT-559 motif are highlighted in blue and orange, respectively. (d) UV photo-crosslinking experiments showing binding properties of RTTPQT motif mutant for symmetrical RNA duplexes. (e) Immunoblot analysis showing expression of Ago2 RTTPQT mutant in HEK 293T cells. (f) RIP-qRT-PCR analysis showing effects of mutation in RTTPQT motif of Ago2 on asymmetry sensing for type 1 mir-154 (both arm type). Samples are from HEK 293T cells transfected with Ago2 mutant expression vector and pri-mirna expression vector. Error bars, s.d. (n = 3 technical replicates).

8 Supplementary Figure 5 Recognition of TS and 5 -nt rules by conserved amino acid residues in the MID domain. (a) Proposed mechanisms for detection of thermodynamic stability of RNA duplex ends by phosphate-binding pocket (tract).

9 (b) Sequences of MID and PIWI domains including G-drive (phosphate-binding pocket (tract), pink) and N- drive (nucleotide selection loop, blue) in Ago1-4. N, P, and S indicate nucleobase, phosphate, and ribose, respectively. (c) Immunoblot analysis showing expression of G-drive and N-drive mutants of Ago2 in HEK 293T cells. (d) RIP-qRT-PCR analysis showing effects of mutations in PAZ domain and MID domain on asymmetry sensing for type 1 mir-216a (5p arm type). Samples are from HEK 293T cells transfected with Ago2 mutant expression vector and pri-mirna expression vector. 5p arm of type 1 mir-216a is predominantly selected by both TS rule and 5 -nt rule. Two G-drive mutants (K566A and R792A C793A) and two N-drive mutants (524- GKT-526 to GKGT and 523-PGKTP-527 to AAAAA) reduced 5p/3p ratios. Error bars, s.d. (n = 3 technical replicates). (e) Preparation of GST-MID mutants.

10

11 Supplementary Figure 6 Role of 5 -nt identity in RISC stabilization. (a) Design of sirna duplexes used in Fig. 5a. Sequences are shown in Supplementary Table 4. (b) A lattice of pri-mirnas used for RIP-qRT-PCR analysis of Ago2 mutants in Fig. 5b. (c) Predicted pattern of altered mirna asymmetry caused by mutations in G-drive and N-drive. (d) Luciferase reporter assays showing role of 5 -nt identity in initial RNA loading and RISC dissociation. Samples are from HEK 293T cells were transfected with mirna sensor vector and pri-mirna expression vector (mouse pri-mir-216a (5p arm type) with 5p arms with different 5 -nts). To evaluate the role of 5 -nt identity in RISC stabilization and/or dissociation, 24 hr after transfection, cells were treated with Actinomycin D (1 mg/ml) and subjected to luciferase reporter assay. (e) RIP-qRT-PCR analysis showing role of 5 -nt identity in RISC stabilization. Samples were from HEK 293T cells transfected with pcdna3-flag-ago2 and pri-mirna expression vector (pri-mir-216a (5p arm type) with 5p arms with different 5 -nts) and treated with/without Actinomycin D (1 mg/ml, 24 hr). (f) Prediction of inhibitory activities of both arms of diverse mirnas (46 pri-mirnas, 92 strands) shown in Fig. 6b by equation (iii). FR indicates fold repression. Exponential curves were fitted. Error bars, s.d. (n = 3 technical replicates).

12

13 Supplementary Figure 7 Effects of MID-domain mutation on asymmetry pattern. (a) Immunoblot analysis showing showing expression of Flag-tagged WT or mutant Ago2 in mouse Agoknockout ES cells. (b) Comparison of qrt-pcr analysis and small RNA sequencing for small RNAs interacting with Flag-tagged WT Ago2 or Ago2 mutants in mouse Ago-knockout ES cells shown in (a). The results for mir-140 (both arm type), in which TS and 5 -nt rules favor 5p and 3p arms, respectively, are shown. (c) Small RNA sequencing analysis showing asymmetry patterns of small RNAs interacting with Flag-tagged WT Ago2 or Ago2 mutants (G-drive mutants (Q548A and R792A C793A) and N-drive mutants (524-GKT-526 to GKGT and 523-PGKTP-527 to AAAAA)) in mouse Ago-knockout ES cells. MiRNAs were classified into 8 groups according to 5 -nt identity, as in Fig. 6a. y axis indicates log2 strand ratio. (d) Univariate linear regression analysis using G for mirna asymmetry patterns. Correlation coefficients between strand ratio and G were summarized. Mutation of K566 in the phosphate-binding pocket strongly attenuated global dependence on TS rule, in consistent with the most remarkable effect of this mutation on TS rule (Fig. 4 and Fig. 5). As for other phosphate-binding pocket mutants, R792A C793A mutant showed a weak but similar trend to reduce dependence on TS rule, and Q548A mutant showed a complex pattern, but reduced dependence on TS rule in several groups.

14

15 Supplementary Figure 8 Effects of cancer-associated variations on asymmetric activities of mir-142 and mir-146a. (a) Details of mir-142 asymmetry. According to genome-wide high-throughput mirna profiling (Chiang, H.R. et al., Genes Dev. 24, , 2010; Griffiths-Jones, S. et al., Nucleic Acids Res. 36, D154-8, 2008; Park, J.E. et al., Nature. 475, 201-5, 2011), processing of pre-mir-142 shows considerable heterogeneity. Application of our model to each mirna duplex can explain potent activities of both arms of mir-142 precursors. In this figure, we adopted conventional 22nt length processing to infer identities of each mirna duplex from the results of deep sequencing. (b) Proposed roles of variations in mir-142 and mir-146a duplexes on the asymmetric biogenesis. (c) Effects of mir-142 mutation on expression levels of mir-142 and mir-142 targets in TCGA AML data. In AML database, two 3p variants and two 5p variants dominate mir-142 pool, suggesting that the processing of mir-142 shows a complex pattern of mirna duplexes in this cell type. *P < 0.05 by two-tailed Mann-Whitney test. (d and e) Impacts of genotypes (GG, CG, and CC) of mir-146a SNP (rs ) on patient survival in liver hepatocellular carcinoma (d) and skin cutaneous melanoma (e) in the TCGA database. The P values were calculated with two-tailed log-rank test. (f and g) Effects of mir-146a genotypes (GG, CG, and CC) on mir-146a 5p/3p ratios in liver hepatocellular carcinoma (f) and skin cutaneous melanoma (g) in the TCGA database. Boxes represent the median and interquartile range (IQR). Error bars, 1.5X IQR. **P < 0.01; ***P < by two-tailed Mann-Whitney test. (h) GSEA showing upregulation of mir-146a-5p targets in the HCC patients with mir-146a CC genotype. In melanoma, the significant alteration of mir-146a-5p targets by mir-146a genotype was not observed.

16 Supplementary Table 1. Sequences of mir-181 and mir-30 families and mir-142 and mir-154. For mir-142, 5p and 3p arms in mirbase are shown. See details of mir-142 asymmetry in Supplementary Fig. 8a. mirna mir-181a-1 mir-181a-2 mir-181c mir-181b-1 mir-181d mir-30a mir-30d mir-30e mir-30c-1 mir-30c-2 mir-30b mir-384 mir-142 mir-154 Sequence 5p arm Loop 3p arm UUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGG--AAUUCAAAUA----AAAACCAUCGACCGUUGAUUGUACCCUAUAGC -----CCAUGGAACAUUCAACGCUGUCGGUGAGUUUGG--GAUUCAAAAACAAAAAAACCACCGACCGUUGACUGUACCUUGG--- GGGUUUGGGGGAACAUUCAAC-CUGUCGGUGAGUUUGGGCAGCUCAGACA------AACCAUCGACCGUUGAGUGGACCCCGAGGC AGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUG-AACUGUGUAGAAA-----AGCUCACUGAACAAUGAAUGCAA-CUGUGGC -----ACAAUUAACAUUCAUUGUUGUCGGUGGGUUGUGAGGAGGCAGCCA-----GACCCACCGGGGGAUGAAUGUCA-CUGU--- 5p arm Loop 3p arm --GCG--AC-UGUAAACA--UCCUCGACUGGAAGCUGUGAAGCCAC--AAAUGGGC--UUUCAGUCGGAUGUUUGCAGCUGC---- CUGUG--UC-UGUAAACA--UCCCCGACUGGAAGCUGU-AAGCCAC--AGCCAAGC--UUUCAGUCAGAUGUUUGCUGCUACUGGC CUUUGCUAC-UGUAAACA--UCCUUGACUGGAAGCUGU-AAGGUGUUGAGAGGAGC--UUUCAGUCGGAUGUUUACAGCGGCAGGC UGUAG-UGUGUGUAAACA--UCCUACACUCUCAGCUGU-GAGCU-C--AAGGUGGC--UGGGAGAGGGUUGUUUACUCCUUCUGCC GACAGAUAU-UGUAAACA--UCCUACACUCUCAGCUGU-GAAAAGU--AAGAAAGC--UGGGAGAAGGCUGUUUACUCUCUCUGCC UUCAG-UUCAUGUAAACA--UCCUACACU--CAGCUGU-CAUACAU--GCGUUGGC--UGGGAUGUGGAUGUUUACGUCAGCUGUC CAGGA--AU-UGUAAACAAUUCCUAGGC---AAUGUGU-AUAAUGUU--GGUAAGUCAUUCCUAGAAAUUGUUCACAAUGCCUGUA 5p arm Loop 3p arm ACCCAUAAAGUAGAAAGCACUACUAACAGCACUGGAGGGUGUAGUGUUUCCUACUUUAUGGAUG GAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUCGUGACGAAUCAUACACGGUUGACCUAUUUUU

17 Supplementary Table 2. Sequences of mouse wild-type and mutant mirna precursors used in Fig. 1e and Fig. 1f. 5p/3p arms and mutated nucleotides are highlighted in yellow and blue, respectively. mirna mir-154 (Type1) mir-154 (Type2, WT) mir-154 (Type3) mir-154 (Type4) mir-193b (Type1) mir-193b (Type2) mir-193b (Type3) mir-193b (Type4, WT) mir-292 (Type1) mir-292 (Type2, WT) mir-292 (Type3) mir-292 (Type4) mir-384 (Type1) mir-384 (Type2, WT) mir-384 (Type3) mir-384 (Type4) mir-181c (Type1) mir-181c (Type2, WT) mir-181c (Type3) mir-181c (Type4) mir-383 (Type1, WT) mir-383 (Type2) mir-383 (Type3) mir-383 (Type4) mir-216a (Type1, WT) mir-216a (Type2) mir-216a (Type3) mir-216a (Type4) mir-191 (Type1) mir-191 (Type2) mir-191 (Type3, WT) mir-191 (Type4) Sequence 5p arm Loop 3p arm GAAGAUAGGUUAUCCGUGUUGCCUgCGCUUUAUUCGUGACGcAUCAUACACGGUUGACCUAUUUUU GAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUCGUGACGAAUCAUACACGGUUGACCUAUUUUU GAAGAcAGGUUAUCCGUGUUGCCUgCGCUUUAUUCGUGACGcAUCAUACACGGUUGACCUgUUUUU GAAGAcAGGUUAUCCGUGUUGCCUUCGCUUUAUUCGUGACGAAUCAUACACGGUUGACCUgUUUUU AGAAUuGGGGUUUUGAGGGCGAGAgGAGUUUGUGUUUUAUCCcACUGGCCCACAAAGUCCCaCUUUUGGGGUCA AGAAUuGGGGUUUUGAGGGCGAGATGAGUUUGUGUUUUAUCCAACUGGCCCACAAAGUCCCaCUUUUGGGGUCA AGAAUCGGGGUUUUGAGGGCGAGAgGAGUUUGUGUUUUAUCCcACUGGCCCACAAAGUCCCGCUUUUGGGGUCA AGAAUCGGGGUUUUGAGGGCGAGAUGAGUUUGUGUUUUAUCCAACUGGCCCACAAAGUCCCGCUUUUGGGGUCA GUGAUACUCAAACUGGGGGCUCUUgUGGAUUUUCAUCGGAAGAcAAGUGCCGCCAGGUUUUGAGUGUCACCGGUUG GUGAUACUCAAACUGGGGGCUCUUUUGGAUUUUCAUCGGAAGAAAAGUGCCGCCAGGUUUUGAGUGUCACCGGUUG GUGAUgCUCAAACUGGGGGCUCUUgUGGAUUUUCAUCGGAAGAcAAGUGCCGCCAGGUUUUGAGcGUCACCGGUUG GUGAUgCUCAAACUGGGGGCUCUUUUGGAUUUUCAUCGGAAGAAAAGUGCCGCCAGGUUUUGAGcGUCACCGGUUG GAAUUGUAAACAAUUCCUAGGCAAgGUGUAUAAUGUUGGUAAGUCcUUCCUAGAAAUUGUUCACAAUGCCUGUAACA GAAUUGUAAACAAUUCCUAGGCAAUGUGUAUAAUGUUGGUAAGUCAUUCCUAGAAAUUGUUCACAAUGCCUGUAACA GAAUcGUAAACAAUUCCUAGGCAAgGUGUAUAAUGUUGGUAAGUCcUUCCUAGAAAUUGUUCACgAUGCCUGUAACA GAAUcGUAAACAAUUCCUAGGCAAUGUGUAUAAUGUUGGUAAGUCAUUCCUAGAAAUUGUUCACgAUGCCUGUAACA GGGGAACAUUCAACCUGUCGGUGAGgUUGGGCAGCUCAGACAAcCCAUCGACCGUUGAGUGGACCCCGAGGCC GGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGACAAACCAUCGACCGUUGAGUGGACCCCGAGGCC GGGGgACAUUCAACCUGUCGGUGAGgUUGGGCAGCUCAGACAAcCCAUCGACCGUUGAGUGGACCCCGAGGCC GGGGgACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGACAAACCAUCGACCGUUGAGUGGACCCCGAGGCC CUCAGAUCAGAAGGUGACUGUGGCUUUGGGUGGAUAUUAAUCAGCCACAGCACUGCCUGGUCAGAAAGAG CUCAGAUCAGAAGGUGACUGUGuCUUUGGGUGGAUAUUAAUCAGaCACAGCACUGCCUGGUCAGAAAGAG CUCgGAUCAGAAGGUGACUGUGGCUUUGGGUGGAUAUUAAUCAGCCACAGCACUGCCUGGUCAGAAAGAG CUCgGAUCAGAAGGUGACUGUGuCUUUGGGUGGAUAUUAAUCAGaCACAGCACUGCCUGGUCAGAAAGAG UUGGUUUAAUCUCAGCUGGCAACUGUGAGAUGUCCCUAUCAUUCCUCACAGUGGUCUCUGGGAUUAUGCUAA UUGGUUUAAUCUCAGCUGGCAACUGUaAGAUGUCCCUAUCAUUCCUuACAGUGGUCUCUGGGAUUAUGCUAA UUGGUUcAAUCUCAGCUGGCAACUGUGAGAUGUCCCUAUCAUUCCUCACAGUGGUCUCUGGGAUUgUGCUAA UUGGUUcAAUCUCAGCUGGCAACUGUaAGAUGUCCCUAUCAUUCCUuACAGUGGUCUCUGGGAUUgUGCUAA AGCGGGaAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCACUUGGAUUUCGUUCCCUGCU AGCGGGaAACGGAAUCCCAAAAGCAGaUGUUGUCUCCAGAGCAUUCCAuCUGCACUUGGAUUUCGUUCCCUGCU AGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCACUUGGAUUUCGUUCCCUGCU AGCGGGCAACGGAAUCCCAAAAGCAGaUGUUGUCUCCAGAGCAUUCCAuCUGCACUUGGAUUUCGUUCCCUGCU

18 Supplementary Table 3. Sequences of wild-type and mutant mirna precursors used in Fig. 1g. 5p/3p arms, 9-12nt region, and unpaired nucleotides are highlighted in yellow, red, and blue, respectively. Mutated nucleotides are indicated by lowercase. mirna mir-181c (WT) mir-181c (CM) mir-181c (9-10nt MM) mir-181c (11-12nt MM) mir-384 (WT) mir-384 (CM) mir-384 (9-10nt MM) mir-384 (11-12nt MM) mir-146a (WT, CM) mir-146a (9-10nt MM) mir-146a (11-12nt MM) Sequence 5p arm Loop 3p arm GGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGACAAACCAUCGACCGUUGAGUGGACCCCGAG GGGAACAUUCAAC_gGUCGGUG_GUUUGGGCAGCUCAGACAAACCAUCGACCGUUGAGUGGACCCCGAG GGGAACAUUCAug_gGUCGGUG_GUUUGGGCAGCUCAGACAAACCAUCGACCGUUGAGUGGACCCCGAG GGGAACAUUCAAC_ccUCGGUG_GUUUGGGCAGCUCAGACAAACCAUCGACCGUUGAGUGGACCCCGAG 5p arm Loop 3p arm AAUUGUAAACAAUUCCUAGGCAAUGUGUAUAAUGUUGGUAAGUCAUUCCUAGAAAUUGUUCACAAUGCCU AAUUGUgAACAAUUuCUAGG_AAUGUGUAUAAUGUUGGUAAGUCAUUCCUAGAAAUUGUUCACAAUGCCU AAUUGUgAACAccUuCUAGG_AAUGUGUAUAAUGUUGGUAAGUCAUUCCUAGAAAUUGUUCACAAUGCCU AAUUGUgAACAAUaaCUAGG_AAUGUGUAUAAUGUUGGUAAGUCAUUCCUAGAAAUUGUUCACAAUGCCU 5p arm Loop 3p arm AGCUCUGAGAACUGAAUUCCAUGGGUUAUAUCAAUGUCAGACCUGUGAAAUUCAGUUCUUCAGCU AGCUCUGAGAACUcuAUUCCAUGGGUUAUAUCAAUGUCAGACCUGUGAAAUUCAGUUCUUCAGCU AGCUCUGAGAACUGAccUCCAUGGGUUAUAUCAAUGUCAGACCUGUGAAAUUCAGUUCUUCAGCU

19 Supplementary Table 4. Sequences of sirna duplexes used in Fig. 5a. Sequences and thermodynamic stability profiles of asymmetrical 21-nt RNA duplexes used in Fig. 5. Control sirna duplex was described in a previous report (Noland, C.L. et al., RNA. 5, , 2013). Mutated nucleotides are highlighted in red. ΔΔG(A-B) Set Control A-i A-ii A-iii A-iv B-i B-ii B-iii B-iv asymmetrical 21-nt RNA duplex (top: strand A, bottom: strand B) ΔΔG(1nt) ΔΔG(2nt) ΔΔG(3nt) ΔΔG(4nt) UCGAAGUAUUCCGCGUACGUU UUAGCUUCAUAAGGCGCAUGC UCGAAGUAUUCCGCGUAGCUU UUAGCUUCAUAAGGCGCAUGC UCGAAGUAUUCCGCGUACCUU UUAGCUUCAUAAGGCGCAUGC UCGAAGUAUUCCGCGUACGUU UUCGCUUCAUAAGGCGCAUGC UCGAAGUAUUCCGCGUACGUU UUCCCUUCAUAAGGCGCAUGC UCGAAGUAUUCCGCUUUUGUU UUAGCUUCAUAAGGCGAAAAC UCGAAGUAUUCCGCGUAUGUU UUAGCUUCAUAAGGCGCAUAC UUGAAGUAUUCCGCGUACGUU UUAACUUCAUAAGGCGCAUGC UUUAAGUAUUCCGCGUACGUU UUAAAUUCAUAAGGCGCAUGC

20 Supplementary Table 5. Primers used in this study Primers for the construction of pri-mirna expression vectors. Primer sequence (The lowercase nucleotides indicate BamHI and XhoI sites) mirna Forward (5 to 3 ) Reverse (5 to 3 ) mouse pri-mir-181a-1 CGggatccCTTTGACACAGCACAAAGTGGA CCGctcgagGGCCACAGTTGCATTCATTGTT mouse pri-mir-181a-2 CGggatccCAGATATCCACTTTTAGTCAGCA CCGctcgagGCATTTGGTACTATGATGGCACT mouse pri-mir-181b-1 CGggatccACATCTCTGCCTCACAGGTTGCT CCGctcgagCCATTTGTAACCCCCAGGAGTAT mouse pri-mir-181c CGggatccGAGACAGGCACATTATCATCTCT CCGctcgagAAGGGTTCTATCCTCTTTCCCA mouse pri-mir-181d CGggatccTCCCAACTCCAGTTATCCAAGAA CCGctcgagCTGAGCAAACATCATCCCCCCA mouse pri-mir-30a CGggatccTTATGGCCAACAGTAATGGGTGA CCGctcgagGAAGCACTGTCTTATTTGTTT mouse pri-mir-30b CGggatccAGAGAGCATGAAAGAGAGAACGA CCGctcgagAACCTGAAGCTAGGCTTAAGGCT mouse pri-mir-30c-1 CGggatccGGTCTCAGTACCTTGAGAAG CCGctcgagTCACAACACACTGAGAGCTC mouse pri-mir-30c-2 CGggatccTCCTGGCATGTGCAAAACAG CCGctcgagTCTCAGTCTCCTGAGTAGTG mouse pri-mir-30d CGggatccGTGTCCATGTGGAGTAACATAGA CCGctcgagGATAAACTTGTACTGACACGGCA mouse pri-mir-30e CGggatccGTAGTATACTGTTTAGAGTCA CCGctcgagCATCACAGATCTTACCACCTT mouse pri-mir-384 CGggatccTGAAAGGAATTTTCCTTGGCA CCGctcgagCCTGCATCACCAAAGTACTAT mouse pri-mir-142 CGggatccCTCATCTGGCGCCATGTTGAGT CCGctcgagATTCGAGAGAGCGGCTGTGGTGT mouse pri-mir-154 CGggatccTTAGACACTGTATCCTTGGCAGT CCGctcgagGTGGATGACTACAGAATACTCCA human pri-mir-30a CGggatccTAGAAACTAGAAGCTCGGTG CCGctcgagCACATTTCCTCATTTCTCTTACG human pri-mir-30b CGggatccGAAAAATTAGCCGGGCATAG CCGctcgagACTACTCCTACTGCAACCATG human pri-mir-30c-1 CGggatccGTCATGGAAGTGCACTTTAG CCGctcgagCTATCAGGGAGAGAGGAAACAG human pri-mir-30c-2 CGggatccATGCCTGGGTATTAGGGCCAAAC CCGctcgagGAATCTTACATGGTAACCCAACC human pri-mir-30d CGggatccGGAGAAATTGCACTTGGTGAAC CCGctcgagACGGCATATCCTGTTATTAGG human pri-mir-30e CGggatccTATCCTTAGAAGCAGTCATTC CCGctcgagGAGTTAGCACAATGAGAGTGAGC mouse pri-mir-222 CGggatccATCATATGCCCCAGTACAGG CCGctcgagTCAAACTCTGGATGACTTCC mouse pri-mir-223 CGggatccATCCCCGTTTTTGTTTGGAG CCGctcgagGCAGTCCATGGCATTTTCAC mouse pri-mir-124 CGggatccATGCGGTGGTCCTTAGCTCA CCGctcgagCTTGCATAGATCCGTGTTTC mouse pri-mir-27a CGggatccTAGGTGCTACACTCCGCTCCCA CCGctcgagTTTCCAGGTCTTGCTCACGGCA mouse pri-mir-143 CGggatccAAACAGGGGAGCCACAGGTT CCGctcgagGTTGAGAAGGGTTCCGAGGGT mouse pri-mir-193b CGggatccTTAGACACAGTATCTCCCTCCA CCGctcgagGTTTGTTCCGAGAATTTGGCA mouse pri-mir-292a CGggatccTCTCTTGAGCCTGAATGAGA CCGctcgagCGGCTCCTTTATGAACGCGGA mouse pri-mir-383 CGggatccAAGCTTTTATGCACTGCCCA CCGctcgagGTTATTTTCCCTTTACAGCCTA mouse pri-mir-216a CGggatccGTGTCTATTCACACTTGATAGTGT CCGctcgagTCACAGAGAAAGGACTTTGTGT mouse pri-mir-191 CGggatccCTTGGGACTCACAGGGCTAA CCGctcgagAGCTACTCTCCCTCCATGAA human pri-mir-146a CGggatccGCTCAAGAGATCCACCCACA CCGctcgagACTTGGAACCCTGCTTAGCA Primers for the construction of mirna sensor vectors. Primer sequence (Sensor-oligo-forward: XhoI-SacI-(miRNA-complementary sequence)-noti) mirna Forward (5 to 3 ) Reverse (5 to 3 )

21 mir-181a-1-5p TCGAGAGTAGAGCTCTAGTACTCACCGACAGCGTTGAATGTTGC GGCCGCAACATTCAACGCTGTCGGTGAGTACTAGAGCTCTACTC mir-181a-1-3p TCGAGAGTAGAGCTCTAGTGGTACAATCAACGGTCGATGGTGC GGCCGCACCATCGACCGTTGATTGTACCACTAGAGCTCTACTC mir-181a-2-5p identical to mir-181a-1-5p identical to mir-181a-1-5p mir-181a-2-3p TCGAGAGTAGAGCTCTAGTCAAGGTACAGTCAACGGTCGGTGC GGCCGCACCGACCGTTGACTGTACCTTGACTAGAGCTCTACTC mir-181b-1-5p TCGAGAGTAGAGCTCTAGTACCCACCGACAGCAATGAATGTTGC GGCCGCAACATTCATTGCTGTCGGTGGGTACTAGAGCTCTACTC mir-181b-1-3p TCGAGAGTAGAGCTCTAGTGCATTCATTGTTCAGTGAGGC GGCCGCCTCACTGAACAATGAATGCACTAGAGCTCTACTC mir-181c-5p TCGAGAGTAGAGCTCTAGTACTCACCGACAGGTTGAATGTTGC GGCCGCAACATTCAACCTGTCGGTGAGTACTAGAGCTCTACTC mir-181c-3p TCGAGAGTAGAGCTCTAGTGGTCCACTCAACGGTCGATGGTGC GGCCGCACCATCGACCGTTGAGTGGACCACTAGAGCTCTACTC mir-181d-5p TCGAGAGTAGAGCTCTAGTACCCACCGACAACAATGAATGTTGC GGCCGCAACATTCATTGTTGTCGGTGGGTACTAGAGCTCTACTC mir-181d-3p TCGAGAGTAGAGCTCTAGTTGACATTCATCCCCCGGTGGGGC GGCCGCCCCACCGGGGGATGAATGTCAACTAGAGCTCTACTC mir-30a-5p TCGAGAGTAGAGCTCTAGTCTTCCAGTCGAGGATGTTTACAGC GGCCGCTGTAAACATCCTCGACTGGAAGACTAGAGCTCTACTC mir-30a-3p TCGAGAGTAGAGCTCTAGTGCTGCAAACATCCGACTGAAAGGC GGCCGCCTTTCAGTCGGATGTTTGCAGCACTAGAGCTCTACTC mir-30b-5p TCGAGAGTAGAGCTCTAGTAGCTGAGTGTAGGATGTTTACAGC GGCCGCTGTAAACATCCTACACTCAGCTACTAGAGCTCTACTC mir-30b-3p (mouse) TCGAGAGTAGAGCTCTAGTGACGTAAACATCCACATCCCAGGC GGCCGCCTGGGATGTGGATGTTTACGTCACTAGAGCTCTACTC mir-30b-3p (human) TCGAGAGTAGAGCTCTAGTGAAGTAAACATCCACCTCCCAGGC GGCCGCCTGGGAGGTGGATGTTTACTTCACTAGAGCTCTACTC mir-30c-1-5p TCGAGAGTAGAGCTCTAGTGCTGAGAGTGTAGGATGTTTACAGC GGCCGCTGTAAACATCCTACACTCTCAGCACTAGAGCTCTACTC mir-30c-1-3p TCGAGAGTAGAGCTCTAGTGGAGTAAACAACCCTCTCCCAGGC GGCCGCCTGGGAGAGGGTTGTTTACTCCACTAGAGCTCTACTC mir-30c-2-5p identical to mir-30c-1-5p identical to mir-30c-1-5p mir-30c-2-3p TCGAGAGTAGAGCTCTAGTAGAGTAAACAACCCTCTCCCAGGC GGCCGCCTGGGAGAGGGTTGTTTACTCTACTAGAGCTCTACTC mir-30d-5p TCGAGAGTAGAGCTCTAGTCTTCCAGTCGGGGATGTTTACAGC GGCCGCTGTAAACATCCCCGACTGGAAGACTAGAGCTCTACTC mir-30d-3p TCGAGAGTAGAGCTCTAGTGCAGCAAACATCTGACTGAAAGGC GGCCGCCTTTCAGTCAGATGTTTGCTGCACTAGAGCTCTACTC mir-30e-5p TCGAGAGTAGAGCTCTAGTCTTCCAGTCAAGGATGTTTACAGC GGCCGCTGTAAACATCCTTGACTGGAAGACTAGAGCTCTACTC mir-30e-3p TCGAGAGTAGAGCTCTAGTGCTGTAAACATCCGACTGAAAGGC GGCCGCCTTTCAGTCGGATGTTTACAGCACTAGAGCTCTACTC mir-384-5p TCGAGAGTAGAGCTCTAGTACATTGCCTAGGAATTGTTTACAGC GGCCGCTGTAAACAATTCCTAGGCAATGTACTAGAGCTCTACTC mir-384-3p TCGAGAGTAGAGCTCTAGTATTGTGAACAATTTCTAGGAATGC GGCCGCATTCCTAGAAATTGTTCACAATACTAGAGCTCTACTC mir-142-5p TCGAGAGTAGAGCTCTAGTAGTAGTGCTTTCTACTTTATGGC GGCCGCCATAAAGTAGAAAGCACTACTACTAGAGCTCTACTC mir-142-3p TCGAGAGTAGAGCTCTAGTTCCATAAAGTAGGAAACACTACAGC GGCCGCTGTAGTGTTTCCTACTTTATGGAACTAGAGCTCTACTC mir-154-5p TCGAGAGTAGAGCTCTAGTCGAAGGCAACACGGATAACCTAGC GGCCGCTAGGTTATCCGTGTTGCCTTCGACTAGAGCTCTACTC mir-154-3p TCGAGAGTAGAGCTCTAGTAATAGGTCAACCGTGTATGATTGC GGCCGCAATCATACACGGTTGACCTATTACTAGAGCTCTACTC mir-222-5p TCGAGAGTAGAGCTCTAGTAGGATCTACACTGGCTACTGAGC GGCCGCTCAGTAGCCAGTGTAGATCCTACTAGAGCTCTACTC mir-222-3p TCGAGAGTAGAGCTCTAGTACCCAGTAGCCAGATGTAGCTGC GGCCGCAGCTACATCTGGCTACTGGGTACTAGAGCTCTACTC mir-223-5p TCGAGAGTAGAGCTCTAGTCAACTCAGCTTGTCAAATACACGGC GGCCGCCGTGTATTTGACAAGCTGAGTTGACTAGAGCTCTACTC mir-223-3p TCGAGAGTAGAGCTCTAGTTGGGGTATTTGACAAACTGACAGC GGCCGCTGTCAGTTTGTCAAATACCCCAACTAGAGCTCTACTC mir-124-5p TCGAGAGTAGAGCTCTAGTATCAAGGTCCGCTGTGAACACGGC GGCCGCCGTGTTCACAGCGGACCTTGATACTAGAGCTCTACTC mir-124-3p TCGAGAGTAGAGCTCTAGTGGCATTCACCGCGTGCCTTAGC GGCCGCTAAGGCACGCGGTGAATGCCACTAGAGCTCTACTC mir-27a-5p TCGAGAGTAGAGCTCTAGTTGCTCACAAGCAGCTAAGCCCTGC GGCCGCAGGGCTTAGCTGCTTGTGAGCAACTAGAGCTCTACTC mir-27a-3p TCGAGAGTAGAGCTCTAGTGCGGAACTTAGCCACTGTGAAGC GGCCGCTTCACAGTGGCTAAGTTCCGCACTAGAGCTCTACTC mir-143-5p TCGAGAGTAGAGCTCTAGTCCAGAGATGCAGCACTGCACCGC GGCCGCGGTGCAGTGCTGCATCTCTGGACTAGAGCTCTACTC mir-143-3p TCGAGAGTAGAGCTCTAGTGAGCTACAGTGCTTCATCTCAGC GGCCGCTGAGATGAAGCACTGTAGCTCACTAGAGCTCTACTC Type1 mir-154-5p TCGAGAGTAGAGCTCTAGTCGCAGGCAACACGGATAACCTAGC GGCCGCTAGGTTATCCGTGTTGCCTGCGACTAGAGCTCTACTC Type1 mir-154-3p TCGAGAGTAGAGCTCTAGTAATAGGTCAACCGTGTATGATGGC GGCCGCCATCATACACGGTTGACCTATTACTAGAGCTCTACTC

22 Type3 mir-154-5p TCGAGAGTAGAGCTCTAGTCGCAGGCAACACGGATAACCTGGC GGCCGCCAGGTTATCCGTGTTGCCTGCGACTAGAGCTCTACTC Type3 mir-154-3p TCGAGAGTAGAGCTCTAGTAACAGGTCAACCGTGTATGATGGC GGCCGCCATCATACACGGTTGACCTGTTACTAGAGCTCTACTC Type4 mir-154-5p TCGAGAGTAGAGCTCTAGTCGAAGGCAACACGGATAACCTGGC GGCCGCCAGGTTATCCGTGTTGCCTTCGACTAGAGCTCTACTC Type4 mir-154-3p TCGAGAGTAGAGCTCTAGTAACAGGTCAACCGTGTATGATTGC GGCCGCAATCATACACGGTTGACCTGTTACTAGAGCTCTACTC Type1 mir-193b-5p TCGAGAGTAGAGCTCTAGTTCCTCTCGCCCTCAAAACCCCAGC GGCCGCTGGGGTTTTGAGGGCGAGAGGAACTAGAGCTCTACTC Type1 mir-193b-3p TCGAGAGTAGAGCTCTAGTAGTGGGACTTTGTGGGCCAGTGGC GGCCGCCACTGGCCCACAAAGTCCCACTACTAGAGCTCTACTC Type2 mir-193b-5p TCGAGAGTAGAGCTCTAGTTCATCTCGCCCTCAAAACCCCAGC GGCCGCTGGGGTTTTGAGGGCGAGATGAACTAGAGCTCTACTC Type2 mir-193b-3p TCGAGAGTAGAGCTCTAGTAGTGGGACTTTGTGGGCCAGTTGC GGCCGCAACTGGCCCACAAAGTCCCACTACTAGAGCTCTACTC Type3 mir-193b-5p TCGAGAGTAGAGCTCTAGTTCCTCTCGCCCTCAAAACCCCGGC GGCCGCCGGGGTTTTGAGGGCGAGAGGAACTAGAGCTCTACTC Type3 mir-193b-3p TCGAGAGTAGAGCTCTAGTAGCGGGACTTTGTGGGCCAGTGGC GGCCGCCACTGGCCCACAAAGTCCCGCTACTAGAGCTCTACTC Type4 mir-193b-5p (WT) TCGAGAGTAGAGCTCTAGTTCATCTCGCCCTCAAAACCCCGGC GGCCGCCGGGGTTTTGAGGGCGAGATGAACTAGAGCTCTACTC Type4 mir-193b-3p (WT) TCGAGAGTAGAGCTCTAGTAGCGGGACTTTGTGGGCCAGTTGC GGCCGCAACTGGCCCACAAAGTCCCGCTACTAGAGCTCTACTC Type1 mir-292a-5p TCGAGAGTAGAGCTCTAGTCACAAGAGCCCCCAGTTTGAGTGC GGCCGCACTCAAACTGGGGGCTCTTTTGACTAGAGCTCTACTC Type1 mir-292a-3p TCGAGAGTAGAGCTCTAGTACACTCAAAACCTGGCGGCACTTGGC GGCCGCAAAGTGCCGCCAGGTTTTGAGTGTACTAGAGCTCTACTC Type2 mir-292a-5p (WT) TCGAGAGTAGAGCTCTAGTCAAAAGAGCCCCCAGTTTGAGTGC GGCCGCACTCAAACTGGGGGCTCTTGTGACTAGAGCTCTACTC Type2 mir-292a-3p (WT) TCGAGAGTAGAGCTCTAGTACACTCAAAACCTGGCGGCACTTTGC GGCCGCCAAGTGCCGCCAGGTTTTGAGTGTACTAGAGCTCTACTC Type3 mir-292a-5p TCGAGAGTAGAGCTCTAGTCACAAGAGCCCCCAGTTTGAGCGC GGCCGCGCTCAAACTGGGGGCTCTTGTGACTAGAGCTCTACTC Type3 mir-292a-3p TCGAGAGTAGAGCTCTAGTACGCTCAAAACCTGGCGGCACTTGGC GGCCGCCAAGTGCCGCCAGGTTTTGAGCGTACTAGAGCTCTACTC Type4 mir-292a-5p TCGAGAGTAGAGCTCTAGTCAAAAGAGCCCCCAGTTTGAGCGC GGCCGCGCTCAAACTGGGGGCTCTTTTGACTAGAGCTCTACTC Type4 mir-292a-3p TCGAGAGTAGAGCTCTAGTACGCTCAAAACCTGGCGGCACTTTGC GGCCGCAAAGTGCCGCCAGGTTTTGAGCGTACTAGAGCTCTACTC Type1 mir-384-5p TCGAGAGTAGAGCTCTAGTACCTTGCCTAGGAATTGTTTACAGC GGCCGCTGTAAACAATTCCTAGGCAAGGTACTAGAGCTCTACTC Type1 mir-384-3p TCGAGAGTAGAGCTCTAGTATTGTGAACAATTTCTAGGAAGGC GGCCGCCTTCCTAGAAATTGTTCACAATACTAGAGCTCTACTC Type3 mir-384-5p TCGAGAGTAGAGCTCTAGTACCTTGCCTAGGAATTGTTTACGGC GGCCGCCGTAAACAATTCCTAGGCAAGGTACTAGAGCTCTACTC Type3 mir-384-3p TCGAGAGTAGAGCTCTAGTATCGTGAACAATTTCTAGGAAGGC GGCCGCCTTCCTAGAAATTGTTCACGATACTAGAGCTCTACTC Type4 mir-384-5p TCGAGAGTAGAGCTCTAGTACATTGCCTAGGAATTGTTTACGGC GGCCGCCGTAAACAATTCCTAGGCAATGTACTAGAGCTCTACTC Type4 mir-384-3p TCGAGAGTAGAGCTCTAGTATCGTGAACAATTTCTAGGAATGC GGCCGCATTCCTAGAAATTGTTCACGATACTAGAGCTCTACTC Type1 mir-181c-5p TCGAGAGTAGAGCTCTAGTAACCTCACCGACAGGTTGAATGTTGC GGCCGCAACATTCAACCTGTCGGTGAGGTTACTAGAGCTCTACTC Type1 mir-181c-3p TCGAGAGTAGAGCTCTAGTGGTCCACTCAACGGTCGATGGGGC GGCCGCCCCATCGACCGTTGAGTGGACCACTAGAGCTCTACTC Type3 mir-181c-5p TCGAGAGTAGAGCTCTAGTAACCTCACCGACAGGTTGAATGTCGC GGCCGCAACATTCAACCTGTCGGTGAGGTTACTAGAGCTCTACTC Type3 mir-181c-3p identical to Type1 mir-181c-3p identical to Type1 mir-181c-3p Type4 mir-181c-5p TCGAGAGTAGAGCTCTAGTAAACTCACCGACAGGTTGAATGTCGC GGCCGCGACATTCAACCTGTCGGTGAGTTTACTAGAGCTCTACTC Type4 mir-181c-3p identical to Type2 mir-181c-3p identical to Type2 mir-181c-3p Type1 mir-383-5p (WT) TCGAGAGTAGAGCTCTAGTAGCCACAGTCACCTTCTGATCTGC GGCCGCAGATCAGAAGGTGACTGTGGCTACTAGAGCTCTACTC Type1 mir-383-3p (WT) TCGAGAGTAGAGCTCTAGTTCTGACCAGGCAGTGCTGTGGGC GGCCGCCCACAGCACTGCCTGGTCAGAACTAGAGCTCTACTC Type2 mir-383-5p TCGAGAGTAGAGCTCTAGTAGACACAGTCACCTTCTGATCTGC GGCCGCAGATCAGAAGGTGACTGTGTCTACTAGAGCTCTACTC Type2 mir-383-3p TCGAGAGTAGAGCTCTAGTTCTGACCAGGCAGTGCTGTGTGC GGCCGCACACAGCACTGCCTGGTCAGAACTAGAGCTCTACTC Type3 mir-383-5p TCGAGAGTAGAGCTCTAGTAGCCACAGTCACCTTCTGATCCGC GGCCGCGGATCAGAAGGTGACTGTGGCTACTAGAGCTCTACTC Type3 mir-383-3p identical to Type1 mir-383-3p identical to Type1 mir-383-3p Type4 mir-383-5p TCGAGAGTAGAGCTCTAGTAGACACAGTCACCTTCTGATCCGC GGCCGCGGATCAGAAGGTGACTGTGTCTACTAGAGCTCTACTC Type4 mir-383-3p identical to Type2 mir-383-3p identical to Type2 mir-383-3p Type1 mir-216a-5p (WT) TCGAGAGTAGAGCTCTAGTCTCACAGTTGCCAGCTGAGATTAGC GGCCGCTAATCTCAGCTGGCAACTGTGAGACTAGAGCTCTACTC

23 Type1 mir-216a-3p (WT) TCGAGAGTAGAGCTCTAGTCATAATCCCAGAGACCACTGTGGC GGCCGCCACAGTGGTCTCTGGGATTATGACTAGAGCTCTACTC Type2 mir-216a-5p TCGAGAGTAGAGCTCTAGTCTTACAGTTGCCAGCTGAGATTAGC GGCCGCTAATCTCAGCTGGCAACTGTAAGACTAGAGCTCTACTC Type2 mir-216a-3p TCGAGAGTAGAGCTCTAGTCATAATCCCAGAGACCACTGTAGC GGCCGCTACAGTGGTCTCTGGGATTATGACTAGAGCTCTACTC Type3 mir-216a-5p TCGAGAGTAGAGCTCTAGTCTCACAGTTGCCAGCTGAGATTGGC GGCCGCCAATCTCAGCTGGCAACTGTGAGACTAGAGCTCTACTC Type3 mir-216a-3p TCGAGAGTAGAGCTCTAGTCACAATCCCAGAGACCACTGTGGC GGCCGCCACAGTGGTCTCTGGGATTGTGACTAGAGCTCTACTC Type4 mir-216a-5p TCGAGAGTAGAGCTCTAGTCTTACAGTTGCCAGCTGAGATTGGC GGCCGCCAATCTCAGCTGGCAACTGTAAGACTAGAGCTCTACTC Type4 mir-216a-3p TCGAGAGTAGAGCTCTAGTCACAATCCCAGAGACCACTGTAGC GGCCGCTACAGTGGTCTCTGGGATTGTGACTAGAGCTCTACTC Type1 mir-191-5p TCGAGAGTAGAGCTCTAGTCAGCTGCTTTTGGGATTCCGTTTGC GGCCGCAAACGGAATCCCAAAAGCAGCTGACTAGAGCTCTACTC Type1 mir-191-3p identical to Type3 mir-191-3p identical to Type3 mir-191-3p Type2 mir-191-5p TCGAGAGTAGAGCTCTAGTCATCTGCTTTTGGGATTCCGTTTGC GGCCGCAAACGGAATCCCAAAAGCAGATGACTAGAGCTCTACTC Type2 mir-191-3p TCGAGAGTAGAGCTCTAGTGGGAACGAAATCCAAGTGCAGAGC GGCCGCTCTGCACTTGGATTTCGTTCCCACTAGAGCTCTACTC Type3 mir-191-5p (WT) TCGAGAGTAGAGCTCTAGTCAGCTGCTTTTGGGATTCCGTTGGC GGCCGCCAACGGAATCCCAAAAGCAGCTGACTAGAGCTCTACTC Type3 mir-191-3p (WT) TCGAGAGTAGAGCTCTAGTGGGAACGAAATCCAAGTGCAGCGC GGCCGCGCTGCACTTGGATTTCGTTCCCACTAGAGCTCTACTC Type4 mir-191-5p TCGAGAGTAGAGCTCTAGTCATCTGCTTTTGGGATTCCGTTGGC GGCCGCCAACGGAATCCCAAAAGCAGATGACTAGAGCTCTACTC Type4 mir-191-3p identical to Type2 mir-191-3p identical to Type2 mir-191-3p mir-181c-cm-5p TCGAGAGTAGAGCTCTAGTAAACCACCGACCGTTGAATGTTGC GGCCGCAACATTCAACGGTCGGTGGTTTACTAGAGCTCTACTC mir-181c-9-10nt-mm-5p TCGAGAGTAGAGCTCTAGTAAACCACCGACCCATGAATGTTGC GGCCGCAACATTCATGGGTCGGTGGTTTACTAGAGCTCTACTC mir-181c-11-12nt-mm-5p TCGAGAGTAGAGCTCTAGTAAACCACCGAGGGTTGAATGTTGC GGCCGCAACATTCAACCCTCGGTGGTTTACTAGAGCTCTACTC mir-384-cm-5p TCGAGAGTAGAGCTCTAGTACATTCCTAGAAATTGTTCACAGC GGCCGCTGTGAACAATTTCTAGGAATGTACTAGAGCTCTACTC mir nt-mm-5p TCGAGAGTAGAGCTCTAGTACATTCCTAGAAGGTGTTCACAGC GGCCGCTGTGAACACCTTCTAGGAATGTACTAGAGCTCTACTC mir nt-mm-5p TCGAGAGTAGAGCTCTAGTACATTCCTAGTTATTGTTCACAGC GGCCGCTGTGAACAATAACTAGGAATGTACTAGAGCTCTACTC mir-146a-5p TCGAGAGTAGAGCTCTAGTAACCCATGGAATTCAGTTCTCAGC GGCCGCTGAGAACTGAATTCCATGGGTTACTAGAGCTCTACTC mir-146a-9-10nt-mm-5p TCGAGAGTAGAGCTCTAGTAACCCATGGAATAGAGTTCTCAGC GGCCGCTGAGAACTCTATTCCATGGGTTACTAGAGCTCTACTC mir-146a-11-12nt-mm-5p TCGAGAGTAGAGCTCTAGTAACCCATGGAGGTCAGTTCTCAGC GGCCGCTGAGAACTGACCTCCATGGGTTACTAGAGCTCTACTC mir-216a-5p (5 -nt = U) identical to Type1 mir-216a-5p identical to Type1 mir-216a-5p mir-216a-5p (5 -nt = A) TCGAGAGTAGAGCTCTAGTCTCACAGTTGCCAGCTGAGATTTGC GGCCGCAAATCTCAGCTGGCAACTGTGAGACTAGAGCTCTACTC mir-216a-5p (5 -nt = G) TCGAGAGTAGAGCTCTAGTCTCACAGTTGCCAGCTGAGATTCGC GGCCGCGAATCTCAGCTGGCAACTGTGAGACTAGAGCTCTACTC mir-216a-5p (5 -nt = C) identical to Type3 mir-216a-5p identical to Type3 mir-216a-5p mir-142-3p-mut1 TCGAGAGTAGAGCTCTAGTTCCATAAAGTAGGAAACACCACAGC GGCCGCTGTGGTGTTTCCTACTTTATGGAACTAGAGCTCTACTC mir-142-3p-mut2 TCGAGAGTAGAGCTCTAGTTCCATAAAGTAGGAAACGCTACAGC GGCCGCTGTAGCGTTTCCTACTTTATGGAACTAGAGCTCTACTC mir-142-3p-mut3 TCGAGAGTAGAGCTCTAGTTCCATAAAGTAGGAAAGACTACAGC GGCCGCTGTAGTCTTTCCTACTTTATGGAACTAGAGCTCTACTC mir-146a-3p-g TCGAGAGTAGAGCTCTAGTCTGAAGAACTGAATTTCACAGGGC GGCCGCCCTGTGAAATTCAGTTCTTCAGACTAGAGCTCTACTC mir-146a-3p-c TCGAGAGTAGAGCTCTAGTCTGAAGAACTGAATTTCAGAGGGC GGCCGCCCTCTGAAATTCAGTTCTTCAGACTAGAGCTCTACTC Primers for the construction of vectors for recombinant proteins. Forward (5 to 3 ) Reverse (5 to 3 ) GST-PAZ GgaattcTGGAAAATGATGCTGAATATT ATAAGAATGCGGCCgcTTATGTGTTGAAACTTGCAC GST-MID GgaattcGTCCAGGGCGTCTGGGACAT ATAAGAATGCGGCCgcTTAGTGAGTGACGTCTGCTCC RT-PCR primers. mirna 5 to 3

24 Type1 mir-154-5p Type1 mir-154-3p Type2 mir-154-5p (WT) Type2 mir-154-3p (WT) Type3 mir-154-5p Type3 mir-154-3p Type4 mir-154-5p Type4 mir-154-3p Type1 mir-292a-5p Type1 mir-292a-3p Type2 mir-292a-5p (WT) Type2 mir-292a-3p (WT) Type3 mir-292a-5p Type3 mir-292a-3p Type4 mir-292a-5p Type4 mir-292a-3p Type1 mir-383-5p (WT) Type1 mir-383-3p (WT) Type2 mir-383-5p Type2 mir-383-3p Type3 mir-383-5p Type3 mir-383-3p Type4 mir-383-5p Type4 mir-383-3p Type1 mir-191-5p Type1 mir-191-3p Type2 mir-191-5p Type2 mir-191-3p Type3 mir-191-5p (WT) Type3 mir-191-3p (WT) Type4 mir-191-5p Type4 mir-191-3p Control strand-a (Figure 5) Control strand-b (Figure 5) A-i strand-a (Figure 5) A-ii strand-a (Figure 5) A-iii strand-b (Figure 5) A-iv strand-b (Figure 5) B-i strand-a (Figure 5) B-i strand-b (Figure 5) B-ii strand-a (Figure 5) TAGGTTATCCGTGTTGCCTGCG CATCATACACGGTTGACCTATT TAGGTTATCCGTGTTGCCTTCG AATCATACACGGTTGACCTATT CAGGTTATCCGTGTTGCCTGCG CATCATACACGGTTGACCTGTT CAGGTTATCCGTGTTGCCTTCG AATCATACACGGTTGACCTGTT ACTCAAACTGGGGGCTCTTGTG CAAGTGCCGCCAGGTTTTGAGTGT ACTCAAACTGGGGGCTCTTTTG AAAGTGCCGCCAGGTTTTGAGTGT GCTCAAACTGGGGGCTCTTGTG CAAGTGCCGCCAGGTTTTGAGCGT GCTCAAACTGGGGGCTCTTTTG AAAGTGCCGCCAGGTTTTGAGCGT AGATCAGAAGGTGACTGTGGCT CCACAGCACTGCCTGGTCAGA AGATCAGAAGGTGACTGTGTCT ACACAGCACTGCCTGGTCAGA GGATCAGAAGGTGACTGTGGCT CCACAGCACTGCCTGGTCAGA GGATCAGAAGGTGACTGTGTCT ACACAGCACTGCCTGGTCAGA AAACGGAATCCCAAAAGCAGCTG GCTGCACTTGGATTTCGTTCCC AAACGGAATCCCAAAAGCAGATG TCTGCACTTGGATTTCGTTCCC CAACGGAATCCCAAAAGCAGCTG GCTGCACTTGGATTTCGTTCCC CAACGGAATCCCAAAAGCAGATG TCTGCACTTGGATTTCGTTCCC TCGAAGTATTCCGCGTACGTT CGTACGCGGAATACTTCGATT TCGAAGTATTCCGCGTAGCTT TCGAAGTATTCCGCGTACCTT CGTACGCGGAATACTTCGCTT CGTACGCGGAATACTTCCCTT TCGAAGTATTCCGCTTTTGTT CAAAAGCGGAATACTTCGATT TCGAAGTATTCCGCGTATGTT

25 B-ii strand-b (Figure 5) B-iii strand-a (Figure 5) B-iii strand-b (Figure 5) B-iv strand-a (Figure 5) B-iv strand-b (Figure 5) Type1 mir-216a-5p (WT) Type1 mir-216a-3p (WT) mir-216a-5p (5 -nt = U) mir-216a-5p (5 -nt = A) mir-216a-5p (5 -nt = G) mir-216a-5p (5 -nt = C) mir-142-5p mir-142-3p mir-142-3p-mut1 mir-142-3p-mut2 mir-142-3p-mut3 mir-146a-5p mir-146a-3p-g mir-146a-3p-c CATACGCGGAATACTTCGATT TTGAAGTATTCCGCGTACGTT CGTACGCGGAATACTTCAATT TTTAAGTATTCCGCGTACGTT CGTACGCGGAATACTTAAATT TAATCTCAGCTGGCAACTGTGAG CACAGTGGTCTCTGGGATTATG TAATCTCAGCTGGCAACTGTGAG AAATCTCAGCTGGCAACTGTGAG GAATCTCAGCTGGCAACTGTGAG CAATCTCAGCTGGCAACTGTGAG CATAAAGTAGAAAGCACTACT TGTAGTGTTTCCTACTTTATGGA TGTGGTGTTTCCTACTTTATGGA TGTAGCGTTTCCTACTTTATGGA TGTAGTCTTTCCTACTTTATGGA TGAGAACTGAATTCCATGGGTT CCTCTGAAATTCAGTTCTTCAG CCTGTGAAATTCAGTTCTTCAG

Supplementary information

Supplementary information Supplementary information Human Cytomegalovirus MicroRNA mir-us4-1 Inhibits CD8 + T Cell Response by Targeting ERAP1 Sungchul Kim, Sanghyun Lee, Jinwook Shin, Youngkyun Kim, Irini Evnouchidou, Donghyun

More information

mir-7a regulation of Pax6 in neural stem cells controls the spatial origin of forebrain dopaminergic neurons

mir-7a regulation of Pax6 in neural stem cells controls the spatial origin of forebrain dopaminergic neurons Supplemental Material mir-7a regulation of Pax6 in neural stem cells controls the spatial origin of forebrain dopaminergic neurons Antoine de Chevigny, Nathalie Coré, Philipp Follert, Marion Gaudin, Pascal

More information

Supplemental Figure S1. PLAG1 kidneys contain fewer glomeruli (A) Quantitative PCR for Igf2 and PLAG1 in whole kidneys taken from mice at E15.

Supplemental Figure S1. PLAG1 kidneys contain fewer glomeruli (A) Quantitative PCR for Igf2 and PLAG1 in whole kidneys taken from mice at E15. Supplemental Figure S1. PLAG1 kidneys contain fewer glomeruli (A) Quantitative PCR for Igf2 and PLAG1 in whole kidneys taken from mice at E15.5, E18.5, P4, and P8. Values shown are means from four technical

More information

Predictive PP1Ca binding region in BIG3 : 1,228 1,232aa (-KAVSF-) HEK293T cells *** *** *** KPL-3C cells - E E2 treatment time (h)

Predictive PP1Ca binding region in BIG3 : 1,228 1,232aa (-KAVSF-) HEK293T cells *** *** *** KPL-3C cells - E E2 treatment time (h) Relative expression ERE-luciferase activity activity (pmole/min) activity (pmole/min) activity (pmole/min) activity (pmole/min) MCF-7 KPL-3C ZR--1 BT-474 T47D HCC15 KPL-1 HBC4 activity (pmole/min) a d

More information

Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells

Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells (b). TRIM33 was immunoprecipitated, and the amount of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2607 Figure S1 Elf5 loss promotes EMT in mammary epithelium while Elf5 overexpression inhibits TGFβ induced EMT. (a, c) Different confocal slices through the Z stack image. (b, d) 3D rendering

More information

Soft Agar Assay. For each cell pool, 100,000 cells were resuspended in 0.35% (w/v)

Soft Agar Assay. For each cell pool, 100,000 cells were resuspended in 0.35% (w/v) SUPPLEMENTARY MATERIAL AND METHODS Soft Agar Assay. For each cell pool, 100,000 cells were resuspended in 0.35% (w/v) top agar (LONZA, SeaKem LE Agarose cat.5004) and plated onto 0.5% (w/v) basal agar.

More information

RNA interference induced hepatotoxicity results from loss of the first synthesized isoform of microrna-122 in mice

RNA interference induced hepatotoxicity results from loss of the first synthesized isoform of microrna-122 in mice SUPPLEMENTARY INFORMATION RNA interference induced hepatotoxicity results from loss of the first synthesized isoform of microrna-122 in mice Paul N Valdmanis, Shuo Gu, Kirk Chu, Lan Jin, Feijie Zhang,

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Figure S1. Clinical significance of ZNF322A overexpression in Caucasian lung cancer patients. (A) Representative immunohistochemistry images of ZNF322A protein expression in tissue

More information

MicroRNA and Male Infertility: A Potential for Diagnosis

MicroRNA and Male Infertility: A Potential for Diagnosis Review Article MicroRNA and Male Infertility: A Potential for Diagnosis * Abstract MicroRNAs (mirnas) are small non-coding single stranded RNA molecules that are physiologically produced in eukaryotic

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1. Differential expression of mirnas from the pri-mir-17-92a locus.

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1. Differential expression of mirnas from the pri-mir-17-92a locus. Supplementary Figure 1 Differential expression of mirnas from the pri-mir-17-92a locus. (a) The mir-17-92a expression unit in the third intron of the host mir-17hg transcript. (b,c) Impact of knockdown

More information

Supplementary Information

Supplementary Information Supplementary Information mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis Zhang et al. a b d e g h Rel. Luc. Act. Rel. mrna Rel. mrna

More information

Supplementary Figure 1. Prevalence of U539C and G540A nucleotide and E172K amino acid substitutions among H9N2 viruses. Full-length H9N2 NS

Supplementary Figure 1. Prevalence of U539C and G540A nucleotide and E172K amino acid substitutions among H9N2 viruses. Full-length H9N2 NS Supplementary Figure 1. Prevalence of U539C and G540A nucleotide and E172K amino acid substitutions among H9N2 viruses. Full-length H9N2 NS nucleotide sequences (a, b) or amino acid sequences (c) from

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SYPPLEMENTARY FIGURE LEGENDS SUPPLEMENTARY MATERIAL Figure S1. Phylogenic studies of the mir-183/96/182 cluster and 3 -UTR of Casp2. (A) Genomic arrangement of the mir-183/96/182 cluster in vertebrates.

More information

Table S1. Relative abundance of AGO1/4 proteins in different organs. Table S2. Summary of smrna datasets from various samples.

Table S1. Relative abundance of AGO1/4 proteins in different organs. Table S2. Summary of smrna datasets from various samples. Supplementary files Table S1. Relative abundance of AGO1/4 proteins in different organs. Table S2. Summary of smrna datasets from various samples. Table S3. Specificity of AGO1- and AGO4-preferred 24-nt

More information

Supplementary Material

Supplementary Material Supplementary Material Summary: The supplementary information includes 1 table (Table S1) and 4 figures (Figure S1 to S4). Supplementary Figure Legends Figure S1 RTL-bearing nude mouse model. (A) Tumor

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10866 a b 1 2 3 4 5 6 7 Match No Match 1 2 3 4 5 6 7 Turcan et al. Supplementary Fig.1 Concepts mapping H3K27 targets in EF CBX8 targets in EF H3K27 targets in ES SUZ12 targets in ES

More information

Nature Genetics: doi: /ng.3731

Nature Genetics: doi: /ng.3731 Supplementary Figure 1 Circadian profiles of Adarb1 transcript and ADARB1 protein in mouse tissues. (a) Overlap of rhythmic transcripts identified in the previous transcriptome analyses. The mouse liver

More information

SUPPLEMENTARY INFORMATION. Supp. Fig. 1. Autoimmunity. Tolerance APC APC. T cell. T cell. doi: /nature06253 ICOS ICOS TCR CD28 TCR CD28

SUPPLEMENTARY INFORMATION. Supp. Fig. 1. Autoimmunity. Tolerance APC APC. T cell. T cell. doi: /nature06253 ICOS ICOS TCR CD28 TCR CD28 Supp. Fig. 1 a APC b APC ICOS ICOS TCR CD28 mir P TCR CD28 P T cell Tolerance Roquin WT SG Icos mrna T cell Autoimmunity Roquin M199R SG Icos mrna www.nature.com/nature 1 Supp. Fig. 2 CD4 + CD44 low CD4

More information

SC-L-H shared(37) Specific (1)

SC-L-H shared(37) Specific (1) A. Brain (total 2) Tissue-specific (2) Brain-heart shared (8) Specific (2) CNS-heart shared(68) Specific () Heart (total 4) Tissue-specific () B-L-H shared (37) specific () B. Brain (total 2) Tissue-specific

More information

Supplemental Table S1

Supplemental Table S1 Supplemental Table S. Tumorigenicity and metastatic potential of 44SQ cell subpopulations a Tumorigenicity b Average tumor volume (mm ) c Lung metastasis d CD high /4 8. 8/ CD low /4 6./ a Mice were injected

More information

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable Supplementary Figure 1. Frameshift (FS) mutation in UVRAG. (a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable A 10 DNA repeat, generating a premature stop codon

More information

York criteria, 6 RA patients and 10 age- and gender-matched healthy controls (HCs).

York criteria, 6 RA patients and 10 age- and gender-matched healthy controls (HCs). MATERIALS AND METHODS Study population Blood samples were obtained from 15 patients with AS fulfilling the modified New York criteria, 6 RA patients and 10 age- and gender-matched healthy controls (HCs).

More information

EPIGENETIC RE-EXPRESSION OF HIF-2α SUPPRESSES SOFT TISSUE SARCOMA GROWTH

EPIGENETIC RE-EXPRESSION OF HIF-2α SUPPRESSES SOFT TISSUE SARCOMA GROWTH EPIGENETIC RE-EXPRESSION OF HIF-2α SUPPRESSES SOFT TISSUE SARCOMA GROWTH Supplementary Figure 1. Supplementary Figure 1. Characterization of KP and KPH2 autochthonous UPS tumors. a) Genotyping of KPH2

More information

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk -/- mice were stained for expression of CD4 and CD8.

More information

Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid.

Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid. HEK293T

More information

Lentiviral Delivery of Combinatorial mirna Expression Constructs Provides Efficient Target Gene Repression.

Lentiviral Delivery of Combinatorial mirna Expression Constructs Provides Efficient Target Gene Repression. Supplementary Figure 1 Lentiviral Delivery of Combinatorial mirna Expression Constructs Provides Efficient Target Gene Repression. a, Design for lentiviral combinatorial mirna expression and sensor constructs.

More information

m 6 A mrna methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer

m 6 A mrna methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41556-018-0174-4 In the format provided by the authors and unedited. m 6 A mrna methylation regulates AKT activity to promote the proliferation

More information

mirna Dr. S Hosseini-Asl

mirna Dr. S Hosseini-Asl mirna Dr. S Hosseini-Asl 1 2 MicroRNAs (mirnas) are small noncoding RNAs which enhance the cleavage or translational repression of specific mrna with recognition site(s) in the 3 - untranslated region

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 a Location of GUUUCA motif relative to RNA position 4e+05 3e+05 Reads 2e+05 1e+05 0e+00 35 40 45 50 55 60 65 Distance upstream b 1: Egg 2: L3 3: Adult 4: HES 4e+05 3e+05 2e+05 start

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/8/393/rs9/dc1 Supplementary Materials for Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts

More information

Supplementary Figure 1. Repression of hepcidin expression in the liver of mice treated with

Supplementary Figure 1. Repression of hepcidin expression in the liver of mice treated with Supplementary Figure 1. Repression of hepcidin expression in the liver of mice treated with DMN Immunohistochemistry for hepcidin and H&E staining (left). qrt-pcr assays for hepcidin in the liver (right).

More information

he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003)

he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function (D. Bartel Cell 2004) he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003) Vertebrate MicroRNA Genes (Lim et al. Science

More information

microrna PCR System (Exiqon), following the manufacturer s instructions. In brief, 10ng of

microrna PCR System (Exiqon), following the manufacturer s instructions. In brief, 10ng of SUPPLEMENTAL MATERIALS AND METHODS Quantitative RT-PCR Quantitative RT-PCR analysis was performed using the Universal mircury LNA TM microrna PCR System (Exiqon), following the manufacturer s instructions.

More information

Supplemental Figure 1. Small RNA size distribution from different soybean tissues.

Supplemental Figure 1. Small RNA size distribution from different soybean tissues. Supplemental Figure 1. Small RNA size distribution from different soybean tissues. The size of small RNAs was plotted versus frequency (percentage) among total sequences (A, C, E and G) or distinct sequences

More information

Supplementary Figure 1. Confocal immunofluorescence showing mitochondrial translocation of Drp1. Cardiomyocytes treated with H 2 O 2 were prestained

Supplementary Figure 1. Confocal immunofluorescence showing mitochondrial translocation of Drp1. Cardiomyocytes treated with H 2 O 2 were prestained Supplementary Figure 1. Confocal immunofluorescence showing mitochondrial translocation of Drp1. Cardiomyocytes treated with H 2 O 2 were prestained with MitoTracker (red), then were immunostained with

More information

A Hepatocyte Growth Factor Receptor (Met) Insulin Receptor hybrid governs hepatic glucose metabolism SUPPLEMENTARY FIGURES, LEGENDS AND METHODS

A Hepatocyte Growth Factor Receptor (Met) Insulin Receptor hybrid governs hepatic glucose metabolism SUPPLEMENTARY FIGURES, LEGENDS AND METHODS A Hepatocyte Growth Factor Receptor (Met) Insulin Receptor hybrid governs hepatic glucose metabolism Arlee Fafalios, Jihong Ma, Xinping Tan, John Stoops, Jianhua Luo, Marie C. DeFrances and Reza Zarnegar

More information

Prediction of micrornas and their targets

Prediction of micrornas and their targets Prediction of micrornas and their targets Introduction Brief history mirna Biogenesis Computational Methods Mature and precursor mirna prediction mirna target gene prediction Summary micrornas? RNA can

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Characterization of stable expression of GlucB and sshbira in the CT26 cell line (a) Live cell imaging of stable CT26 cells expressing green fluorescent protein

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Mutational analysis of the SA2-Scc1 interaction in vitro and in human cells. (a) Autoradiograph (top) and Coomassie stained gel (bottom) of 35 S-labeled Myc-SA2 proteins (input)

More information

S1a S1b S1c. S1d. S1f S1g S1h SUPPLEMENTARY FIGURE 1. - si sc Il17rd Il17ra bp. rig/s IL-17RD (ng) -100 IL-17RD

S1a S1b S1c. S1d. S1f S1g S1h SUPPLEMENTARY FIGURE 1. - si sc Il17rd Il17ra bp. rig/s IL-17RD (ng) -100 IL-17RD SUPPLEMENTARY FIGURE 1 0 20 50 80 100 IL-17RD (ng) S1a S1b S1c IL-17RD β-actin kda S1d - si sc Il17rd Il17ra rig/s15-574 - 458-361 bp S1f S1g S1h S1i S1j Supplementary Figure 1. Knockdown of IL-17RD enhances

More information

RAW264.7 cells stably expressing control shrna (Con) or GSK3b-specific shrna (sh-

RAW264.7 cells stably expressing control shrna (Con) or GSK3b-specific shrna (sh- 1 a b Supplementary Figure 1. Effects of GSK3b knockdown on poly I:C-induced cytokine production. RAW264.7 cells stably expressing control shrna (Con) or GSK3b-specific shrna (sh- GSK3b) were stimulated

More information

MicroRNA in Cancer Karen Dybkær 2013

MicroRNA in Cancer Karen Dybkær 2013 MicroRNA in Cancer Karen Dybkær RNA Ribonucleic acid Types -Coding: messenger RNA (mrna) coding for proteins -Non-coding regulating protein formation Ribosomal RNA (rrna) Transfer RNA (trna) Small nuclear

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12652 Supplementary Figure 1. PRDM16 interacts with endogenous EHMT1 in brown adipocytes. Immunoprecipitation of PRDM16 complex by flag antibody (M2) followed by Western blot analysis

More information

Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63.

Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63. Supplementary Figure Legends Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63. A. Screenshot of the UCSC genome browser from normalized RNAPII and RNA-seq ChIP-seq data

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Choi YL, Soda M, Yamashita Y, et al. EML4-ALK mutations in

More information

Supplementary Figure 1 IMQ-Induced Mouse Model of Psoriasis. IMQ cream was

Supplementary Figure 1 IMQ-Induced Mouse Model of Psoriasis. IMQ cream was Supplementary Figure 1 IMQ-Induced Mouse Model of Psoriasis. IMQ cream was painted on the shaved back skin of CBL/J and BALB/c mice for consecutive days. (a, b) Phenotypic presentation of mouse back skin

More information

Nature Getetics: doi: /ng.3471

Nature Getetics: doi: /ng.3471 Supplementary Figure 1 Summary of exome sequencing data. ( a ) Exome tumor normal sample sizes for bladder cancer (BLCA), breast cancer (BRCA), carcinoid (CARC), chronic lymphocytic leukemia (CLLX), colorectal

More information

a) List of KMTs targeted in the shrna screen. The official symbol, KMT designation,

a) List of KMTs targeted in the shrna screen. The official symbol, KMT designation, Supplementary Information Supplementary Figures Supplementary Figure 1. a) List of KMTs targeted in the shrna screen. The official symbol, KMT designation, gene ID and specifities are provided. Those highlighted

More information

Supplementary Figure 1. Schematic diagram of o2n-seq. Double-stranded DNA was sheared, end-repaired, and underwent A-tailing by standard protocols.

Supplementary Figure 1. Schematic diagram of o2n-seq. Double-stranded DNA was sheared, end-repaired, and underwent A-tailing by standard protocols. Supplementary Figure 1. Schematic diagram of o2n-seq. Double-stranded DNA was sheared, end-repaired, and underwent A-tailing by standard protocols. A-tailed DNA was ligated to T-tailed dutp adapters, circularized

More information

Supplementary Figure 1. Quantile-quantile (Q-Q) plots. (Panel A) Q-Q plot graphical

Supplementary Figure 1. Quantile-quantile (Q-Q) plots. (Panel A) Q-Q plot graphical Supplementary Figure 1. Quantile-quantile (Q-Q) plots. (Panel A) Q-Q plot graphical representation using all SNPs (n= 13,515,798) including the region on chromosome 1 including SORT1 which was previously

More information

Table S1. Primer sequences used for qrt-pcr. CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT ACTB AAGTCCATGTGCTGGCAGCACT ATCACCACTCCGAAGTCCGTCT LCOR

Table S1. Primer sequences used for qrt-pcr. CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT ACTB AAGTCCATGTGCTGGCAGCACT ATCACCACTCCGAAGTCCGTCT LCOR Table S1. Primer sequences used for qrt-pcr. ACTB LCOR KLF6 CTBP1 CDKN1A CDH1 ATF3 PLAU MMP9 TFPI2 CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT AAGTCCATGTGCTGGCAGCACT ATCACCACTCCGAAGTCCGTCT CGGCTGCAGGAAAGTTTACA

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11095 Supplementary Table 1. Summary of the binding between Angptls and various Igdomain containing receptors as determined by flow cytometry analysis. The results were summarized from

More information

Supplementary Figure 1 ITGB1 and ITGA11 increase with evidence for heterodimers following HSC activation. (a) Time course of rat HSC activation

Supplementary Figure 1 ITGB1 and ITGA11 increase with evidence for heterodimers following HSC activation. (a) Time course of rat HSC activation Supplementary Figure 1 ITGB1 and ITGA11 increase with evidence for heterodimers following HSC activation. (a) Time course of rat HSC activation indicated by the detection of -SMA and COL1 (log scale).

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Chairoungdua et al., http://www.jcb.org/cgi/content/full/jcb.201002049/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. Expression of CD9 and CD82 inhibits Wnt/ -catenin

More information

Mature microrna identification via the use of a Naive Bayes classifier

Mature microrna identification via the use of a Naive Bayes classifier Mature microrna identification via the use of a Naive Bayes classifier Master Thesis Gkirtzou Katerina Computer Science Department University of Crete 13/03/2009 Gkirtzou K. (CSD UOC) Mature microrna identification

More information

Improved annotation of C. elegans micrornas by deep sequencing reveals structures associated with processing by Drosha and Dicer

Improved annotation of C. elegans micrornas by deep sequencing reveals structures associated with processing by Drosha and Dicer BIOINFORMATICS Improved annotation of C. elegans micrornas by deep sequencing reveals structures associated with processing by Drosha and Dicer M. BRYAN WARF, 1 W. EVAN JOHNSON, 2 and BRENDA L. BASS 1

More information

Nature Genetics: doi: /ng Supplementary Figure 1. SEER data for male and female cancer incidence from

Nature Genetics: doi: /ng Supplementary Figure 1. SEER data for male and female cancer incidence from Supplementary Figure 1 SEER data for male and female cancer incidence from 1975 2013. (a,b) Incidence rates of oral cavity and pharynx cancer (a) and leukemia (b) are plotted, grouped by males (blue),

More information

HIF-inducible mir-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment.

HIF-inducible mir-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment. HIF-inducible mir-9 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment. Neha Nagpal, Hafiz M Ahmad, Shibu Chameettachal3, Durai Sundar, Sourabh

More information

Nature Genetics: doi: /ng Supplementary Figure 1

Nature Genetics: doi: /ng Supplementary Figure 1 Supplementary Figure 1 MSI2 interactors are associated with the riboproteome and are functionally relevant. (a) Coomassie blue staining of FLAG-MSI2 immunoprecipitated complexes. (b) GO analysis of MSI2-interacting

More information

Supplementary Figure 1. HOPX is hypermethylated in NPC. (a) Methylation levels of HOPX in Normal (n = 24) and NPC (n = 24) tissues from the

Supplementary Figure 1. HOPX is hypermethylated in NPC. (a) Methylation levels of HOPX in Normal (n = 24) and NPC (n = 24) tissues from the Supplementary Figure 1. HOPX is hypermethylated in NPC. (a) Methylation levels of HOPX in Normal (n = 24) and NPC (n = 24) tissues from the genome-wide methylation microarray data. Mean ± s.d.; Student

More information

P. Mathijs Voorhoeve, Carlos le Sage, Mariette Schrier, Ad J.M. Gillis, Hans Stoop,

P. Mathijs Voorhoeve, Carlos le Sage, Mariette Schrier, Ad J.M. Gillis, Hans Stoop, Supplemental Data A Genetic Screen Implicates mirna-372 and mirna-373 As Oncogenes in Testicular Germ Cell Tumors P. Mathijs Voorhoeve, Carlos le Sage, Mariette Schrier, Ad J.M. Gillis, Hans Stoop, Remco

More information

Supplementary Fig. 1. Delivery of mirnas via Red Fluorescent Protein.

Supplementary Fig. 1. Delivery of mirnas via Red Fluorescent Protein. prfp-vector RFP Exon1 Intron RFP Exon2 prfp-mir-124 mir-93/124 RFP Exon1 Intron RFP Exon2 Untransfected prfp-vector prfp-mir-93 prfp-mir-124 Supplementary Fig. 1. Delivery of mirnas via Red Fluorescent

More information

Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication

Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication Manuscript EMBO-2010-74756 Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication Tsai-Ling Liao, Chung-Yi Wu, Wen-Chi Su, King-Song Jeng and Michael Lai Corresponding

More information

Supplementary Figure 1 IL-27 IL

Supplementary Figure 1 IL-27 IL Tim-3 Supplementary Figure 1 Tc0 49.5 0.6 Tc1 63.5 0.84 Un 49.8 0.16 35.5 0.16 10 4 61.2 5.53 10 3 64.5 5.66 10 2 10 1 10 0 31 2.22 10 0 10 1 10 2 10 3 10 4 IL-10 28.2 1.69 IL-27 Supplementary Figure 1.

More information

Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A.

Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A. Supplementary Figure 1. Genotyping strategies for Mcm3 +/+, Mcm3 +/Lox and Mcm3 +/- mice and luciferase activity in Mcm3 +/Lox mice. A. Upper part, three-primer PCR strategy at the Mcm3 locus yielding

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Supplementary Figure S1 Regulation of Ubl4A stability by its assembly partner A, The translation rate of Ubl4A is not affected in the absence of Bag6. Control, Bag6 and Ubl4A CRISPR

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/10/471/eaah5085/dc1 Supplementary Materials for Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking Maeran Uhm,

More information

Supplementary Figure 1: Digitoxin induces apoptosis in primary human melanoma cells but not in normal melanocytes, which express lower levels of the

Supplementary Figure 1: Digitoxin induces apoptosis in primary human melanoma cells but not in normal melanocytes, which express lower levels of the Supplementary Figure 1: Digitoxin induces apoptosis in primary human melanoma cells but not in normal melanocytes, which express lower levels of the cardiac glycoside target, ATP1A1. (a) The percentage

More information

Circular RNAs (circrnas) act a stable mirna sponges

Circular RNAs (circrnas) act a stable mirna sponges Circular RNAs (circrnas) act a stable mirna sponges cernas compete for mirnas Ancestal mrna (+3 UTR) Pseudogene RNA (+3 UTR homolgy region) The model holds true for all RNAs that share a mirna binding

More information

Supplementary Fig. 1. GPRC5A post-transcriptionally down-regulates EGFR expression. (a) Plot of the changes in steady state mrna levels versus

Supplementary Fig. 1. GPRC5A post-transcriptionally down-regulates EGFR expression. (a) Plot of the changes in steady state mrna levels versus Supplementary Fig. 1. GPRC5A post-transcriptionally down-regulates EGFR expression. (a) Plot of the changes in steady state mrna levels versus changes in corresponding proteins between wild type and Gprc5a-/-

More information

Supplementary Figure 1: si-craf but not si-braf sensitizes tumor cells to radiation.

Supplementary Figure 1: si-craf but not si-braf sensitizes tumor cells to radiation. Supplementary Figure 1: si-craf but not si-braf sensitizes tumor cells to radiation. (a) Embryonic fibroblasts isolated from wildtype (WT), BRAF -/-, or CRAF -/- mice were irradiated (6 Gy) and DNA damage

More information

This PDF file includes: Supplementary Figures 1 to 6 Supplementary Tables 1 to 2 Supplementary Methods Supplementary References

This PDF file includes: Supplementary Figures 1 to 6 Supplementary Tables 1 to 2 Supplementary Methods Supplementary References Structure of the catalytic core of p300 and implications for chromatin targeting and HAT regulation Manuela Delvecchio, Jonathan Gaucher, Carmen Aguilar-Gurrieri, Esther Ortega, Daniel Panne This PDF file

More information

SUPPLEMENTARY FIGURE LEGENDS

SUPPLEMENTARY FIGURE LEGENDS SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1 Negative correlation between mir-375 and its predicted target genes, as demonstrated by gene set enrichment analysis (GSEA). 1 The correlation between

More information

Bi 8 Lecture 17. interference. Ellen Rothenberg 1 March 2016

Bi 8 Lecture 17. interference. Ellen Rothenberg 1 March 2016 Bi 8 Lecture 17 REGulation by RNA interference Ellen Rothenberg 1 March 2016 Protein is not the only regulatory molecule affecting gene expression: RNA itself can be negative regulator RNA does not need

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION -. -. SUPPLEMENTARY INFORMATION DOI: 1.1/ncb86 a WAT-1 WAT- BAT-1 BAT- sk-muscle-1 sk-muscle- mir-133b mir-133a mir-6 mir-378 mir-1 mir-85 mir-378 mir-6a mir-18 mir-133a mir- mir- mir-341 mir-196a mir-17

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/6/283/ra57/dc1 Supplementary Materials for JNK3 Couples the Neuronal Stress Response to Inhibition of Secretory Trafficking Guang Yang,* Xun Zhou, Jingyan Zhu,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Confirmation of Dnmt1 conditional knockout out mice. a, Representative images of sorted stem (Lin - CD49f high CD24 + ), luminal (Lin - CD49f low CD24 + )

More information

Supplementary Figure 1 CD4 + T cells from PKC-θ null mice are defective in NF-κB activation during T cell receptor signaling. CD4 + T cells were

Supplementary Figure 1 CD4 + T cells from PKC-θ null mice are defective in NF-κB activation during T cell receptor signaling. CD4 + T cells were Supplementary Figure 1 CD4 + T cells from PKC-θ null mice are defective in NF-κB activation during T cell receptor signaling. CD4 + T cells were isolated from wild type (PKC-θ- WT) or PKC-θ null (PKC-θ-KO)

More information

Phenomena first observed in petunia

Phenomena first observed in petunia Vectors for RNAi Phenomena first observed in petunia Attempted to overexpress chalone synthase (anthrocyanin pigment gene) in petunia. (trying to darken flower color) Caused the loss of pigment. Bill Douherty

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Transcriptional program of the TE and MP CD8 + T cell subsets.

Nature Immunology: doi: /ni Supplementary Figure 1. Transcriptional program of the TE and MP CD8 + T cell subsets. Supplementary Figure 1 Transcriptional program of the TE and MP CD8 + T cell subsets. (a) Comparison of gene expression of TE and MP CD8 + T cell subsets by microarray. Genes that are 1.5-fold upregulated

More information

Nature Genetics: doi: /ng Supplementary Figure 1. Study design.

Nature Genetics: doi: /ng Supplementary Figure 1. Study design. Supplementary Figure 1 Study design. Leukopenia was classified as early when it occurred within the first 8 weeks of thiopurine therapy and as late when it occurred more than 8 weeks after the start of

More information

ONLINE SUPPLEMENTAL INFORMATION

ONLINE SUPPLEMENTAL INFORMATION 1 ONLINE SUPPLEMENTAL INFORMATION Small trna-derived RNAs are increased and more abundant than micrornas in chronic hepatitis B and C Sara R. Selitsky 1-3, Jeanette Baran-Gale 1,2, Masao Honda 4, Daisuke

More information

Supplemental Information. NRF2 Is a Major Target of ARF. in p53-independent Tumor Suppression

Supplemental Information. NRF2 Is a Major Target of ARF. in p53-independent Tumor Suppression Molecular Cell, Volume 68 Supplemental Information NRF2 Is a Major Target of ARF in p53-independent Tumor Suppression Delin Chen, Omid Tavana, Bo Chu, Luke Erber, Yue Chen, Richard Baer, and Wei Gu Figure

More information

microrna-200b and microrna-200c promote colorectal cancer cell proliferation via

microrna-200b and microrna-200c promote colorectal cancer cell proliferation via Supplementary Materials microrna-200b and microrna-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs Supplementary Table 1.

More information

Tel: ; Fax: ;

Tel: ; Fax: ; Tel.: +98 216 696 9291; Fax: +98 216 696 9291; E-mail: mrasadeghi@pasteur.ac.ir Tel: +98 916 113 7679; Fax: +98 613 333 6380; E-mail: abakhshi_e@ajums.ac.ir A Soluble Chromatin-bound MOI 0 1 5 0 1 5 HDAC2

More information

Nature Medicine: doi: /nm.4322

Nature Medicine: doi: /nm.4322 1 2 3 4 5 6 7 8 9 10 11 Supplementary Figure 1. Predicted RNA structure of 3 UTR and sequence alignment of deleted nucleotides. (a) Predicted RNA secondary structure of ZIKV 3 UTR. The stem-loop structure

More information

RNA interference (RNAi)

RNA interference (RNAi) RN interference (RNi) Natasha aplen ene Silencing Section Office of Science and Technology Partnerships Office of the Director enter for ancer Research National ancer Institute ncaplen@mail.nih.gov Plants

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 A B mir-141, human cell lines mir-2c, human cell lines mir-141, hepatocytes mir-2c, hepatocytes Relative RNA.1.8.6.4.2 Relative RNA.3.2.1 Relative RNA 1.5 1..5 Relative RNA 2. 1.5

More information

Supplementary Figure S1. Venn diagram analysis of mrna microarray data and mirna target analysis. (a) Western blot analysis of T lymphoblasts (CLS)

Supplementary Figure S1. Venn diagram analysis of mrna microarray data and mirna target analysis. (a) Western blot analysis of T lymphoblasts (CLS) Supplementary Figure S1. Venn diagram analysis of mrna microarray data and mirna target analysis. (a) Western blot analysis of T lymphoblasts (CLS) and their exosomes (EXO) in resting (REST) and activated

More information

Nature Genetics: doi: /ng Supplementary Figure 1. Mutational signatures in BCC compared to melanoma.

Nature Genetics: doi: /ng Supplementary Figure 1. Mutational signatures in BCC compared to melanoma. Supplementary Figure 1 Mutational signatures in BCC compared to melanoma. (a) The effect of transcription-coupled repair as a function of gene expression in BCC. Tumor type specific gene expression levels

More information

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation J. Du 1, Z.H. Tao 2, J. Li 2, Y.K. Liu 3 and L. Gan 2 1 Department of Chemistry,

More information

NOVEL FUNCTION OF mirnas IN REGULATING GENE EXPRESSION. Ana M. Martinez

NOVEL FUNCTION OF mirnas IN REGULATING GENE EXPRESSION. Ana M. Martinez NOVEL FUNCTION OF mirnas IN REGULATING GENE EXPRESSION Ana M. Martinez Switching from Repression to Activation: MicroRNAs can Up-Regulate Translation. Shoba Vasudevan, Yingchun Tong, Joan A. Steitz AU-rich

More information

7SK ChIRP-seq is specifically RNA dependent and conserved between mice and humans.

7SK ChIRP-seq is specifically RNA dependent and conserved between mice and humans. Supplementary Figure 1 7SK ChIRP-seq is specifically RNA dependent and conserved between mice and humans. Regions targeted by the Even and Odd ChIRP probes mapped to a secondary structure model 56 of the

More information

Nature Immunology: doi: /ni Supplementary Figure 1

Nature Immunology: doi: /ni Supplementary Figure 1 Supplementary Figure 1 NLRP12 is downregulated in biopsy samples from patients with active ulcerative colitis (UC). (a-g) NLRP12 expression in 7 UC mrna profiling studies deposited in NCBI GEO database.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.38/ncb3399 a b c d FSP DAPI 5mm mm 5mm 5mm e Correspond to melanoma in-situ Figure a DCT FSP- f MITF mm mm MlanaA melanoma in-situ DCT 5mm FSP- mm mm mm mm mm g melanoma in-situ MITF MlanaA mm mm

More information

Supplementary Figure 1. Establishment of prostacyclin-secreting hmscs. (a) PCR showed the integration of the COX-1-10aa-PGIS transgene into the

Supplementary Figure 1. Establishment of prostacyclin-secreting hmscs. (a) PCR showed the integration of the COX-1-10aa-PGIS transgene into the Supplementary Figure 1. Establishment of prostacyclin-secreting hmscs. (a) PCR showed the integration of the COX-1-10aa-PGIS transgene into the genomic DNA of hmscs (PGI2- hmscs). Native hmscs and plasmid

More information

Chapter 2. Investigation into mir-346 Regulation of the nachr α5 Subunit

Chapter 2. Investigation into mir-346 Regulation of the nachr α5 Subunit 15 Chapter 2 Investigation into mir-346 Regulation of the nachr α5 Subunit MicroRNA s (mirnas) are small (< 25 base pairs), single stranded, non-coding RNAs that regulate gene expression at the post transcriptional

More information

Supplementary Figure 1

Supplementary Figure 1 A B D Relative TAp73 mrna p73 Supplementary Figure 1 25 2 15 1 5 p63 _-tub. MDA-468 HCC1143 HCC38 SUM149 MDA-468 HCC1143 HCC38 SUM149 HCC-1937 MDA-MB-468 ΔNp63_ TAp73_ TAp73β E C Relative ΔNp63 mrna TAp73

More information

Removal of Shelterin Reveals the Telomere End-Protection Problem

Removal of Shelterin Reveals the Telomere End-Protection Problem Removal of Shelterin Reveals the Telomere End-Protection Problem DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to

More information